
Rules

© 2024 General Electric Company

Contents

Chapter 1: Overview 1
Overview of Rules 2

Rules Workflow 2

About Family Rule Projects 2

Configure a Family to Use Family-Level Rules 3

Access the APM Rules Editor 3

Access a Family Rule Project 4

Chapter 2: Compiling Rules 6
About Compiling Rules 7

Compile the Rules for a Specific Family 7

Compile the Rules for a Specific Rules Library Project 7

Compile the Entire Database 8

Chapter 3: Rules Library 9
About Rules Library 10

Access the Rules Library 10

Add a Folder to the Rules Library 11

Delete a Folder from the Rules Library 11

Create a Rules Library Rule Project 11

Add a Reference to a Rules Library Project 12

Modify a Rules Library Rule Project 12

Delete a Rules Library Rule Project 13

Chapter 4: Deployment 14
Deployment 15

Chapter 5: Reference 16
About Family- and Field-Level Rules 17

About Rule Code Storage Options 17

ii Rules

About Rule Terminology and Concepts 18

About Rules Project References 19

About Family-Level Rules 20

About Field-Level Rules 21

 iii

Copyright Digital, part of GE Vernova
© 2024 GE Vernova and/or its affiliates. All rights reserved.

GE, the GE Monogram, and Predix are trademarks of General Electric Company used under trademark
license.

This document may contain Confidential/Proprietary information of GE Vernova and/or its affiliates.
Distribution or reproduction is prohibited without permission.

THIS DOCUMENT AND ITS CONTENTS ARE PROVIDED "AS IS," WITH NO REPRESENTATION OR
WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF DESIGN, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. ALL OTHER
LIABILITY ARISING FROM RELIANCE UPON ANY INFORMATION CONTAINED HEREIN IS EXPRESSLY
DISCLAIMED.

Access to and use of the software described in this document is conditioned on acceptance of the End
User License Agreement and compliance with its terms.

iv © 2024 General Electric Company

Chapter

1
Overview
Topics:

• Overview of Rules
• Rules Workflow
• About Family Rule Projects
• Configure a Family to Use

Family-Level Rules
• Access the APM Rules Editor
• Access a Family Rule Project

© 2024 General Electric Company 1

Overview of Rules
Rules consist of code that is written in Visual Basic.Net (VB.Net), a programming language that is
compatible with the language in which APM is written. If you have sufficient knowledge of writing VB.Net
code, you can write rule code to be executed when certain changes occur in the APM database. You can
write family-level or field-level rules.

As an alternative to family-level rules, you can use family policies to configure certain actions to occur
when a record changes in the APM database. Family policies are created in a user interface where
knowledge of Visual Basic.Net (VB.Net) is not required.

Note: For a single family, you can write family-level rules or family policies, not both. You can, however,
use the Baseline Rule node in a family policy to execute any existing APM baseline rules that correspond
to the policy’s family and trigger. You can also use field-level rules and family policies for the same family.

Rules Workflow
Note: This workflow assumes that the APM Rules Editor extension in Microsoft has already been installed.

This workflow provides the basic, high-level steps for using this module. The steps and links in this
workflow do not necessarily reference every possible procedure.

1. If you want to configure a family-level rule for a family, specify in Configuration Manager that family-
level rules should be used for that family.

2. Open the Rules Editor, and then access either a family rule project or the Rules Library.
3. If you accessed the Rules Library, then you can add a folder to the library.
4. Create a new Rules Library rule project.
5. Add a reference to the project.

About Family Rule Projects
A family rule project is an organizational unit that provides the coding infrastructure within which the
rules for that family will be written and stored.

• For baseline families, a family rule project exists for any family for which family-level or field-level rules
have been defined within that specific family. For baseline subfamilies that inherit all their behaviors
from higher-level families, a family rule project will not exist.

• For custom families, the family rule project is created the first time that you access the family-level or
field-level rules for the family.

More Details

Family rules can be viewed and managed in the APM Rules Editor. When you open the rule project for a
family, the family rule project will be selected by default. Below the project name is a list of all the items
that are currently included in the project.

By default, the content of the project will consist of references and files. Each family rule project contains
a file for the family itself and a file for each field within the family. A file will be created for each field that is
defined directly within that family and each field that is spread down from a family where the field can be
customized at the sublevel.

