
Queries

© 2024 General Electric Company

Contents

Chapter 1: Query Creation 1
About Creating Queries 2

About Running Queries 2

About Saving Queries 2

About SQL Code 2

Access the Query Page 3

Access the Design Workspace 4

Access the SQL Workspace 5

Modify a Query 6

Modify the Query Type 6

Include or Exclude a Field in the Query Results 6

Create a Crosstab Query 7

Create an Update Query 8

Create an Append Query 8

Create a Delete Query 9

Run a Query 10

Save a Query 10

Chapter 2: Query Results 11
About Query Results 12

Access the Results Workspace 12

Sort the Query Results 12

Sort Column Values in the Results Workspace 13

Group by Column Values in the Results Workspace 14

Filter the Query Results 15

Export a Query Result Set to a File 16

Export a Query Result Set to a Dataset 17

Modify the Value in the Field Cell 17

Remove the Limit on the Number of Results 18

Modify the Output Mode of a Select Query 18

Display Unique Records Only 18

ii Queries

Limit the Number of Results 19

Aggregate Query Results 19

Show the Units of Measurement 19

Create a Hyperlink 19

Delete a Hyperlink 21

Chapter 3: Query Sources, Fields, and Joins 22
About Query Sources, Fields, and Joins 23

Add a Source 23

Add a Field to a Query 25

Arrange Columns 25

Modify the Properties of a Join 26

Delete a Join 26

Display the System and Inactive Fields for a Query Source 27

Remove a Query Source 27

Chapter 4: Query Expressions, Clauses, and Prompts 28
About Query Expressions, Clauses, and Prompts 29

Create an Expression 29

Create a WHERE Clause 29

Create a HAVING Clause 30

Delete an Expression 30

Access the Prompt Settings Section 30

Create a Prompt with No List of Valid Values 31

Create a Prompt with a Static List of Valid Values 31

Create a Prompt with a List of System Codes 32

Create a Prompt with a List of Query Results 33

Create a Prompt with a List of Values from a Record 34

Create a Prompt on a Logical Field 35

Filter Prompt Values Based on Previous Prompt Selections 35

Modify an Existing Prompt 36

Delete a Prompt 37

Chapter 5: Query Settings 38

 iii

Access the Query Settings Page 39

About Query Timeouts 39

Specify the Limit for Query Timeout 40

About Purging Saved Exports 40

Set Purge Export Frequency 40

About Case Insensitive Filtering 40

Set Case Insensitive Filtering 41

Chapter 6: Workflow 42
Core Analysis: Query Analysis Workflow 43

Start 43

Design a Query 44

Run the Query 44

Review Query Results 44

Opportunity Exists? 44

Manage Performance Recommendations 44

Queries Workflow 44

Chapter 7: Reference 46
Reference Information: Query Types 47

Reference Information: Query Results 51

Reference Information: Query Joins, Functions, and Hyperlinks 58

Reference Information: Query Expressions, Clauses, Prompts, and Operators 95

iv Queries

Copyright Digital, part of GE Vernova
© 2024 GE Vernova and/or its affiliates. All rights reserved.

GE, the GE Monogram, and Predix are trademarks of General Electric Company used under trademark
license.

This document may contain Confidential/Proprietary information of GE Vernova and/or its affiliates.
Distribution or reproduction is prohibited without permission.

THIS DOCUMENT AND ITS CONTENTS ARE PROVIDED "AS IS," WITH NO REPRESENTATION OR
WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF DESIGN, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. ALL OTHER
LIABILITY ARISING FROM RELIANCE UPON ANY INFORMATION CONTAINED HEREIN IS EXPRESSLY
DISCLAIMED.

Access to and use of the software described in this document is conditioned on acceptance of the End
User License Agreement and compliance with its terms.

© 2024 General Electric Company v

Chapter

1
Query Creation
Topics:

• About Creating Queries
• About Running Queries
• About Saving Queries
• About SQL Code
• Access the Query Page
• Access the Design Workspace
• Access the SQL Workspace
• Modify a Query
• Modify the Query Type
• Include or Exclude a Field in the

Query Results
• Create a Crosstab Query
• Create an Update Query
• Create an Append Query
• Create a Delete Query
• Run a Query
• Save a Query

© 2024 General Electric Company 1

About Creating Queries
When you initiate the query creation process, you can choose to select the query sources (entity and
relationship families) and query columns (family fields) using either of the following options:

• Design workspace: Provides a visual representation of a query, and lets you manually add sources,
criteria, and links.

