
Developer Documentation

© 2020 General Electric Company



Contents

Chapter 1: KPI Development (Java) 1
Analytic Development in Java 2

Chapter 2: KPI Development (Python) 11
Download and Explore Sample Python Spark Analytic 12

Chapter 3: Upload and Deploy a Forecasting Analytic 19

Chapter 4: Generate Analytic with Alerts 21

ii  Developer Documentation



Copyright GE Digital
© 2020 General Electric Company.

GE, the GE Monogram, and Predix are either registered trademarks or trademarks of General Electric
Company. All other trademarks are the property of their respective owners.

This document may contain Confidential/Proprietary information of General Electric Company and/or its
suppliers or vendors. Distribution or reproduction is prohibited without permission.

THIS DOCUMENT AND ITS CONTENTS ARE PROVIDED "AS IS," WITH NO REPRESENTATION OR
WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF DESIGN, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. ALL OTHER
LIABILITY ARISING FROM RELIANCE UPON ANY INFORMATION CONTAINED HEREIN IS EXPRESSLY
DISCLAIMED.

Access to and use of the software described in this document is conditioned on acceptance of the End
User License Agreement and compliance with its terms.

   

© 2020 General Electric Company  iii



   

   



Chapter

1
KPI Development (Java)
Topics:

• Analytic Development in Java

   

© 2020 General Electric Company  1



Analytic Development in Java
Use the Operations Performance Management analytic management service to build your computation
logic and artifacts. It includes runtime services to deploy to the analytic framework.

As a analytic developer, you can create analytic definitions to read data coming from a specific input data
source and write the analytic calculations into a persistent data store. The default persistent data store
for the current analytic management services is the APM time series.

The computation artifact includes implementation logic for computing the key performance indicators
using data from defined input data sources.

Download and Explore Sample Java Spark Analytic
As an analytic developer, you can use the analytics sample package to explore and understand a starter
Java package containing sample analytic code. The following information will help you understand and
develop your computation logic in Java.

Before You Begin

You have downloaded and set up your OPM Sandbox Docker or environment to enable the development
of the analytic in Java.

Note: The OPM Sandbox Docker folder on Box is currently available to internal users only. If you do not
have view or download access the folder and would like to request access, contact the OPM development
support team.

Procedure

1. Download the oo-analytics repository locally.

If you do not have access to the repo, contact the OPM development support team.

2. Extract the contents of the repo locally.

3. Navigate to the Andromeda_Simple_KPIs folder in the extracted.

4. In the JavaTimes10 folder, open the SampleAnalytic.java file to view and understand the
sample computation logic.
The example code sample is shown below.

package com.ge.opm.kpi;

import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
import com.ge.arf.rt.IAnalytics;
import com.ge.arf.rt.IRuntimeDataset;
import com.ge.arf.rt.config.HasConfig;

import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.SQLContext;

/**
 *
 * KPI Analytic Template to run in the OO KPI Framework
 *
 */
 public class SampleAnalytic extends HasConfig implements 

   

2  © 2020 General Electric Company

https://github.build.ge.com/pages/OperationsOptimization/opmsandbox/
mailto:opm.support@ge.com
mailto:opm.support@ge.com
https://github.build.ge.com/OperationsOptimization/oo-analytics
mailto:opm.support@ge.com


IAnalytics<SQLContext, Dataset> {

     @Override
     public Map<String, Dataset> runAnalysis(Map<String, 
IRuntimeDataset<SQLContext>> inputDatasets)
     {
       Map outputs = new HashMap();
       IRuntimeDataset tsInput = 
(IRuntimeDataset)inputDatasets.get("timeseriesReadDS");
       IRuntimeDataset configDS = 
(IRuntimeDataset)inputDatasets.get("configDS");
       String outputTag = 
((SQLContext)configDS.getContext()).sql("select MappingValue from `" 
+ configDS.getName()
                                    + "` where 
MappingType='OutputMappings'").head().getString(0);
       String inputTag = 
((SQLContext)configDS.getContext()).sql("select MappingValue from `" 
+ configDS.getName()
                                    + "` where 
MappingType='InputMappings'").head().getString(0);

       Dataset tsDF = ((SQLContext)tsInput.getContext()).sql("select 
* from `" + tsInput.getName() + "` where tag='" + inputTag + "'");

       tsDF.show(false);
       tsDF.printSchema();
       tsDF.registerTempTable("tsFiltered");
       Dataset outputDf = null;
       String analyticSQL = null;

       analyticSQL = "select '" + outputTag + "' as tag, timestamp, 
value*10 as value, quality from `tsFiltered`";
       outputDf = 
((SQLContext)tsInput.getContext()).sql(analyticSQL).cache();
       outputs.put("timeseriesWriteDS", outputDf);
       return outputs;
     }
 }

5. Navigate to and open the file oo-analytics/Andromeda_Simple_KPIs/JavaTimes10/src/
main/resources/META-INF/services/com.ge.arf.rt.IAnalytics. Make sure the
value matches the java implementation name, for example, com.ge.opm.kpi.SampleAnalytic

Next Steps

Use the packaged computation logic to upload to the Analytics Catalog.