2 © 2024 General Electric Company

As you add fields to a family, new files will be added to the family rule project. You can select any file to
view and modify the code that is stored within it.

Within each file, a class is defined for the corresponding family or field. Each class serves as the
organizational unit within which actual family-level and field-level customization code exists. The name of
the file matches the name of the class defined within it, which in turn corresponds to the field ID or family
ID (i.e., not the family or field caption).

Note: Changing the ID for a field when the field already has a VB.Net file will cause APM to create a new
file based on the new ID. The old file will not be deleted but will be disconnected from the field.

You can open multiple rule projects at a time. When you do so, each rule project will appear as a root-level
entry in the Solution Explorer pane.

Configure a Family to Use Family-Level Rules

About This Task

If you want to configure a family-level rule for a family, you first must specify in Configuration Manager
that family-level rules should be used for that family.

Important: For a single family, you can use family-level rules or family policies, not both.

Procedure

1. Access the Configuration Manager page, and then select Data Configuration.

The Data Configuration page appears.
2. Select Family Management.

The Family Management page appears.
3. Select the family for which you want to use family-level rules.

The workspace for the selected family appears.
4. In the workspace, select Rules and Policies tab.

The Rules and Policies section appears.

5. Select the VB Rules radio button, and then select .

Important: If Family Policies was previously selected, VB Rules will be used instead of any configured
family policies.

Next Steps

• Access the APM Rules Editor.

Access the APM Rules Editor

Before You Begin

If you want to configure a family-level rule for a family, specify in Configuration Manager that family-
level rules should be used for that family.

© 2024 General Electric Company 3

Procedure

1. On the APM Server, access Microsoft Visual Studio.
2. On the Tools menu, select APM Rules Editor.

The APM Rule Explorer pane appears, prompting you to log in.

3. In the User Name box, enter a user name that can log in to the data source whose rules you want to
manage.

4. In the Password box, enter the password that is associated with the specified Security User.
5. In the Data Sources list, select the data source whose rules you want to manage.
6. Select Log In.

The APM Rule Explorer pane displays the list of entity families.

Access a Family Rule Project

Procedure

1. Access the APM Rules Editor.
2. Select Families or Relationships.
3. Select the family whose rule project you want to open.

Note: Only green folders contain rule projects.

The Solution Explorer pane appears, displaying the family rule project.

4 © 2024 General Electric Company

© 2024 General Electric Company 5

Chapter

2
Compiling Rules
Topics:

• About Compiling Rules
• Compile the Rules for a Specific

Family
• Compile the Rules for a Specific

Rules Library Project
• Compile the Entire Database

6 © 2024 General Electric Company

About Compiling Rules
After you make changes to entity or relationship family rules, you must compile the family for the changes
to be applied. Likewise, after you make changes to a Rules Library rule project, you must compile the
project for the changes to be applied.

Note: To compile an entire database, you must compile all entity family rules, all relationship family rules,
and all projects in the Rules Library.

Compile the Rules for a Specific Family

About This Task

After you make changes to entity or relationship family rules, you must compile the family for the changes
to be applied. The following instructions provide details on compiling the rules for a single family. Families
cannot be compiled until the family rule project has been created.

Note: To compile an entire database, you must compile all entity family rules, all relationship family rules,
and all projects in the Rules Library. You can use the following instructions to compile rules for entity and
relationship families.

Procedure

1. Access the Rules Library.

2. Select Families.

3. Select the family whose rules you want to compile.

4. On the toolbar, select .

The family rules are compiled, and the result appears in the Output pane.

Note: If it is not already selected, in the Output pane, select to show output from the APM Server
Rules.

Compile the Rules for a Specific Rules Library Project

About This Task

After you make changes to a Rules Library rule project, you must compile the project for the changes to be
applied. The following instructions provide details on compiling a single Rules Library rule project.

Note: To compile an entire database, you must compile all entity family rules, all relationship family rules,
and all projects in the Rules Library.

Procedure

1. Access the Rules Library.

2. Select Rules Library.

3. In the tree, select the Rules Library project that you want to compile.

4. On the toolbar, select .

© 2024 General Electric Company 7

The Rules Library rule project is compiled, and the result appears in the Output pane.

Compile the Entire Database

Procedure

1. Access the Rules Library.
2. Select Families.

3. On the toolbar, select .

The compilation process begins. Rules Library project are compiled first, followed by entity families and
then relationship families. The progress of the compilation is shown in the Output pane.