• SQL workspace: Provides a workspace into which you can directly enter SQL code to build a query. The
SQL View is intended for more advanced Query users.

About Running Queries
Queries are available in many places throughout APM. In some cases, you might create a query manually
and save it for future use. In other cases, you might run a query that another user constructed or that is
delivered with the baseline content.

When you run a query, you will see the results in the Results workspace, which will make it obvious that
you are looking at query results. For example, if you open a query from the Catalog or select a dashboard
hyperlink that references a stored query, the results will be displayed on the Results workspace.

In other cases, however, you might run a query and see the results in a different format on a different
screen. In these cases, you might not realize that you are looking at query results. Inspection
Management, for example, provides a customized workflow that allows you to execute queries that return
specific information, such as equipment that can have bundle inspections. In addition, queries provide a
customized form where you can query the database for records in families that meet specific criteria.

When a query is created, it can be configured to return raw data stored in the database or reformatted
data. This means that you might run different queries that return the same data in different formats. In
addition, queries can be configured to prompt you for information before returning any results. It is a good
practice to use parameters instead of literal values. This helps in both performance and reuse.

About Saving Queries
After you create a query, you can save it so that you or other users can access it later. Queries are saved
as Catalog items to the APM Catalog.

Details

After a query has been saved to the Catalog, whenever you make changes to it, you will need to re-save
the query to retain your changes.

Saving a query is similar to saving any other item to the Catalog, but consider the following query-specific
considerations:

• If you try to save a query with invalid SQL syntax, an error occurs.
• Query names must not contain / or \.

About SQL Code
If you are familiar with SQL syntax, instead of designing the query, you can enter SQL code directly and run
the query to view the results.

2 © 2024 General Electric Company

SQL Details

APM supports the use of Oracle and SQL server databases, all of which can be queried using SQL
statements. While the same basic SQL code can be used to query any type of database, there are some
differences in the syntax that is supported by each database server. Therefore, APM uses a proprietary
version of SQL that is constructed automatically and translated at runtime by the system into the SQL
syntax that is appropriate for the type of database you are using. We call this form of SQL Meta-SQL.

In most cases, Meta-SQL syntax is the same as standard SQL syntax. This means that in most cases, you
can type the SQL syntax that you are familiar with. If, however, you use functions that are specific to one
database server (e.g., Oracle), when you run the query on a different database server (e.g., SQL Server), an
error appears, and you will be unable to run the query and view its results until you correct the SQL code.
It is a good practice to use Meta-SQL whenever possible.

In other words, when you type SQL code directly and select , the following events occur:

• APM reads the syntax and determines whether or not it is valid Meta-SQL.
• APM translates the Meta-SQL into SQL that can be interpreted by the type of database you are using.
• The database executes that translated code and returns results to APM.
• The query results appear.

Throughout the APM documentation, we use the term SQL when referring to the SQL code that appears
when you select SQL in the content header.

All tasks that you can perform when designing a query write Meta-SQL code that can be viewed when you
select the SQL tab. Not all SQL code that you enter directly, however, can be interpreted by the Design
workspace. This means that in some cases, you can write SQL code that will cause the Design workspace
to be unavailable. If you write a query using SQL code and want other users to be able to modify the query
design, first try to access the Design workspace to make sure that it is available before saving the query.

Specific instructions for writing SQL code are beyond the scope of this documentation. Where
appropriate, we provide guidelines and suggestions for how to write SQL expressions and use SQL
functions, but this documentation does not contain comprehensive SQL code explanations.

Access the Query Page

Procedure

In the Applications menu, navigate to the TOOLS section, and then select Queries.

The Query page appears, displaying a list of queries.

© 2024 General Electric Company 3

Tip: You can select a link in the View Query column to access a results-only view of a query in a new
page. You can select the links in the Path column to access the full, modifiable view of a query in a new
page. You can also access the modifiable view from the results-only view. To export a query to a file, you

can use the Export to a File () button.

Note: Only queries created or accessed via the Query page will appear in the list. The 25 most recently
accessed queries will appear in the list.