Understand the Computation Logic in Java
This is a reference document for developers who want to understand the expected structure of the
computation logic in Java.

After you download the Java sample code, you can start developing the custom logic for the your KPI.

Find the complete implementation example code at Andromeda_Simple_KPIs/JavaTimes10/
src/main/java/com/ge/opm/kpi/SampleAnalytic.java

  

© 2020 General Electric Company  3



OPM Data Providers

OPM data providers construct the incoming data into collections of data tables that you can manipulate
using filters and queries.

The following example code snippet shows retrieving the asset and time-series data sources.

IRuntimeDataset<SQLContext> assetDS = 
(IRuntimeDataset)inputDatasets.get("assetReadDS");
IRuntimeDataset<SQLContext> timeseriesDS = 
inputDatasets.get("timeseriesReadDS");

In the above code assetReadDS and timeseriesReadDS are the input data source provider names
used in the KPI definition.

Getting specific input data into data frames

OPM data providers use data frames to construct the incoming and outgoing data. These data frames
enable you to use simple query statements to get the required data for your computation. You can also
perform simple join operations to filter for specific data to run the computation. The computed KPIs and
tag data are produced as data frames to write back into the corresponding output data providers.

The following example code snippet shows setting your IRuntimeDataset objects.

 IRuntimeDataset tsInput = 
(IRuntimeDataset)inputDatasets.get("timeseriesReadDS");
       IRuntimeDataset configDS = 
(IRuntimeDataset)inputDatasets.get("configDS");

Time-Series Input Data Frame Example

|tag                 |timestamp    |value  |quality|
+--------------------+-------------+-------+-------+
|OO_Tag_Pressure_ID84|1478764800000|300.555|3      |
|OO_Tag_Pressure_ID84|1478854800000|301.666|3      |
|OO_Tag_Pressure_ID84|1478948400000|401.001|3      |
|OO_Tag_Pressure_ID83|1478764800000|200.555|3      |
|OO_Tag_Pressure_ID83|1478854800000|201.666|3      |
|OO_Tag_Pressure_ID83|1478948400000|201.001|3      |
+--------------------+-------------+-------+-------+

Configuration Data Frame Example

This data frame contains the input, constants, and output parameters mapped to the asset tags.

|MappingType   |MappingKey  |
MappingValue                                     |AssetSourceKey       
|
+--------------+------------
+-------------------------------------------------
+---------------------+
|InputMappings |temperature |
OO_Tag_Pressure_ID84                             |OO-CA-SIMUL-ASSET-
ID0|
|InputMappings |pressure    |
OO_Tag_Pressure_ID83                             |OO-CA-SIMUL-ASSET-
ID0|
|Constants     |threshold   |

   

4  © 2020 General Electric Company



100                                              |null                 
|
|OutputMappings|availability|OO-CA-SIMUL-ASSET-
ID0.Kpi100_Deploy1_availability|OO-CA-SIMUL-ASSET-ID0|
|OutputMappings|power       |OO-CA-SIMUL-ASSET-
ID0.Kpi100_Deploy1_power       |OO-CA-SIMUL-ASSET-ID0|
|OutputMappings|heatrate    |OO-CA-SIMUL-ASSET-
ID0.Kpi100_Deploy1_heatrate    |OO-CA-SIMUL-ASSET-ID0|
+--------------+------------
+-------------------------------------------------
+---------------------+

Example Data Frame with Tag Attributes

This data frame contains the tag data with attributes.

+--------------------+--------------------+--------------------
+--------------------+--------------------+-------+--------------------
+--------------------+
|           sourceKey|                name|                
type|        tagSourceKey|             tagName|tagUnit|          
attributes|       tagAttributes|
+--------------------+--------------------+--------------------
+--------------------+--------------------+-------+--------------------
+--------------------+
|Analytics-CA-ASSE...|Analytics CA Asse...|/assetTypes/01b15...|
Analytics-CA-ASSE...|Analytics Asset T...|    psi|[[Boolean,Wrapped...|
[[Boolean,Wrapped...|
|Analytics-CA-ASSE...|Analytics CA Asse...|/assetTypes/01b15...|
Analytics-CA-ASSE...|Analytics Asset T...|    psi|[[Boolean,Wrapped...|
[[Boolean,Wrapped...|
+--------------------+--------------------+--------------------
+--------------------+--------------------+-------+--------------------
+--------------------+

Saving Filtered Data to the Data Frame

You can perform simple join operations to combine the contents of two or more data sets into a single
data frame. Save the select query to a string (for example, String outputTag. In the example snippet below,
we are show contents of two datasets: timeseriesDS and ConfiDS.