8 © 2024 General Electric Company

Chapter

3
Rules Library
Topics:

• About Rules Library
• Access the Rules Library
• Add a Folder to the Rules

Library
• Delete a Folder from the Rules

Library
• Create a Rules Library Rule

Project
• Add a Reference to a Rules

Library Project
• Modify a Rules Library Rule

Project
• Delete a Rules Library Rule

Project

© 2024 General Electric Company 9

About Rules Library
The APM Rules Library serves as a repository of rule projects that can be referenced from family rule
projects. By storing rule code in the Rules Library and referencing it from family rule projects, you can
reuse rule code repeatedly. This results in more efficient and organized rule authoring than using family-
level and field-level customization alone.

The Rules Library contains two types of projects:

• APM Rule Projects: Rule projects that are distributed as part of the APM baseline product and are
referenced within the APM baseline families. These projects are stored in the APM folder in the Rules
Library. The APM folder contains the following subfolders that organize the APM rule projects
according to the APM module in which they are used.

◦ Module-specific subfolders: Folders that store rule projects, organized according to the module
in which each project is used (e.g., Calibration, Inspection, Metrics, etc.). These folders contain
baseline rules, but they are not associated with a specific baseline family in the same way as the
rule projects in the Root Entity Families folder. In other words, the Calibration rule project is not
necessarily associated specifically with the Calibration family. It simply stores rule code that is used
within Calibration Management.

◦ Root Entity Families: Folders that store rule projects that are associated with specific, baseline
entity families. The name of the rule project corresponds to the name of the family for which it
stores rule code.

◦ Relationship Families: Folders that store rule projects that are associated with specific, baseline
relationship families. The name of the rule project corresponds to the name of the family for which
it stores rule code.

You can view the rule projects that are delivered with APM and reference them in any family you like,
and you can copy any of the rule code and use it as the basis for creating your own rule projects. You
cannot, however, modify or delete these projects, and you cannot add new projects to the APM folder.

• Client Rule Projects: Rule projects that are created by customers to support their own unique
implementations of APM. These projects are stored in the Client folder in the Rules Library.

Access the Rules Library

Procedure

1. Access the APM Rules Editor.
2. Select Library.

The Rules Library appears.

Next Steps

• Add a Folder to the Rules Library.

10 © 2024 General Electric Company

Add a Folder to the Rules Library

About This Task

In the Rules Library, each rule project must be stored within a folder. You can add folders only under the
Client folder.

Procedure

1. Access the Rules Library.
2. Select the Client folder or a subfolder of the Client folder to which you want to add a folder.

3. Select .

The Create New Folder section appears.
4. Enter a name and description for the folder.
5. Select OK.

The new folder is added in the selected location.

Next Steps

• Create a Rules Library Rule Project.

Delete a Folder from the Rules Library

About This Task

You can delete folders only under the Client folder.

Procedure

1. Access the Rules Library.
2. Select the Client folder or a subfolder of the Client folder from which you want to delete a folder.

3. Select .

A window appears, asking you to confirm that you want to remove the folder.
4. Select Yes.

The selected folder is deleted from the Rules Library.

Create a Rules Library Rule Project

Procedure

1. Access the Rules Library.
2. Select the Client folder or a subfolder of the Client folder to which you want to add a rule project.

3. On the toolbar, select .

The Create New Project section appears.

© 2024 General Electric Company 11

4. Enter a name, caption, and description for the project.
5. Select OK.

The rule project is created.

Next Steps

• Add a reference to the Rules Library project from the family project. This will make the rules that are
stored within the Rules Library project available for use within the family rule project.

• Within the family rule project, call the parts of the referenced Rules Library project that you want to
use. How and where you make the calls will depend on how the Rules Library project is organized and
where you want to invoke certain functionality.

Note: You can create references to APM rule projects and to Client rule projects.

Add a Reference to a Rules Library Project

Procedure

1. Access the APM Rules Editor.
2. Open the family rule project to which you want to add a reference.

3. In the Solution Explorer pane, select .

The Properties pane for the selected family rule project appears.
4. Select References, and then select Add.

The Reference Manager window appears.
5. Navigate to the reference(s) you want to add, and then select the appropriate check boxes.
6. Select OK.

The new references appear in the Properties pane, in the References section.

Modify a Rules Library Rule Project

About This Task

You can modify Rules Library rule projects only under the Client folder or one of its subfolders.