Access the Design Workspace

Procedure

1. To access the Design workspace for a new query, perform the following steps.

a) Access the Queries page.
b) In the upper-right corner, select Create New.

The Design workspace appears, and the Select a Family or Query window is active, where you
can add sources to the design canvas. After adding a source, you can use the design canvas to add
fields to the grid in the Conditions section and to add criteria to the query.

4 © 2024 General Electric Company

2. To access the Design workspace for an existing query, perform the following steps.

a) Access the Queries page.
b) Select Browse.

The Select a query from the catalog window appears.
c) Navigate to the folder that contains the query you want to view. Select the query, and then select

Open.

The Results workspace appears.
d) In the page heading, select Design.

The Design workspace appears, where you can add sources to the design canvas. Use the design
canvas to add fields to the grid in the Conditions section. Use the Conditions section to add
criteria to the query.

Note: You cannot use the term Interval as an alias in queries in Postgres.

Next Steps

• Add a source

Access the SQL Workspace

Procedure

1. To access the SQL workspace for a new query:

a) Access the Queries page.
b) In the upper-right corner, select Create New.

The Design workspace appears.
c) In the page heading, select SQL.

The SQL workspace appears, where you can modify the SQL code directly.
2. To access the SQL workspace for an existing query:

a) Access the Queries page.

© 2024 General Electric Company 5

b) In the upper-right corner, select Browse.

The Select a query from the catalog window appears.
c) On the left side of the window, navigate to the folder that contains the query you want to view.

Select the query, and then select Open.

The Results workspace appears.
d) In the page heading, select SQL.

The SQL workspace appears, where you can modify the SQL code directly.

Modify a Query

Procedure

1. Access the Design workspace for an existing query, or access the SQL workspace for an existing
query.

2. Modify the query as needed, and then save the query.
The query is modified.

Modify the Query Type

About This Task

This topic describes how to select the type of query that you want to create or modify the type of an
existing query.

Note: You should not create a Delete query from a Select query that contains relationship families. If you
create a Delete query from a Select query, and then you select the relationship family as the target source
on the Target Query Source window, an error message will appear, and the values in the design canvas
and Conditions section will be removed.

Procedure

1. Access the Design workspace.
2. In the page heading, select the drop-down list box, and then select one of the following query types:

Select Query; Crosstab Query; Delete Query; Update Query; Append Query.
The Conditions section changes to display rows that are appropriate for the selected query.

Include or Exclude a Field in the Query Results

Before You Begin

When you create a query, all the fields that you added are selected by default to be included in the query
results and displayed in the Results workspace. In some cases, you might want to add a field to the grid in
the Conditions section so that you can define criteria for that field without including it in the query
results.

For example, you might want to configure a query that returns all Pumps installed on a certain date. You
could add the Pump ID field and the Asset Installation Date to the query, define criteria to limit the Asset
Installation Date to a certain date, and then exclude the Asset Installation Date.

6 © 2024 General Electric Company

Tip: You can choose to return a field in the query results but not display it in the Results workspace. To do
so, select the Include check box, and clear the Display check box.

About This Task
This topic describes how to include or exclude a field from the query results for a Select query.

Procedure

1. Access the Design workspace.
2. For the field that you do not want to include in the query results, in the Include cell, clear the check

box.
When you run the query, the field will not appear in the results.

Results

• When you clear the Include check box for a field, the Display check box for that field is automatically
cleared. Fields can be displayed in the results only if they are also included in the query results.

• If you exclude a field from the query results, you must define content in the Criteria cell, the Sort cell,
or the Total cell in that column for the field to be saved with the query code. In other words, if the field
is not included in the query results, it must be included in SQL in some other way to be saved with the
query. Otherwise, when you open or run the saved query, the excluded field will not be displayed in the
Design, Results, or SQL workspaces.

Create a Crosstab Query

Procedure

1. Access the Design workspace.
2. In the page heading, select the drop-down list box, and then select Crosstab Query.

The Conditions section is updated to include the following rows:

• Field
• Alias
• Table
• Total
• Crosstab
• Sort
• Sort Index
• Criteria
• Or

3. For the fields that you want to use as column headings in the Results workspace, in the Crosstab
cells, in the drop-down lists, select Column Heading.

Important: The Total cell that corresponds to at least one field that you want to use as a column
heading must be set to Group By.

