High Voltage Direct Current (HVDC) systems enable utilities to move more power further, efficiently integrate renewables, interconnect grids, and improve network performance. HVDC systems utilize power electronics technology to convert AC and DC voltage and are ideal for supporting existing systems or building new power highways.
GE Vernova provides solutions that offer grid operators the ability to provide reactive power support, enhance controllability, improve stability and increase power transfer capability of AC transmission systems.
Substation and Electrical Infrastructure Projects for Utility and Industrial Customers.
GE Vernova offers solutions for a variety of substation projects and applications, including Modular Substation Automation Systems, utility and industrial substation projects, as well as DC substation solutions.
The energy landscape today is changing, this is being led by the current industry trends of Decarbonization, Digitization, Decentralization and Electrification. Discover how GE Vernova is working with utility, consumer and industrial customers to design and deploy tailored Microgrid and Distributed Energy Resource (DER) Management solutions.
Innovations to Decarbonize the Electrical Grid. GRiDEA is our portfolio of decarbonization solutions that empower grid operators to address their net-zero objectives.
GE Vernova offers a wide range of transformer solutions for the utility, industrial, commercial, residential and energy markets. These solutions feature flexible, reliable and robust designs to support a wide range of applications. With units operating in some of the most demanding electrical environments around the world, We design and delivers transformer solutions that provide among the highest level of performance and reliability to meet rigorous operating requirements.
GE Vernova provides GIS solutions from 50 kV to 800 kV, along with secondary products to maximize switchgear and network operation. The portfolio includes a full range of SF6 GIS as well as g3 (SF6-free) GIS at 145 kV and 420 kV voltage levels for utilities and industries worldwide.
GE Vernova is one of the top circuit breaker suppliers in the world. Our products include a range of live tank circuit breakers (up to 800 kV), dead tank circuit breakers (up to 550 kV), as well as hybrid and compact switchgear assemblies. We also provide solutions for power generation applications with our generator circuit breakers for installations up to 1,500 MW.
GE Vernova is a global market leader for disconnectors (disconnect switches) since 1960, with 8 product facilities in 7 countries and hundreds of thousands installations in more than 130 countries around the world. The portfolio includes disconnectors for AC applications (up to 1,200 kV), for DC applications (up to 1,000 kV) and for railway applications. We also offer power connectors to connect two or more conductors for a continuous electrical path.
GE Vernova is an industry leader in the design and manufacturing of high, medium and low voltage instrument transformers. With more than 100 years of experience, We offer a broad array of standard and high accuracy models for revenue metering and system protection applications. The portfolio of instrument transformers ranges from low voltage at 600 V suitable for industrial and high accuracy revenue metering, all the way up to high voltage at 1,200 kV. The portfolio also includes line traps and digital instrument transformers.
For a century, utilities have relied on us to deliver electrical products and services to meet their quality, durability and performance needs. Our capacitor and reactor product lines are an integral part of our portfolio. GE Vernova provides power capacitors that meet ANSI, IEEE and IEC standards, and our low voltage capacitors are UL listed. Ratings range from 1 kvar to 500 MVAR, and from 240 volts to 500 KV.
GE Vernova provides a broad range of bushings and surge arresters to help protect electrical assets. The bushings portfolio includes AC and DC solutions that enable long life, high reliability and installation flexibility. GE’s Tranquell surge arresters are ideal for distribution and EHV applications up to 612kV, and are available as polymer and porcelain station and intermediate class IEEE/ANSI C62.11.
Our SF₆-free switchgear range features the same ratings and same dimensional footprint as the state-of-the-art SF₆ equipment, with a drastically reduced carbon footprint.
The collection of required asset condition data from the field on a large scale for GE Vernova and 3rd party electrical equipment is a key step in building a robust Asset Performance Management strategy. Grid Services specialists are constantly evaluating and implementing new innovative inspection technologies applying strict processes and methods. The digital inspections methods are designed to improve the efficiency of data collection, oil analysis and online monitoring. All new approaches to capture data are integrated into the EnergyAPM ecosystem for automatic data transfer.