Procedure

1. Access the Rules Library.
2. In the Client folder structure, select the rule project that you want to modify.

The content of the rule project is displayed in the Solution Explorer pane.
3. Modify the code as needed.
4. Build the project.
5. Save the rule code.
6. Close the Solution Explorer pane.

12 © 2024 General Electric Company

Delete a Rules Library Rule Project

About This Task

You can delete Rules Library rule projects only from the Client folder or one of its subfolders.

Procedure

1. Access the Rules Library.
2. In the Client folder structure, select the rule project that you want to delete.

3. On the toolbar, select .

A window appears, asking you to delete the project.
4. Select Yes.

The selected project is deleted from the Rules Library.

© 2024 General Electric Company 13

Chapter

4
Deployment
Topics:

• Deployment

14 © 2024 General Electric Company

Deployment

Deployment

Refer to the deployment information here Install the APM Rules Editor.

© 2024 General Electric Company 15

Chapter

5
Reference
Topics:

• About Family- and Field-Level
Rules

• About Rule Code Storage
Options

• About Rule Terminology and
Concepts

• About Rules Project References
• About Family-Level Rules
• About Field-Level Rules

16 © 2024 General Electric Company

About Family- and Field-Level Rules
In APM, family-level and field-level rules consist of code that determines how records in the APM database
will behave under specific conditions. Rule code is written in Visual Basic.Net (VB.Net), a programming
language that is compatible with the language in which APM is written. In this way, you can specify that
when certain actions are taken in APM, certain rules should be executed.

Important: Modifying rules without the proper knowledge and expertise could cause your system to
work improperly.

The purpose of writing business rules for a family is to control how records in that family will behave when
you work with those records in APM. The rule code itself can be stored in two locations:

• Within the family rule project itself.
• Within the Rules Library.

Rules can range from very simple to highly complex. If you have sufficient knowledge of writing VB.Net
code, you can use Microsoft Visual Studio to customize your system to suit the specific needs of your
organization.

Writing complex rules requires knowledge of VB.Net that exceeds the scope of this documentation. The
purpose of this documentation is to explain the basic structure of family rule projects and to describe the
tools that are available to help you write rules. In addition, we provide some basic information about rule
code itself to help you understand and navigate your existing rules and some basic examples of custom
rule code.

Note: Family policies allow you to make changes similarly to family-level rules, but family policies are
created in a user interface where knowledge of Visual Basic.Net (VB.Net) is not required.

About Rule Code Storage Options
Custom family-level and field-level rules can be stored in two places:

• Within the family rule project itself.
• Within the Rules Library.

Storing family rules within the family rule project itself means that the actual rule code is stored in the
family and field classes within a family rule project. This form of rule code storage is acceptable but can be
cumbersome as it can result in a large amount of rule code that must be maintained on a family-by-family
basis. In addition, rule code that is stored within family rule projects applies only to one family. To apply
the same rule code to another family, you would have to copy the rule code and paste it into another
family rule project.

The Rules Library, on the other hand, stores rule code in projects that can be referenced from family rule
projects. In this way, you can store the actual VB.Net code in one central location and then apply it to
multiple families. This method of rule code storage offers many advantages, including limiting the amount
of code that must be maintained and increasing the ease and efficiency with which that code can be
applied to other families.

The Rules Library, however, also imposes some limitations. To take advantage of the exact same rule code
across multiple families, you would need to have multiple families that should behave exactly the same
way. It is more likely, however, that you will have multiple families that should behave in similar ways.

For this reason, you will probably want to use a combination of the two rule code storage methods. In the
Rules Library, you can store code that will serve as the foundation on which family-level and field-level

© 2024 General Electric Company 17

rules are built. After referencing that code from a family rule project, you can extend the rule through
family-level and field-level customization.

About Rule Terminology and Concepts
To modify and create rules, you must understand the following terminology and concepts:

• Rule projects
• Classes
• Functions
• Inheritance

Rule Projects

A rule project is a container for rule code. APM uses two types of rule projects:

• Family Rule Project: Stores all the rules for a given family.
• Rules Library Project: Stores all the rules that exist for that project.

Rule projects contain references and files, also called code items. The files contain rules that are defined
for that project. The file structure for family projects is determined by the content of the family. The file
structure of a Rules Library project is determined by the project owner and can be customized as
necessary to meet the requirements of the project.