4. For the fields that you want to use as row headings in the Results workspace, in the Crosstab cells, in
the drop-down lists, select Row Heading.

Important: The Total cell that corresponds to at least one field that you want to use as a row heading
must be set to Group By.

5. For the field that you want to use as the aggregate (i.e., the intersection of the row and column), in the
Crosstab cell, in the drop-down list, select Value.

© 2024 General Electric Company 7

Important: For the field that you selected as the aggregate, the Total cell cannot be set to Group By,
Expression, or Where.

6. After you have made your selections, in the page heading, select to run the query and confirm that
it returns the appropriate results, and then save the query.

Create an Update Query

Procedure

1. Access the Design workspace.

2. In the page heading, select the drop-down list box, and then select Update Query.
If your query contains one query source, the source is selected as the target source.

-or-

If your query contains more than one query source, the Target Query Source window appears.

3. On the Target Query Source window, select a source from the sources on the canvas, and then select
Add. If the query contains more than one query source, the query sources that you do not select are
removed automatically from the design canvas.
The Conditions section is updated to include the following rows:

• Field
• Table
• Update To
• Criteria
• Or

4. For the fields that you want to modify, in the Update To cells, create expressions to specify criteria for
the record update. Any record that meets the specified criteria will be updated according to the
expression. For example, if you want to update Motor records for which the manufacturer is WEST to
the manufacturer WEST&LONG, you can create a criteria expression in the Update To cell for the
Asset Manufacturer field in the Motor family.

5. In the page heading, select .
A dialog box appears, indicating how many records will be updated by the query.

6. To perform the update, select Yes, or, to stop the update, select No.
Depending on your selection, the update is performed or stopped.

Note: When you run an Update query that will update a large number of records, an error message
may appear. If this occurs, adjust the query criteria to reduce the number of records that will be
updated at one time.

Create an Append Query

Procedure

1. Access the Design workspace.

2. In the page heading, select the drop-down list box, and then select Append Query.
The Append Query - Target Source window appears.

3. In the Families list, select the target family or the family to which you want to append records, and
then select Add.

8 © 2024 General Electric Company

The Target Source link appears in the page heading. You can select this link to modify the target
family.

The Conditions section is updated to include the following rows:

• Field
• Alias
• Table
• Sort
• Sort Index
• Append To
• Criteria
• Or

4. Add one or more sources to the design canvas, and then add one or more fields from those sources to
the grid in the Conditions section.

5. For the fields that contain records that you want to append to fields in the target family, in the
Append To cells, in the drop-down lists, select the desired fields in the target family. In the Criteria
cells, create expressions to specify criteria. Any record that meets the specified criteria will be
appended to the specified field in the target family.

6. To run the query, in the page heading, select . Confirm that it returns the appropriate results, and
then save the query.

Create a Delete Query

Procedure

1. Access the Design workspace.
2. In the page heading, select the Select Query box, and then select Delete Query.

If your query contains one query source, the source is selected as the target source.

-or-

If your query contains more than one query source, the Target Query Source window appears.
3. On the Target Query Source window, select a source from the sources on the canvas, and then select

Add. If the query contains more than one query source, the query sources that you do not select are
removed automatically from the design canvas.

The Conditions section is updated to include the following rows:

• Field
• Table
• Criteria
• Or

4. For the fields that you want to delete, in the Criteria cells, create expressions to specify criteria for the
record deletion. Any record that meets the specified criteria will be deleted. For example, if you want
to delete Motor records for which the manufacturer is WESTINGHOUSE, you can create the expression
'WESTINGHOUSE' in the Criteria cell for the Manufacturer field in the Motor family.

5. If there are relationships that must be deleted when the entity is deleted, select the Force Delete
check box. Otherwise, an error occurs.

6. In the page heading, select .
A dialog box appears, indicating how many records will be deleted by the query.

7. To perform the deletion, select Yes, or, to stop the deletion, select No.

© 2024 General Electric Company 9

Depending on your selection, the deletion is performed or stopped.

Run a Query

Procedure

1. Access the Design workspace for the Select query whose results you want to view.

2. In the workspace heading, select .
The query results appear in the Results workspace.

Next Steps

• Save a query.