Energy costs are significant expenses for utilities and industries at large, particularly those that are energy-intensive or operate heavy machinery. Between 5% and 25%* of the expenses in these organizations are allocated to energy payments, with up to 15%** of this energy consumption being wasted during operations.
GE Vernova offers a wide range of solutions to monitor and manage critical assets on the electrical grid, detect and diagnose issues and provide expert information and services to customers. Our asset monitoring and diagnostics portfolio includes solutions for single- and multi-gas transformer DGA, enhanced transformer solutions and switchgear monitoring, as well as software and services.
GE Vernova's Grid Solutions business electrifies the world with advanced grid technologies and systems, enabling power transmission and distribution from the grid to homes, businesses, and industries effieciently and reliably.
GridBeats™ is a portfolio of software-defined automation solutions for grid digitalization. The portfolio is designed to enable utilities and industrial customers to ensure a stable, efficient energy supply amidst the growing integration of renewable energy sources and aging infrastructure.
GE Vernova's Critical Infrastructure Communications solutions deliver comprehensive networks that are designed to be secure, flexible, and tailored to meet customers' objectives and unique geographic requirements.
GE Vernova's comprehensive portfolio of solutions for implementing and managing a substation.
GE Vernova's Asset Lifecycle Management services combine a large set of methodologies to collect condition data off and online, consulting and asset optimization services using digital technology to improve the monitoring, recording and analysis of asset operations and predict asset behavior.
GE’s innovative and high-quality services help maintain and optimize high-voltage electrical assets throughout their entire lifecycle. Leveraging the design and manufacturing knowledge of our engineers, the customized service solutions ensure substations and networks perform as planned. Experts deliver services for applications across the power system, keeping assets up-to-date, safe, reliable and efficient while improving customers’ return-on-investment.
GE Vernova provides a full range of services & support tailored to meet a broad range of power system needs across utility and industrial applications. With deep domain knowledge and industry expertise GE’s service application engineers and technical specialists can help plan, design, operate, maintain, and modernize your protection, control, monitoring and automation systems.
GE Vernova provides comprehensive services throughout the systems lifecycle. The services can be provided by our local team and with the support of our global Competence Centers when the equipment is installed, during the warranty period and beyond.
Our technical experts are ready to equip customers with the knowledge needed to effectively manage their critical assets and systems, and increase their return on product investments. Our training courses are offered in a variety of ways, including online, onsite at customer locations, and in our state-of-the art training centers around the world.
GE Vernova's Grid Solutions' Testing Laboratories enable manufacturers and end users to test their primary equipment by leveraging deep domain expertise and testing facilities, to develop enhanced high voltage products and certify their capabilities before market introductions.
GE Vernova delivers materials and eco-design studies for high voltage solutions to accelerate insulation and environmental innovation. GE’s services provide the expertise and methods that enable new value to support customer engineering, sourcing, quality control and EHS activities.
With the rapid digitalization of the grid, utility, power generation and industrial operators require cybersecurity solutions to monitor and protect grid asset and systems from increased severity and frequency of cyber attacks. GE Vernova adopted a “defense in depth” approach, providing innovative cybersecurity solutions designed to increase operational integrity, comply with regulations and control costs of security.
Utilities today seek to create and connect new sources of power generation to meet growing global demand, while also managing grid reliability, costs and regulatory factors.
Water is central not just to the economy, but to life. As a result, water treatment systems demand secure, dependable power to ensure process uptime. From the grid-connected substation to reliable electrical protection, control, and power quality metering, GE Vernova offers tailored solutions to keep critical plants operational and meet the unique needs of the water and wastewater industry.
As power systems become increasingly interconnected and complex, utilities need solutions that optimize energy transmission and management while improving reliability.
Data centers – and the information they store – are becoming increasingly integral to the way we live our lives every day. With rising demand also come rising costs. And more importantly, the information in these centers must remain secure while simultaneously accessible. We provide data centers with electrical infrastructure solutions from the input utility source to the IT server racks. This includes high-voltage switchgear and transformers, medium and low voltage electrical equipment, automatic transfer switches, switchboards, UPS systems, critical power PDUs, static transfer switches, and overhead busway. This chain of electrification products provides high quality and reliable products and services for the entire lifecycle of a data center.