Classes

A class is a VB.Net element that serves as a container for storing objects. Classes are defined within the
files that exist in a rule project.

• In family rule projects, APM automatically defines classes within the files that exist for the family itself
and the fields within that family.

• In baseline Rules Library projects, classes serve as containers for the code within those projects.
• In custom Rules Library projects, you can define your own classes as needed. When you create a new

project, one file will be created within that project, and within that file, a default class will be defined.

Any VB.Net class can be inherited from another class so that the rules defined in one class can be reused
as often as needed.

The following code excerpt shows an example of the default class Class1 that is created when you create
a new Rules Library project:

Option Strict On
Option Explicit On
Imports GE Digital APM.Core.DataManager
Imports GE Digital APM.Core.DataManager.Customization
Imports GE Digital APM.Core.Internals
Imports GE Digital APM.Core.Metadata
Imports GE Digital APM.Core.Security.ApplicationUser
Imports GE Digital APM.Core.Uom
Imports System
Imports System.Xml
Public Class Class1
Private Sub New()
MyBase.New
'
'TODO: Add constructor logic here
'

18 © 2024 General Electric Company

End Sub
End Class

In this example, the lines Public Class Class1 and End Class define the class; the code in between these
two lines of text represents all the objects that belong to the class.

Functions

A function is a block of rule code that defines a Function procedure. Functions can be defined to invoke
specific behaviors. The standard field-level rules that are available in APM are defined through functions.
In the following example, the IsRequired function is between the two lines Public Class Class1 and End
Class.

Option Strict On
Option Explicit On
Imports GE Digital APM.Core.DataManager
Imports GE Digital APM.Core.DataManager.Customization
Imports GE Digital APM.Core.Internals
Imports GE Digital APM.Core.Metadata
Imports GE Digital APM.Core.Security.ApplicationUser
Imports GE Digital APM.Core.Uom
Imports System
Imports System.Xml
Public Class Class1
Public Overrides Function IsRequired() As Boolean
Return True
End Function
End Class

Inheritance

Inheritance allows one class to use the behaviors defined in another class.

• The class that is inherited is considered the base class and serves as a foundation for the functionality
of the class that inherits it.

• Any class that inherits from another class is considered a derived class.

All the functions and behaviors defined in the base class are automatically applied to the derived class.
Within the derived class, code can be written to extend or override specific functions defined in the base
class. Inheritance allows you to create new classes based on existing classes and is an important
component of the Rules Library and baseline rule storage.

Inheritance is achieved through an Inherits statement in the derived class. For instance, in the following
example, the class MI_RCA_ANALY_COST_NBR (the derived class) inherits the class
EntityFieldCustomization (the base class).

Public Class MI_RCA_ANALY_COST_NBR
Inherits EntityFieldCustomization
End Class

About Rules Project References
Creating Rules Library projects is only the first step in implementing family and field customizations using
the Rules Library. After a Rules Library project has been created, it must be called from the family or field
class of the family or field by which it will be used. You must complete two main steps to call a Rules
Library project from a family project:

© 2024 General Electric Company 19

1. First, you must add a reference to the Rules Library project from the family project. This will make the
rules that are stored within the Rules Library project available for use within the family rule project.

2. Second, within the family rule project, you must make calls to the parts of the referenced Rules Library
project that you want to use. How and where you make the calls will depend on how the Rules Library
project is organized and where you want to invoke certain functionality.

After the Rules Library project has been called within the family rule project, it can be extended via the
family rule project in order to customize the rule for that specific family.

Note: You can create references to APM rule projects and to Client rule projects.

About Family-Level Rules
Whereas field-level rules control the behavior of specific fields within a record, family-level rules reside
within the code item that represents an entity family and control actions performed against the entire
record.

Note: As an alternative to writing basic family-level rules, you can use family policies to configure the
actions to be performed against a record. Family policies are created in a user interface where knowledge
of Visual Basic.Net (VB.Net) is not required. For a single family, you can write family-level rules or family
policies, not both. You can, however, use the Baseline Rule node in a family policy to execute any existing
APM baseline rules that correspond to the policy’s family and trigger.

Family-level rules provide flexibility in determining how records will behave. Some of the most common
uses of family-level rules include:

• Managing record links.
• Calculating values.
• Sending email notifications.

You can create family-level rules by developing custom code.