Save a Query

Procedure

1. Access the Design workspace.

2. In the page heading, select . If the query has already been saved, any changes that you have made
will be saved to the same Catalog folder with the existing Catalog item properties. If the query has not
yet been saved, the Save As window will appear. The following instructions assume that you are
saving the query for the first time. If you are viewing a previously saved query and you want to save a

copy of the current query with a different name or to a different location, you can select , and then
use the following instructions to complete that task. The process is the same as saving a query for the
first time.

3. In the folder hierarchy, navigate to the folder in which you want to save the query.
4. In the Name box, enter a name for the query. The name is required and must be unique to the Catalog

folder in which you are saving the query.
The Caption box is populated automatically with the value that you entered in the Name box.

5. In the Description box, you can enter a description for the query. This is not required to save the
query.
The Of type box is populated automatically with the Catalog item type.

6. Select Save.
The query is saved to the Catalog.

10 © 2024 General Electric Company

Chapter

2
Query Results
Topics:

• About Query Results
• Access the Results Workspace
• Sort the Query Results
• Sort Column Values in the

Results Workspace
• Group by Column Values in the

Results Workspace
• Filter the Query Results
• Export a Query Result Set to a

File
• Export a Query Result Set to a

Dataset
• Modify the Value in the Field

Cell
• Remove the Limit on the

Number of Results
• Modify the Output Mode of a

Select Query
• Display Unique Records Only
• Limit the Number of Results
• Aggregate Query Results
• Show the Units of

Measurement
• Create a Hyperlink
• Delete a Hyperlink

© 2024 General Electric Company 11

About Query Results
The following topics describe available actions related to query results.

Access the Results Workspace

Procedure

1. Access the Query page.
2. Select Browse.

The Select a query from the catalog window appears.
3. Navigate to the folder that contains the query you want to view, select the query, and then select

Open.

The Results workspace appears.

Sort the Query Results

Before You Begin

When defining sort criteria for a query, note that:

• The sort criteria determines the default sort order for query results. After the results are displayed,
users can modify the sort order in the results grid.

• If no sort criteria has been defined, the query results will not be sorted in any particular order by
default. Users can still modify the sort order in the results grid.

• Any sort criteria that is defined for numeric columns in a query will be applied to stored values (vs.
displayed values) regardless of whether the query is running in formatted or unformatted mode.

• Unlike the sorting that you can apply directly to the results, sorting preferences that you define in the
Design workspace are stored with the query itself and are applied each time you run the query.

For example, according to the following image, the Asset Installation Date will be sorted in Ascending
order:

These sort options will affect the query results, as shown in the following image:

12 © 2024 General Electric Company

Note: The sort order that you specify within the query definition will be saved as the default layout for the
results.

About This Task

For any query, you can define criteria to determine how the results will be sorted by default.

Procedure

1. For the query whose results you want to sort, access the Design workspace.
2. In the Conditions section, in the Sort cell for the field that you want to sort, select Ascending or

Descending. By default, the Sort Index cell for the first field that you sort displays a 1, indicating that
this field will be used as the primary sort value.

3. If you want to set a secondary sort value, in the Sort cell of the appropriate field, select Ascending or
Descending. By default, the Sort Index cell for the second field that you sort displays a 2, indicating
that this field will be used as the secondary sort value.

4. Repeat these steps until you have defined all the sort values you want.
After you run the query, the columns for which you defined a sorting preference will be sorted in the
specific order.

Sort Column Values in the Results Workspace

About This Task

You can sort values in one or more columns in ascending or descending order.

Note: These settings are not saved when you access the Results workspace again.

© 2024 General Electric Company 13

Procedure

1. Access the Results workspace.
2. To sort the values in a column in ascending or descending order, select the column header.

The values in the selected column are sorted in ascending or descending order.
3. To sort the values in multiple columns, perform the following steps:

a) For the column whose values you want to sort, right-click the column header, and then select Sort
Ascending or Sort Descending.

b) For each additional column whose values you want to sort, right-click the column header, and then
select the sort order.

The values in selected columns are sorted in ascending or descending order.

Note: The columns whose values are sorted in ascending order are indicated by in the column

headers, and the columns whose values are sorted in descending order are indicated by in the
column headers. The numbers appearing in the column headers denote the sequence in which you
have sorted the columns.

Tip: To clear the sorting from a column, right-click the column header, and then select Clear Sorting.