String outputTag = ((SQLContext)configDS.getContext()).sql("select 
MappingValue from `" + configDS.getName()
                                    + "` where 
MappingType='OutputMappings'").head().getString(0);
       String inputTag = 
((SQLContext)configDS.getContext()).sql("select MappingValue from `" + 
configDS.getName()
                                    + "` where 
MappingType='InputMappings'").head().getString(0);

       Dataset tsDF = ((SQLContext)tsInput.getContext()).sql("select * 
from `" + tsInput.getName() + "` where tag='" + inputTag + "'");

  

© 2020 General Electric Company  5



Querying with Attributes

You can perform simple join operations to combine the contents of two or more data sets into a single
data frame. You can save the select query to a string (for example, String assetFilterWithAttributes. In the
example snippet below, we are show contents of two datasets: timeseriesDS and ConfiDS.

String assetFilterWithAttributes = "select '" + outputTag + "' as tag, 
s.timestamp as timestamp, "
            + "s.value*2 as value, "
            + "s.quality as quality "
            + "from `" + assetDS.getName() 
            + "` a join `" + timeseriesDS.getName() 
            + "` s on a.tagSourceKey = s.tag "
            + "where s.tag='" + inputTag + "'"
            + "and a.attributes."+attributeName+".value > 2000000000";

Logging Information

Use LOGGER.info to log any information related to the KPI computation such as input, output and joined
data frame schema and values, constant definitions and values, and log section labels as text. This would
help troubleshoot errors after the KPI job execution.

LOGGER.info("     HEATRATE DATAFRAME 
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@");
    LOGGER.info(heatRateDf.schema().treeString());
    LOGGER.info(heatRateDf.showString(100, false));
        
    LOGGER.info("     POWER DATAFRAME 
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@");
    LOGGER.info(powerDf.schema().treeString());
    LOGGER.info(powerDf.showString(100, false));

Writing Time-series Results to the Data Frame

After performing your computation, you would write the results to the output data source provider from
your result data frame.

Dataset outputDf = null;
       String analyticSQL = null;

       analyticSQL = "select '" + outputTag + "' as tag, timestamp, 
value*10 as value, quality from `tsFiltered`";
       outputDf = 
((SQLContext)tsInput.getContext()).sql(analyticSQL).cache();
       outputs.put("timeseriesWriteDS", outputDf);
       return outputs;

Time-Series Output Data Frame Example

|tag                                              |value             |
quality|timestamp    |
+-------------------------------------------------+------------------
+-------+-------------+
|OO-CA-SIMUL-ASSET-ID0.Kpi100_Deploy1_heatrate    |4349.443333333333 |
3      |1480637708419|
|OO-CA-SIMUL-ASSET-ID0.Kpi100_Deploy1_power       |2174.7216666666664|

   

6  © 2020 General Electric Company



3      |1480637708419|
|OO-CA-SIMUL-ASSET-ID0.Kpi100_Deploy1_availability|0.0               |
3      |1480637708419|
+-------------------------------------------------+------------------
+-------+-------------+

Package the Java Analytics
Package the Java Analytics to upload it to the analytics catalog for deployment to the Spark runtime.

POM Dependencies

The following dependencies must be listed in the POM.

<dependencies>
        <dependency>
            <groupId>com.ge.arf</groupId>
            <artifactId>arf-runtime-api</artifactId>
            <version>1.0.0-SNAPSHOT</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.10</artifactId>
            <version>${spark.sql.version}</version>
        </dependency>
        <dependency>

Directory Structure

To package the analytic, you should have something like the following directory structure:

pom.xml
src
    main
        java
            com
                ge
                    opm
                        kpi
                            SampleAnalytic.java
        resources
            META-INF
                services
                    com.ge.arf.rt.IAnaltyics

Package

The com.ge.arf.rt.IAnaltyics file should simply contain the fully qualified class name of your
analytic. For example, in the sample analytic, it would be as follows:

com.ge.opm.kpi.SampleAnalytic

This allows the service loader in the runtime framework to obtain your analytic implementation, as long
as it implements the IAnalytics interface.

  

© 2020 General Electric Company  7



Use the mvn clean install --settings mvnsettings.xml command to build your analytic .
jar file. Make sure you point to the settings.xml in the sample analytic folder. The location of the
settings.xml is the same as the POM file location.

Zip the .jar file to complete the packaging process.

Simple Java Analytic
This reference document describes how to develop, build, and deploy a simple Java Analytic on Spark
runtime.