APM supports the following family-level rule types.

Rule Type Stores logic that is executed...

BeforeInsert Before a record is created.

AfterInsert After a record is created.

BeforeUpdate After changes have been made to a record, before those

changes are saved to the database.

AfterUpdate After changes to a record have been saved.

BeforeDelete Before a record is deleted.

AfterDelete After a record has been deleted.

A change to a record in the APM database will trigger the appropriate rule regardless of the current user’s
permissions. However, if a user does not have permissions for an action a rule is taking, the rule will not
execute and the transaction will be rolled back and no changes will be made. Similarly, the transaction will
be rolled back if an error occurs during the rule’s execution.

Example: AfterInsert

One use of an AfterInsert rule is to create a link between two families after a new
record is created. Consider an example where, when you create a Functional Location
record, you want to link it to the Site Reference record that represents the site that

20 © 2024 General Electric Company

contains the functional location. You can accomplish this by creating a family-level
rule for the Functional Location family.

The following code shows an example of an AfterInsert rule that you could write to
create a link between the Functional Location record and the Site Reference record
after the Functional Location record is created. You would insert this rule into the
family-level code item for the Functional Location family.

Public Overrides Sub AfterInsert()
ManageSiteReference()
End Sub
Private Sub Manage Site Reference ()
Dim session As EntitySession = CurrentEntity.Session
If session Is Nothing Then
 session = New EntitySession(ApplicationUser)
End If

Dim currentSite As SiteReference =
SiteReference.LoadExisting(session, CurrentEntity)
Dim newSite As SiteReference =
SiteReference.RetrieveSiteReference(session,
CurrentEntity)

If currentSite Is Nothing AndAlso newSite Is Nothing Then
 Return
End If

If currentSite Is Nothing And Not newSite Is Nothing Then
 newSite.AddAssetToSite(CurrentEntity)
ElseIf Not currentSite Is Nothing And newSite Is Nothing
Then
 If Not
CurrentEntity.Fields("MI_FNCLOC00_SAP_SYSTEM_C").Value
Is DBNull.Value Then
 currentSite.RemoveAssetFromSite(CurrentEntity)
End If
ElseIf currentSite.Key <> newSite.Key Then
 currentSite.RemoveAssetFromSite(CurrentEntity)
 newSite.AddAssetToSite(CurrentEntity)
End If
End Sub

About Field-Level Rules
Field-level rules define how a field will behave under certain circumstances. The field-level rules for a given
field are stored within the family rule project for the family to which the field belongs.

Each family rule project contains a code item for each field that exists within the family. The rules for a
given field are stored in the file that corresponds to that field.

Note: Code items will not exist for fields that have been spread down from a higher-level family and are
configured at the subfamily level to inherit rules from the source family. In this case, the code item that
exists in the family rule project of the source family will be used for defining and executing rules at the
subfamily level. If the subfamily is configured not to inherit rules from the source family, a code item will
exist within the family rule project of the subfamily and will be used for defining and executing rules at the
subfamily level.

© 2024 General Electric Company 21

The following types of rules can be defined for each family field.

Rule Type Description Associated Function

Required Determines whether or not a value must

be entered into a field before a record can

be saved in the family.

IsRequired

Validation Lets you define criteria that will be used

to validate values that are entered into a

field.

Validate

Valid Values Lets you define a list of values that will be

available for selection in the field. You will

be able to select any value from those

defined in the list of Valid Values.

GetPickList

Default Value Defines the default value that will be

provided for a field. When you create a

new record, the default value will be

provided automatically. You can accept

the default value or specify a different

value.

GetDefaultInitialValue

Disabled Determines when, if ever, the field will be

disabled, or locked from modification.

IsDisabled

Format Determines the formatting that will be

applied to values entered into a field.

FormatValue

Formula Calculates the value in the field using a

formula that has been specified through

rules.

GetCalculatedValue

You can develop custom field-level rules manually by accessing the code item for the appropriate field and
inserting the custom code. The code for each rule type must be defined within the appropriate function,
which serves as a container for the code for that rule.

Example 1: Required Rule

Instead of making a field always required, you may prefer to make it required only if
another field in the same record also contains a value. For example, assume that the
Recommendation family contains the logical field Completed (MI_REC_COMPL_FLG),
which is meant to be flagged by a user after a recommendation has been completed.
The Recommendation family also contains the Completed Date field, which is meant
to contain the date the recommendation was completed. Therefore, you want to
create a rule so that when the Completed field is set to True, the Completed Date field
is required.