Group by Column Values in the Results Workspace

About This Task

You can group query results based on the values in a column.

Note: These settings are not saved when you access the Results workspace again.

14 © 2024 General Electric Company

Procedure

1. Access the Results workspace.
2. To group the results based on the values in a column, perform the following steps:

a) Right-click the column header and select Group by This Column.

Tip: You can also drag and drop a column header on an area outside the result grid to create a
group.

The results are grouped based on the values in the selected column.
b) To create sub-groups, right-click additional column headers and select Group by This Column.

A sub-group is created based on the values in the selected column.

Note: The groups are automatically sorted in ascending order. You can change the order by selecting
the grouped column name.

Tip: To remove a group, perform the following steps:

• Right-click the grouped column name and select Ungroup. You can also drag and drop a grouped
column name on an area within the result grid to remove the group.

• To remove all groups, right-click any grouped column name or column header, and then select
Ungroup All.

Filter the Query Results

About This Task

You can filter the values in the query results by setting a filter in one or more columns.

Note: These settings are not saved when you access the Results workspace again.

© 2024 General Electric Company 15

Procedure

1. Access the Results workspace.

2. Select .
A Filter row is added below each column name.

3. Select below the column name in which you want to set the filter criterion.
A window with a list of filter options appears.

4. Select the option for filtering the values in the column.
5. Enter the value for the filter in the filter cell of the column.

The values are filtered as per the criterion set in the column.

Export a Query Result Set to a File

About This Task

Note that, when you run a query in unformatted mode, the results will still display formatted date values.
Date values will always be displayed in the local time for the user; however, if you export the unformatted
query result set to a file or dataset, the exported date values will be unformatted. Formatted queries and
queries with a large number of results take a longer time to export.

Therefore, long running queries should be exported in the background.

Note: When running the query during export, you can specify the page size to be used by the query
engine.

Procedure

1. For the Select query for which you want to export, access the Design workspace.

2. In the upper-right corner of the workspace, select , and then select Export to a File.

The Export to a File window appears.
3. In the Please provide a File Name box, provide the file name.
4. In the drop-down list, select the desired file type.
5. Select the page size to be used by query execution engine during export to file. By default, this value is

set to 50000.
6. If this is a long running query, select the Run in background check box.
7. Select Export.

16 © 2024 General Electric Company

• If you choose to run the export immediately, the exported file will download using your browser.
Save the file to the desired location.

• If you choose to run the export in the background, you will get a message that it has been
submitted.
From the queries overview page, select Query Export. A list of exported query results will be
displayed.

◦ If the status is Submitted, your export has not started.
◦ If the status is Running, your export is currently running.
◦ If the status is Finished, you may download the results by selecting the row and selected the

download icon.
◦ If the status is Failed, your export failed, and the error message is in the Errors column.

8. After downloading, you may delete the export by selecting the row, and then selecting the Delete icon.

Note: If the query that is being exported contains a lot of pages, the export process is slow. For
queries which results in less number of records, there is no difference in export time. For queries with
large number of results, if you set a higher page size value, the time required to export can be reduced.

Export a Query Result Set to a Dataset

About This Task

A query can be exported as a dataset, a fixed set of information that is stored as a Catalog item.

Note: When you run a query in unformatted mode, the results will still display formatted date values.
Date values will always be displayed in the local time for the user; however, if you export the unformatted
query result set to a file or dataset, the exported date values will be unformatted.

Procedure

1. For the Select query for which you want to export, access the Design workspace.

2. In the upper-right corner of the workspace, select , and then select Export to a Dataset.
The Save As window appears.

3. In the folder hierarchy, navigate to the folder in which you want to save the query.
4. In the Name box, enter a name for the dataset. If you select the same name and location as an existing

dataset, that existing dataset will be overwritten when you save.
The Caption box is populated automatically with the value that you entered in the Name box.

5. In the Description box, you can enter a description for the dataset. This is not required to save the
query.

6. The Of type box is populated automatically with the Catalog item type.
7. Select Save.

The query result set has been exported to a dataset.

Modify the Value in the Field Cell

Procedure

1. Access the Design workspace.
2. In the Conditions section, in the grid, in the Field cell for the column whose value you want to define,

select the gray button in the right side of the cell.