Define the Job Specification

The sample analytic takes a single input parameter for a single timeseries tag, multiplies it by 10, and
writes the values back to a single output tag with the same timestamp. Refer to the analytic code itself to
see how these datasources are handled, and note in particular that the keys used to access the
SQLContext for each dataframe correspond to those provided in the JSON job specification (java_job.
json.

Note: Use OPM Analytic Services directly to run this analytic on your data, you will need to change some
of the parameters in this example JSON, specifically the values for filter, InputMappings, and
OutputMappings.

{
  "inputs": [
    {
      "name": "timeseriesReadDS",
      "id": "fileInputDS-1234567",
      "provider": "predix.apm.ts",
      "parameters": {
        "url": "${apm.timeseriesUrl}",
        "Content-Type": "application/json",
        "tenant": "${tenant}",
        "Authorization": "Bearer ${apm.token}",
        "filter": 
"operation=raw&startTime=1495217624000&sampleCount=30&useOnlyGoodData=t
rue&tagList=OO_Tag_Temperature_ID26",
        "InputMappings": {
          "OO-CA-SIMUL-ASSET-ID1": {
            "input1": "OO_Tag_Temperature_ID26"
          }
        }
      }
    }
  ],
  "outputs": [
    {
      "name": "timeseriesWriteDS",
      "id": "fileOutputDS-1234567",
      "provider": "predix.apm.ts",
      "parameters": {
        "url": "${apm.timeseriesUrl}",
        "Content-Type": "application/json",
        "tenant": "${tenant}",
        "Authorization": "Bearer ${apm.token}",
        "OutputMappings": {
          "OO-CA-SIMUL-ASSET-ID1": {
            "output1": "OO_Tag_Temperature_ID28"
          }

   

8  © 2020 General Electric Company



        }
      },
      "streaming": false,
      "schema": null
    }
  ],
  "language": "JAVA"
}

Upload and Deploy a Simple Java Analytic

In this procedure you will find steps to upload and deploy a sample Java analytic on Spark runtime.

Before You Begin

This procedure assumes that the following prerequisite tasks have been completed.

• You have uploaded the required assets, tags, and time series data required for this analytic.
• You are signed in to an OPM tenant with access privileges to manage analytics on Spark runtime.
• You have downloaded the copy of sparkAnalytic_simple_java_version_1_0_0.zip.
• You have downloaded and extracted the contents of sparkAnalytic_simple_java_io-

definitions.zip locally.

Procedure

1. Upload the analytics template to the catalog.

Configure the following information for the analytic.

Option

Name Spark Simple Java Times 10

Owner Your Name

Analytic Type Java

Type Version 1.8

Analytic File sparkAnalytic_simple_java_version_
1_0_0.zip

Analytic Version 1.0.0

Primary Category Forecasting

2. In the Analytic Template, configure the input definition, constant, and output definition through .CSV
upload.

3. Add and configure the deployment as follows:

a) Enter deployment_forecast_train in the Deployment Name box, and then select Submit.
b) In the 1. Asset Selection step, select the asset defined in the analytic, and then select Save.
c) Select Next to access the 2. I/O Mapping step.
d) Select Tag, and then select Add Tags....
e) In the tag browser, search for the tag in the analytic. As represented in the sample example, search

for OO_TAG_Temperature_ID12. After the search displays the tag, drag and drop it onto the
input for mapping it.

f) Select Save and Next to save the I/O Mapping configuration.
g) In the 3. Schedule step, leave the selection at Only Once for Define how often a new run will be

executed option.
h) Select Time Span for past 30 days.

  

© 2020 General Electric Company  9



i) Leave the Sample Interval at the default value of 1 Minute.
j) Select Save, and then select Deploy.

The deployment is saved to the Spark runtime. After successful deployment, the status updates to
Run Once.

Next Steps

Visualize the analytic output tags using the Analysis app.

   

10  © 2020 General Electric Company



Chapter

2
KPI Development (Python)
Topics:

• Download and Explore Sample
Python Spark Analytic

   

© 2020 General Electric Company  11



Download and Explore Sample Python Spark Analytic
As an analytic developer, you can use the analytic sample package to generate a starter Python package
with some sample code. The following information will help you understand and develop your
computation logic in Python.

Before You Begin

You have downloaded and set up your OPM Sandbox Docker or environment to enable the development
of Python analytics.

Note: The OPM Sandbox Docker folder on Box is currently available to internal users only. If you do not
have view or download access the folder and would like to request access, contact the OPM development
support team.

Procedure

1. Download the oo-analytics repository locally.

If you do not have access to the repo, contact the OPM development support team.
2. Extract the contents of the repo locally.
3. Navigate to the Andromeda_Simple_KPIs folder in the extracted.
4. In the PythonTimes10 folder, find and open the _init_.py file to view and understand the sample

computation logic.