To enforce this condition, you would create a Required rule on the Completed Date
field that looks like this:

Public Overrides Function IsRequired() As Boolean
If
Object.Equals(CurrentEntity.Fields("MI_REC_COMPL_FLG").Va
lue, True) Then
 Return True
Else
 Return False

22 © 2024 General Electric Company

End If
End Function

The portion of the code shown in red (MI_REC_COMPL_FLG) identifies the Field ID of
the field that you want to use to enforce the Required rule condition, and the portion
on the If line shown in blue (True) specifies the value that the field must contain.

Example 2: Validation Rule

Consider an example where the Recommendation family contains the field Create
Work Request? (MI_REC_CREATE_SAP_NOTIF_FLG). Suppose you want to create a rule
that validates the presence of an active external interface (e.g., Oracle) before APM
triggers the creation of a work request. Should the rule return no active external
interface, then no work request will be created.

You could enforce the need for a work request management system by creating the
following Validation rule for the Create Work Request? field:

Public Overrides Function Validate(ByRef newValue As
Object) As GE Digital
APM.Core.DataManager.Customization.FieldValidationStatus
If InterfaceUtility.InterfacesActive(Me.ApplicationUser)
Or _

InterfaceUtility.OracleInterfacesActive(Me.ApplicationUse
r) Or _

InterfaceUtility.MaximoInterfacesActive(Me.ApplicationUse
r) Then
 Return FieldValidationStatus.Success
End If
Return
FieldValidationStatus.Failure(InterfaceUtility.EAM_INTERF
ACES_NOT_ACTIVATED)
End Function

Consider another example for a validation rule, where in the Asset Criticality
Analysis datasheet, the Analysis Definition Family section contains the field
Analysis ID. Suppose you want to create a rule that validates if the Analysis ID
exists in the system database.

If the field validation status is a failure, then we can have the rule take the message
text as input and return a failure message. We can embed a hyperlink in the validation
failure error message, causing the hyperlink to be shown along with the error
message under the field.

© 2024 General Electric Company 23

If the field validation status is a successful, then we can have the rule take the
message text as input and return a success message. The message would be
displayed under the field.

Example 3: Valid Values Rule

Within a list of available values, a blank value can be useful for clearing a previously
selected value. When you select the blank value, it will clear whatever value had
previously been selected in the list.

For example, the following code excerpt show a static Valid Values rule that will
construct a list containing the values A, B, and C.

Public Overrides Function GetPickList() As
DynamicPickList
Dim pickList As DynamicPickList
'Use MyBase.CreatePickList(True) if you want a
restricted PickList
'Use MyBase.CreatePickList(False) if you want an
unrestricted PickList

24 © 2024 General Electric Company

pickList = MyBase.CreatePickList(True)
PopulatePickList(pickList)
Return pickList
End Function
Public Overrides Sub PopulatePickList(ByVal pickList As
DynamicPickList)
pickList.AddRange("A|B|C".Split("|"c))
End Sub

You can add a null value to the list by inserting the code pickList.Add(DBNull.Value)
above the line pickList.AddRange("A|B|C".Split("|"c)). The resulting code would look
like this:

Public Overrides Function GetPickList() As
DynamicPickList
Dim pickList As DynamicPickList
'Use MyBase.CreatePickList(True) if you want a
restricted PickList
'Use MyBase.CreatePickList(False) if you want an
unrestricted PickList
pickList = MyBase.CreatePickList(True)
PopulatePickList(pickList)
Return pickList
End Function

Public Overrides Sub PopulatePickList(ByVal pickList As
DynamicPickList)
pickList.Add(DBNull.Value)
pickList.AddRange("A|B|C".Split("|"c))
End Sub

Example 4: Default Value Rule

Consider an example where the Recommendation family contains the field Final
Approver Name (MI_REC_FINAL_APPROVE_NAME_C). Suppose you want to create a
Default Value rule on the Final Approver Name field to set it by default to the name of
the user who is logged in to APM at the time the record is approved. The resulting
code would look like this:

Public Overrides Function GetDefaultInitialValue() As
Object
Return
RecommendationUtilities.RecommendationDefaultValues.Final
ApproverName(Current Entity)
End Function

Example 5: Disabled Rule

It may be appropriate to disable some fields conditionally, based on the value in
another field.