The oil and gas industry is evolving at a rate never seen before, facing shifting pricing levels, ever-changing regulatory requirements, and increased environmental consciousness. Through reliable, safe, and innovative solutions and a holistic service offering, GE Vernova can help the energy sector thrive in this changing reality.
Modernizing and digitizing the distribution grid is imperative for utilities and customers to enhance power system stability and safety, while increasingly integrating distributed power and demand response.
The industry is changing. Simultaneously, so are your utility’s needs. Operational effectiveness, power stability, and critical asset management are key priorities – whether in pulp and paper, steel, or data centers. GE’s holistic portfolio of products and services are designed with reliability, innovation, and sustainability at the forefront, helping you face the energy transition with ease.
Mining companies require secure communications, efficient asset performance management, and dependable, innovative technology to protect their critical assets. GE Vernova offers a broad product portfolio to help you through each step of the mining process – safely and reliably.
|
MiCOM Agile P54A, P54B, P54C & P54E
Multi-ended Line Differential Protection Systems
The MiCOM P54A/B/C/E range is designed for overhead line and cable applications up to 6 terminals, interfacing readily with the longitudinal (end-to-end) communications channel between line terminals. Previously, transmission and distribution circuits would have two or three ends only, whereas five or more ends are becoming common to connect renewable generation. All models are ready for protection topologies ranging from two to six terminals, whether those multi-terminals exist now, or are provisioned for connection in the future. Multi-ended current differential protection uses a high-speed and innovative biased differential characteristic. Phase-segregated differential elements provide consistent detection of solid and resistive faults. Key features:
Application: Adapted to suit many different substation and protected feeder topologies:
|
Protect lines with up to 6 terminals
For more than 100 years, electric power plants have mainly been large, utility-owned facilities, feeding distributed load based on unidirectional power flow. Over the past 20 years, smaller, independent power generation plants have been developed and distributed within electrical networks. The increasing number of Distributed Generation (DG) sites, and their increasing power ratings from kW to hundreds of MW, create new challenges for network planning and operation.
Distributed Generation Tee Infeeds to Existing Transmission Lines
Circuits near the coast may be candidates for tee infeeds to evacuate renewable energy from onshore and offshore wind generation. A tee infeed to a nearby transmission line can be a more cost effective solution to connect the generation to the grid than building a new substation. This economy enables more Distributed Generation connections to penetrate the network helping to meet green energy connection targets and reduce greenhouse gas emissions.
Multi-Ended Circuit Differential Lines
Previously transmission and distribution circuits would have two or three ends only. However, five or more ends are becoming common because large Distributed Generation sites such as onshore or offshore windfarms and solar farms are being connected to the grid. As the power networks evolve to transport power in ever more complex ring and meshed networks, line/cable differential protection becomes increasingly attractive, with its inherent ability to address grading/selectivity challenges and is scalable for multi-terminal circuits able to accommodate many connections of distributed generation along the line. GE Grid Solutions’ multi-ended current differential protection is now ready for any protection topology from two to six terminals, whether those multi-terminals exist now, or are provisioned for connection in the future.
Functional Block Diagram
ANSI ® Device Numbers and Functions
|
|
|
Key Features
Programmable Scheme Logic
Powerful graphical logic allows the user to customise the protection and control functions. The logic includes 32 timers, gates (OR, AND, MAJORITY) and set/reset latch functions, with the ability to invert the inputs and outputs and provide feedback.
The system is optimised to ensure that the protection outputs are not delayed by PSL operation. The programmable scheme logic is configured using the graphical S1 Agile software. The relay outputs may be configured as latching (lockout) or self-reset. All aspects of MiCOM P40 IED configuration are managed using the S1 Agile software.
Measurement and Recording Facilities
All events, fault and disturbance records are time tagged to a resolution of 1 ms. An optional IRIG-B port is available for accurate time synchronisation.