Results

The example code sample is shown below.

from pyspark.sql import SparkSession
from pyspark.sql import *
from pyspark.sql import functions
from pyspark.sql.types import *
from pyspark.sql.dataframe import *
from pyspark.sql.functions import *
import sys
import time
from datetime import datetime

class SimpleJob():

    def run_job(self, spark_session, runtime_config, job_json, 
context_dict, logger):
        try:
            spark = spark_session

            logger.info("Starting analytic...")
            configContext = context_dict["configDS"]
            tsContext = context_dict["timeseriesReadDS"]

            configDF = configContext.sql("select * from " + 
context_dict["configDS"].table_name)
            configDF.createOrReplaceTempView("configDF")
            inputTag = configContext.sql("select MappingValue from 
configDF where MappingType='InputMappings'").head()[0]
            timeseriesDF = tsContext.sql("select * from " + 
context_dict["timeseriesReadDS"].table_name + " where tag='" + 

   

12  © 2020 General Electric Company

https://github.build.ge.com/pages/OperationsOptimization/opmsandbox/
mailto:opm.support@ge.com
mailto:opm.support@ge.com
https://github.build.ge.com/OperationsOptimization/oo-analytics
mailto:opm.support@ge.com


inputTag + "'")
            timeseriesDF.createOrReplaceTempView("timeseriesDF")

            outputTag = configContext.sql("select MappingValue from 
configDF where MappingType='OutputMappings'").head()[0]
            resultDF = tsContext.sql("select '" + outputTag + "' as 
tag, timestamp as timestamp, 10*value as value, quality as quality 
from timeseriesDF")

            logger.info("Returning result...")
            result = {"timeseriesWriteDS" : resultDF}
            return result
        except Exception as e:
            logger.info("Error: " + str(e))
            exc_tb = sys.exc_info()[2]
            logger.info("Line number: " + str(exc_tb.tb_lineno))

Next Steps

You can now add computation logic to the project and package it.

Understand the Computation Logic in Python
This is a reference document for developers who want to develop their KPI computation logic in Python
for Spark runtime.

After you download the python sample code, you can start developing the custom logic for your KPI.

Find the complete implementation example code at oo-analytics/Andromeda_Simple_KPIs/
PythonTimes10/simple_py/__init__.py.

Define the input data sources

OPM data providers construct the incoming data into RDD. You can manipulate these collections of data
tables delete using filters and queries.

The following example code snippet shows you use the data from the timeseriesReadDS and configDS.

# timeseriesReadDS is dataset with timeseries read data source
tsContext = context_dict["timeseriesReadDS"]
# configDS has the user provided configurations and tag mappings
configContext = context_dict["configDS"]

In the above code, timeseriesReadDS is the input data source provider name used in the KPI
definition.

Fetch the input data using SparkSQL functions

OPM data providers construct the incoming and outgoing data into data frames. These data frames
enable you to use simple query statements in SparkSQL to get the required data for your computation.
You can also perform simple join operations to filter for specific data to run the computation. The
computed KPIs and tag data are produced as data frames to write back into the corresponding output
data providers.

Note: You cannot use Pyspark dataframe functions; use SparkSQL instead. For example, use
sqlContext.sql(<select_statement>.cache() instead of
sqlContext.createDataFrame(rdd,schema) for setting a data frame.

  

© 2020 General Electric Company  13



The following example code snippet shows using SparkSQL functions.

configDF = configContext.sql("select * from " + 
context_dict["configDS"].table_name)
         inputTag = configContext.sql("select MappingValue from 
configDF where MappingType='InputMappings'").head()[0]
         timeseriesDF = tsContext.sql("select * from " + 
context_dict["timeseriesReadDS"].table_name + " where tag='" + 
inputTag + "'")
         

The example data frame outputs are shown below:

Asset Data Frame Example

-+----------------------------------------------------
+-----------------------------------------------+-------+
|sourceKey            |name            |
type                                            |
tagSourceKey                 |tagName                        |
tagDescription     |tagUnit|
+---------------------+----------------
+------------------------------------------------
+-----------------------------+-------------------------------
+-------------------+-------+
|OO-CA-SIMUL-ASSET-ID0|OO CA Asset One |/assetTypes/ebb91686-67f5-3612-
b9c5-6381e99837e6|OO_Tag_Pressure_ID153        |
OO_Tag_Pressure_ID153          |description|atm    |
|OO-CA-SIMUL-ASSET-ID0|OO CA Asset One |/assetTypes/ebb91686-67f5-3612-
b9c5-6381e99837e6|OO_Tag_Pressure_ID57         |
OO_Tag_Pressure_ID57           |description|atm    |
|OO-CA-SIMUL-ASSET-ID0|OO CA Asset One |/assetTypes/ebb91686-67f5-3612-
b9c5-6381e99837e6|OO_Tag_Pressure_ID173        |
OO_Tag_Pressure_ID173          |description|atm    |
|OO-CA-SIMUL-ASSET-ID0|OO CA Asset One |/assetTypes/ebb91686-67f5-3612-
b9c5-6381e99837e6|OO-CA-SIMUL-ASSET-ID0        |OO-CA-SIMUL-ASSET-
ID0          |description|null   |
|OO-CA-SIMUL-ASSET-ID0|OO CA Asset One |/assetTypes/ebb91686-67f5-3612-
b9c5-6381e99837e6|OO_Tag_Pressure_ID152        |
OO_Tag_Pressure_ID152          |description|atm    |
|OO-CA-SIMUL-ASSET-ID0|OO CA Asset One |/assetTypes/ebb91686-67f5-3612-
b9c5-6381e99837e6|OO_Tag_Pressure_ID165        |
OO_Tag_Pressure_ID165          |description|atm    |
|OO-CA-SIMUL-ASSET-ID0|OO CA Asset One |/assetTypes/ebb91686-67f5-3612-
b9c5-6381e99837e6|OO_Tag_Pressure_ID144        |
OO_Tag_Pressure_ID144          |description|atm    |
+---------------------+----------------
+------------------------------------------------
+-----------------------------+-------------------------------
+-------------------+-------+

Time-Series Input Data Frame Example

|tag                 |timestamp    |value  |quality|
+--------------------+-------------+-------+-------+
|OO_Tag_Pressure_ID84|1478764800000|300.555|3      |
|OO_Tag_Pressure_ID84|1478854800000|301.666|3      |
|OO_Tag_Pressure_ID84|1478948400000|401.001|3      |
|OO_Tag_Pressure_ID83|1478764800000|200.555|3      |

   

14  © 2020 General Electric Company



|OO_Tag_Pressure_ID83|1478854800000|201.666|3      |
|OO_Tag_Pressure_ID83|1478948400000|201.001|3      |
+--------------------+-------------+-------+-------+

Configuration Data Frame Example

This data frame contains the input, constants, and output parameters mapped to the asset tags.

|MappingType   |MappingKey  |
MappingValue                                     |AssetSourceKey       
|
+--------------+------------
+-------------------------------------------------
+---------------------+
|InputMappings |temperature |
OO_Tag_Pressure_ID84                             |OO-CA-SIMUL-ASSET-
ID0|
|InputMappings |pressure    |
OO_Tag_Pressure_ID83                             |OO-CA-SIMUL-ASSET-
ID0|
|Constants     |threshold   |
100                                              |null                 
|
|OutputMappings|availability|OO-CA-SIMUL-ASSET-
ID0.Kpi100_Deploy1_availability|OO-CA-SIMUL-ASSET-ID0|
|OutputMappings|power       |OO-CA-SIMUL-ASSET-
ID0.Kpi100_Deploy1_power       |OO-CA-SIMUL-ASSET-ID0|
|OutputMappings|heatrate    |OO-CA-SIMUL-ASSET-
ID0.Kpi100_Deploy1_heatrate    |OO-CA-SIMUL-ASSET-ID0|
+--------------+------------
+-------------------------------------------------
+---------------------+

Save Filtered Data to the Data Frame

You can perform simple join operations to combine the contents of two or more data sets into a single
data frame. Save the select query to a string (for example, String analyticSql). In the example snippet
below, we are joining the contents of two datasets assetDS and timeseriesDS based on the columns
tagSourceKey in the asset data set and tag in the time-series data set.

String analyticSql = "select a.sourceKey, s.tag, s.timestamp, "
                + "s.value as tagvalues "
                + "from `" + assetDS.getName()
                + "` a join `" + timeseriesDS.getName()
                + "` s on a.tagSourceKey=s.tag";

    DataFrame joinedDf = 
timeseriesDS.getContext().sql(analyticSql).cache();

Logging Information

Use the LOGGER.info to log any information related to the KPI computation such as input, output and
joined data frame schema and values, constant definitions and values, and log section labels as text. This
would help troubleshoot errors after the KPI job execution.

logger.info("Starting analytic...")
logger.info("Returning result...")