Consider an example where the Equipment family contains the fields Plant Section
(MI_EQUIP000_PLANT_SECTION_C) and Person Responsible for Plant Section
(MI_EQUIP000_PLANT_SECT_DESC_C). The Person Responsible for Plant Section field
does not need to be enabled until the Plant Section field contains a value.

© 2024 General Electric Company 25

To enforce this logic, you could create the following rule on the Person Responsible for
Plant Section field so that it is disabled when the Plant Section field is empty. The
resulting code would look like this:

Public Overrides Function IsDisabled() As Boolean
If
Convert.IsDBNull(CurrentEntity.Fields("MI_EQUIP000_PLANT_
SECTION_C").Value) Or
Object.Equals(CurrentEntity.Fields("MI_EQUIP000_PLANT_SEC
TION_C").Value, "") Then
 Return True
Else
 Return False
End If
End Function

Example 6: Format Rule

You may want to format character fields so that the value typed in the field appears in
all capital letters. Consider an example where the Recommendation family contains
the field Completion Comments (MI_REC_CLOSE_COMME_TX), and you want to view
values in that field in all capital letters. You could create the following Format rule on
the Completion Comments field to do so:

Public Overrides Function FormatValue(ByVal value As
Object) As String
If Not
Convert.IsDBNull(CurrentEntity.Fields("MI_REC_CLOSE_COMME
_TX").Value) Then
 Return UCase(CStr(value))
Else
 Return ""
End If
End Function

Note: Like all Format rules, the rule in Example 6 affects only the displayed value in
places where Format rules are supported. The value will be stored in the database
exactly as it is entered.

Example 7: Formula Rule

For some fields, rather than requiring users to specify a value, you may want to
populate the field with a value that is calculated from values entered in other fields.
Consider an example where the Work History family contains three cost fields:

• Maintenance Cost (MI_EVWKHIST_MAINT_CST_N): The cost to date of
maintenance on the asset.

• Production Cost (MI_EVWKHIST_PRDN_CST_N): The cost to date to keep the
asset in production.

• Total Cost (MI_EVWKHIST_TOTL_CST_N): The total cost of the work, including
the maintenance and production costs.

In this case, you may want to require users to enter values in the Maintenance Cost
and Production Cost fields and then calculate the value for the Total Cost field by
adding together the values in the Maintenance Cost and Production Cost fields. To

26 © 2024 General Electric Company

implement this functionality, you could create the following Formula rule for the Total
Cost field:

Public Overrides Function GetCalculatedValue() As Object
'Total Cost = Maintenance Cost + Production Cost
Dim maintCost As Double = 0
Dim prodCost As Double = 0
If Not
Convert.IsDBNull(CurrentEntity.Fields("MI_EVWKHIST_MAINT_
CST_N").Value) Then
 maintCost = Convert.ToDouble(Current
Entity.Fields("MI_EVWKHIST_MAINT_CST_N").Value)
End If
If Not
Convert.IsDBNull(CurrentEntity.Fields("MI_EVWKHIST_PRDN_C
ST_N").Value) Then
 prodCost =
Convert.ToDouble(CurrentEntity.Fields("MI_EVWKHIST_PRDN_C
ST_N").Value)
End If
Return maintCost + prodCost
End Function

Note: For this example to work properly, the Total Cost field must be set up as a
formula field.

© 2024 General Electric Company 27

	Contents
	Overview
	Overview of Rules
	Rules Workflow
	About Family Rule Projects
	Configure a Family to Use Family-Level Rules
	Access the APM Rules Editor
	Access a Family Rule Project

	Compiling Rules
	About Compiling Rules
	Compile the Rules for a Specific Family
	Compile the Rules for a Specific Rules Library Project
	Compile the Entire Database

	Rules Library
	About Rules Library
	Access the Rules Library
	Add a Folder to the Rules Library
	Delete a Folder from the Rules Library
	Create a Rules Library Rule Project
	Add a Reference to a Rules Library Project
	Modify a Rules Library Rule Project
	Delete a Rules Library Rule Project

	Deployment
	Deployment
	Deployment

	Reference
	About Family- and Field-Level Rules
	About Rule Code Storage Options
	About Rule Terminology and Concepts
	About Rules Project References
	About Family-Level Rules
	About Field-Level Rules