Power System Measurements
Instantaneous and time integrated voltage, current and power measurements are provided. These may be viewed in primary, or secondary values.
Fault Location
A fault location algorithm provides distance to fault in miles, kilometres, ohms or percentage of the line length. The proven algorithm employed tolerates pre-fault loading and fault arc resistance.
Event Records
Up to 1024 time-tagged event records can be stored. An optional modulated or demodulated IRIG-B port is available for accurate time synchronisation.
fault Records
The last 15 fault records are stored.
Disturbance Records
The oscillography has 16 analogue channels, 64 digital and 1 time channel, all at a resolution of 48 samples/cycle.
Key Features
Protection Communications Interfacing
To ensure compatibility with standard communications equipment, the MiCOM P54x Agile multi-ended line differential series is designed to work with IEEE C37.94TM. A direct fibre optic connection to a MUX is possible if the MUX is IEEE C37.94TM compliant.
In direct fibre optic applications, 1300 nm and 1550 nm channel options are available. The transmitters are designed with a large "optical budget" to support up to 150 km.
Communications Supervision
Dependable communications are essential for high-performance differential protection. Each active longitudinal channel is independently monitored and reports error statistics in line with guidance from ITU-T G.821.
Multi-ended line differential works in a ring connection, which provide comms redundancy. In the event of degraded communications, the ring communications channels will continue to provide protection, thus providing duplicated links via diverse communications paths.
Alternatively, back-up overcurrent elements can be switched into service, either as permanent parallel main protection, or temporary protection only during channel outages.
Communications with Remote Operators and Substation Automation
Rear Scada Communication
The wide range of communications options, including IEC 61850, provides interfacing with almost any type of substation automation system or SCADA system.
The following protocols are available:
P54x devices can be enhanced with an optional redundant Ethernet board. The redundancy is managed by the market's fastest recovery time protocols: IEC 62439-3 PRP and HSR allowing bumpless redundancy and RSTP, offering multi-vendor interoperability. The redundant Ethernet board supports either modulated or demodulated IRIG-B and the SNTP protocol for time synchronisation. The redundant Ethernet board also has a watchdog relay contact to alarm in case of a failure.
Second Rear Courier Port
An additional second rear port can be ordered as an option, designed typically for dial-up modem access by protection engineers/operators when the main port is reserved for SCADA traffic. This port also offers the option of -103 communications when IEC 61850 is the chosen first port protocol.
MiCOM S1 Agile
Key benefits:
Engineering Tool Suite
S1 Agile is the truly universal PC tool for MiCOM Agile relay, assemble all tools in a palette for simple entry, with intuitive navigation via fewer mouse-clicks. No-longer are separate tools required for redundant Ethernet configuration, phasor measurement unit commissioning, busbar scheme operational dashboards, programmable curve profiles or automatic disturbance record extraction – applications are embedded. MiCOM S1 Agile supports all existing MiCOM, K-Series and Modulex, including a utility for automatic conversion of setting files from previous generations of numerical relays like K-series and MiCOM P20 to the latest P40 Agile models.
To move to the future, with no loss of functionality, no loss of device support, and full compatibility with your installed base and system architecture – request a copy of S1 Agile with the contact form link below.
Key features in the MiCOM S1 family:
MiCOM S1 Agile software request
To receive the MiCOM S1 Agile, please use our Contact form. This will also ensure that you are kept up-to-date with the latest enhancements, including updates and bug fixes.
Models
P54A compact (40TE), economical line differential protection without VT inputs, offering non-directional backup protection. |
|
P54B compact (40TE), economical line differential protection with directionalised back-up protection and inbuilt reclosing and check synchronism. |
|
P54C transmission-class 1/3-pole tripping line differential protection with backup protection and inbuilt reclosing and check synchronism (built from today’s P543 hardware). |
|
P54E transmission-class 1/3-pole tripping line differential protection with back-up protection and inbuilt reclosing and check synchronism with a large number of binary I/O for traditional hardwired schemes (built from P545 hardware). |