  

© 2020 General Electric Company  15



except Exception as e:
            logger.info("Error: " + str(e))
            exc_tb = sys.exc_info()[2]
            logger.info("Line number: " + str(exc_tb.tb_lineno))

Make sure you enable logger debugging before showing dataframes to restrict expensive calls to
dataframe.show()

if LOGGER.isDebugEnabled():            
        hrdmm.show(100, False)

Writing Time-series Results to the Data Frame

After performing your computation, you would write the results to the output data source provider from
your result data frame.

outputTag = configContext.sql("select MappingValue from configDF where 
MappingType='OutputMappings'").head()[0]
         resultDF = tsContext.sql("select '" + outputTag + "' as tag, 
timestamp as timestamp, 10*value as value, quality as quality from 
timeseriesDF")    
         result = {"timeseriesWriteDS" : resultDF}
            return result
        except Exception as e:
            logger.info("Error: " + str(e))
            exc_tb = sys.exc_info()[2]
            logger.info("Line number: " + str(exc_tb.tb_lineno))

Time-Series Output Data Frame Example

|tag                                              |value             |
quality|timestamp    |
+-------------------------------------------------+------------------
+-------+-------------+
|OO-CA-SIMUL-ASSET-ID0.Kpi100_Deploy1_heatrate    |4349.443333333333 |
3      |1480637708419|
|OO-CA-SIMUL-ASSET-ID0.Kpi100_Deploy1_power       |2174.7216666666664|
3      |1480637708419|
|OO-CA-SIMUL-ASSET-ID0.Kpi100_Deploy1_availability|0.0               |
3      |1480637708419|
+-------------------------------------------------+------------------
+-------+-------------+

Alarm Data

Example code snippet on writing alarm/alert data into dataframe. Date for the alert is hardcoded in the
analytic.

alarm_schema = StructType([StructField("taskId", StringType(), True), 
StructField("type", StringType(), True),
                           StructField("name", StringType(), True),
                           StructField("severity", IntegerType(), 
True),
                           StructField("sourceKey", StringType(), 
True),
                           StructField("eventStart", LongType(), True),
                           StructField("storageReceiveTime", 

   

16  © 2020 General Electric Company



LongType(), True),
                           
StructField("associatedMonitoredEntitySourceKey", StringType(), True)])

            alarm_data = [(
              'opm_arf_alarm_1', 'createAlarm', 'Analytics', 4, 'opm-
alarms-'+str(uuid.uuid4()), 1505857250000, 1505857250000,
              'OO-CA-SIMUL-ASSET-ID1')]

            alarm_rdd = 
spark_session.sparkContext.parallelize(alarm_data)
            alarm_df = spark_session.createDataFrame(data=alarm_rdd, 
schema=alarm_schema)
            result = {"timeseriesWriteDS" : resultDF, 
"alarmsWrite":alarm_df}

Package the Analytic Computation Logic in Python
Add the analytic computation logic developed in Python and package it.

Before You Begin
Complete the following tasks:

• Name the main package such that it matches the analytic definition name. For example, if your
setup.py has the name heatrate_gap_kpi make sure that your analytic saved to the catalog
reflects the same name.

• Name the classifiers with the convention [python package name].[class name].
• Add the KPI computation logic to the main class in _init_.py.
• Write the run_job() in the main class of the _init_.py of the main package.

About This Task
After packaging the job implementation, you must add this to the respective analytic definition for
deployment.

To package a Python analytic, you should have something like the following directory structure:

oopackage.sh
setup.py
simple_py
    __init__.py

Procedure

1. Update the __init__.py file to contain your analytic class with logic in the function run_job, and
update the setup.py to the following format:

from setuptools import setup, find_packages
import os

setup(
        name='simple_py',
        version='1.0.0',
        description='OPM Python Simple (x10) Example',
        packages=find_packages(),
        install_requires=['pyhocon', 'py4j'],
        classifiers=[

  

© 2020 General Electric Company  17



         "MyAnalytic.ClassName"
        ],
)

2. Access the command line and navigate to the root folder for the Python module.
3. Run the following Python command to build and package the artifact.

./oopackage.sh <name of the target zip file>#./oopackage.sh 
heatratekpi.zip

Results

The ZIP file is created with the Python egg package.

   

18  © 2020 General Electric Company



Chapter

3
Upload and Deploy a Forecasting Analytic

Steps to upload and deploy a sample Python forecasting analytic on
Spark runtime.

Before You Begin

This procedure assumes that the following prerequisites tasks have
been completed.

• You have uploaded the required assets, tags and time series data
required for this analytic.

• Your tenant has been configured to stream to Predix timeseries.
• You are signed into an OPM tenant with access privileges to

manage analytics on Spark runtime.
• You have downloaded the copy of sparkAnalytic_

forecast_train_version_1_0_0.zip.
• You have downloaded and extracted the contents of

sparkAnalytic_forecast_train_io-definitions.
zip locally.

Procedure

1. Upload the analytics template to the catalog.

Configure the following information for the analytic.

Option

Runtime Spark

Name Spark Forecast Train

Owner Your Name

Analytic Type Python

Type Version 2.7.0

Analytic File sparkAnalytic_
forecast_train_
version_1_0_0.zip

Analytic Version 1.0.0

Primary Category Forecasting

2. In the Analytic Template, configure the input definition, constant,
and output definition through CSV upload

   

© 2020 General Electric Company  19

https://apm-application-help-rc.int-app.aws-usw02-pr.predix.io/sparkAnalytic_forecast_train_io-definitions.zip
https://apm-application-help-rc.int-app.aws-usw02-pr.predix.io/sparkAnalytic_forecast_train_io-definitions.zip
https://apm-application-help-rc.int-app.aws-usw02-pr.predix.io/sparkAnalytic_forecast_train_version_1_0_0.zip
https://apm-application-help-rc.int-app.aws-usw02-pr.predix.io/sparkAnalytic_forecast_train_version_1_0_0.zip
https://apm-application-help-rc.int-app.aws-usw02-pr.predix.io/sparkAnalytic_forecast_train_version_1_0_0.zip


3. Add and configure the deployment as follows:

a) Enter deployment_forecast_train in the Deployment
Name field and then select Submit.

b) In the 1. Asset Selection step, select the asset defined in the
analytic, and then select Save.

c) Select Next to access the 2. I/O Mapping step.
d) Select the Tag drop-down menu and then, select Add Tags....
e) In the tag browser, search for the tag in the analytic. As

represented in the sample example, search for
OO_Tag_Temperature_ID20. After the search displays the
tag, drag and drop it onto the input for mapping it.

f) Select Save and Next to save the I/O Mapping configuration.
g) In the 3. Schedule step, leave the selection at Streaming for

Define how often a new run will be executed option.
h) Select Time Span between May 23, 2017 to current

date.
i) Leave the Sample Interval at the default value of 1 Minute.
j) Select Save and then select Deploy.

Note: The input tag should have data evenly distributed for the
Time Span selected during 3. Schedule step in deployment.

The deployment is saved to the Spark runtime. After successful
deployment the status updates to Run Once.

Next Steps

Visualize the output in the Analysis Forecast App

   

20  © 2020 General Electric Company



Chapter

4
Generate Analytic with Alerts

Steps to upload and deploy a sample Python analytic with alerts on
Spark runtime.

Before You Begin

This procedure assumes that the following prerequites tasks have
been completed.

• You have uploaded the required assets, tags and time series data
required for this analytic.

• Your tenant's Event Hub is also registered with the APM Alert
service.

• You are signed into an OPM tenant with access privileges to
manage analytics on Spark runtime.

• You have downloaded the copy of sparkAlertAnalytics_
python_version_1_0_0.zip

• You have downloaded and extracted the copy of
sparkAlertAnalytics_python_io-definitions.zip
locally.

Procedure

1. Add the alert template

a) Select Alert Templates.
b) Select + to add new template.
c) Enter Analytics in the Alert Template field.
d) Select Save.

2. Upload the analytics template to the catalog.

Configure the following information for the analytic.

Option

Runtime Spark

Name Python Sample AlertAnalytic

Owner Your Name

Analytic Type Python

Type Version 2.7.0

   

© 2020 General Electric Company  21



Option

Analytic File sparkAlertAnalytics_
python_version_1_0_0.
zip

Analytic Version 1.0.0

Primary Category Monitoring

3. In the Analytic Template, configure the input definition, constant,
and output definition through CSV upload and select Save.

4. Enter Analytics in the Output Events field and select Save.
5. Add and configure the deployment as follows:

a) Enter deployment_analytics_alert in the Deployment
Name field and then select Submit.

b) In the 1. Asset Selection step, select the asset defined in the
analytic, and then select Save.

c) Select Next to access the 2. I/O Mapping step.
d) Select the Tag drop-down menu and then, select Add Tags....
e) In the tag browser, search for the tag in the analytic. As

represented in the sample example, search for
OO_TAG_Temperature_ID14. After the search displays the
tag, drag and drop it onto the input for mapping it.

f) Select Save and Next to save the I/O Mapping configuration.
g) In the 3. Schedule step, leave the selection at Only Once for

Define how often a new run will be executed option.
h) Select Time Span between May 23, 2017 to current

date.
i) Leave the Sample Interval at the default value of 1 Minute.
j) Select Save and then select Deploy.

The deployment is saved to the Spark runtime. After successful
deployment the status updates to Run Once.

6. Claim the analytic alert in the Alerts module.

a) Select Alerts > Unclaimed > .
b) Filter alerts by Time Received.

Search for the Alert on date Oct 06, 2017. The date of alert is
hardcoded in the analytics.

   

22  © 2020 General Electric Company


	Contents
	KPI Development (Java)
	Analytic Development in Java
	Download and Explore Sample Java Spark Analytic
	Understand the Computation Logic in Java
	Package the Java Analytics
	Simple Java Analytic
	Upload and Deploy a Simple Java Analytic



	KPI Development (Python)
	Download and Explore Sample Python Spark Analytic
	Understand the Computation Logic in Python
	Package the Analytic Computation Logic in Python


	Upload and Deploy a Forecasting Analytic
	Generate Analytic with Alerts