© 2024 General Electric Company 17

The Advanced section of the Expression Builder window appears.
3. In the text box, enter the text you want to appear in the results, surrounded in single quotation marks.
4. Select Done.

5. In the page heading, select .

Remove the Limit on the Number of Results

Procedure

1. For the query for which you want to remove the limit on the number of results that are returned,
access the Design workspace.

2. In the heading of the Conditions section, clear the Limit Results check box.
3. The Limit Results to Top box is disabled, and the number that appeared in it is removed.

4. In the content heading, select .
The query results are displayed, and the number of results that are returned is no longer limited.

Modify the Output Mode of a Select Query

Procedure

1. For the Select query for which you want to modify the output mode, access the Design workspace.
2. In the grid in the Conditions section, depending on which mode you want to use, select or clear the

Formatted check box as needed.

3. In the content header, select .
The query is run in the selected mode, and the results appear.

Note: When you run a query in unformatted mode, the results will still display formatted date values.
Date values will always be displayed in the local time for the user.

Tip: You can save the query to save the selected mode. The next time you run the query, it will use the
mode that was selected when it was last saved.

Display Unique Records Only

Procedure

1. For the query for which you want to display unique records only, access the Design workspace.
2. In the grid in the Conditions section, select the Unique Records Only check box.
3. The Limit Results to Top box is disabled, and the number that appeared in it is removed.

4. In the content heading, select .
The query is run, and the results will include only unique records.

18 © 2024 General Electric Company

Limit the Number of Results

Procedure

1. For the query for which you want to define the number of results that are returned, access the Design
workspace.

2. In the Conditions section heading, select the Limit Results check box.

3. In the Limit Results to Top box, enter the number of results you want the query to return.

4. In the content header, select .
The query results are displayed according to your selection in the Records box. For example, if you
enter 20 in the Records box, the query will return only the first 20 records that meet the other query
criteria.

Aggregate Query Results

Before You Begin

Ensure that all the fields for which you want to aggregate results have a total type selected (for example,
group by, count).

Procedure

1. For the query for which you want to aggregate the query results, access the Design workspace.

2. Select the Show totals check box.

3. In the content header, select .
The query results are aggregated.

Show the Units of Measurement

Procedure

1. For the query for which you want to see the units of measurement in the query results, access the
Design workspace.

2. Select the Show UOM check box.

3. In the content header, select .
The units of measurement appear in the query results.

Create a Hyperlink

Procedure

1. To create an internal URL:

a) Access the Design workspace of the query in which you want to create hyperlinks.

© 2024 General Electric Company 19

b) In the grid in the Conditions section, for the field on which you want to create the hyperlink, in the

Hyperlink cell, select .
The URL Builder window appears.

Note: Do not create a hyperlink on a date field. Doing so will convert the value in the date field to
the local time of the user creating it, and the value will be incorrect for users in different time
zones.

c) In the Select URL Format section, select Meridium APM, and then select Next.
d) In the Select URL Feature Area section, in the list, select the area of APM to which you want the

URL to point, and then select Next.
e) In the Select URL Type section, in the list, select the specific location to which you want the URL to

point, and then select Next.
f) In the Specify Parameters section, specify the Entity Key and any other values necessary to

populate the URL, and then select Finish.

Note: If the parameter value you specify includes a special character, you must enter the URL-
encoded value. For example, the manual hyperlink to open a record in record manager using a
datasheet with the ID TEST?&% must be entered as #record-manager/{1}?datasheetid=
TEST%3F%26%25, assuming that the entity key of the record appears in column 1 of the query.

The Expression Builder window closes, and then, in the grid in the Conditions section, <expr>
appears in the field on which you created the prompt.

2. To create an external URL:

a) Access the Design workspace of the query in which you want to create hyperlinks.
b) In the grid in the Conditions section for the field on which you want to create the hyperlink, in the

Hyperlink cell, select . Do not create a hyperlink on a date field. Doing so will convert the value
in the date field to the local time of the user creating it, and the value will be incorrect for users in
different time zones.
The URL Builder window appears.

c) In the Select URL Format section, select Manual.
d) In the Specify Parameters section, enter the URL to which you want the hyperlink to correspond,

and then select Finish.

Note: If the parameter value you specify includes a special character, you must enter the URL-
encoded value. For example, the manual hyperlink to open a record in record manager using a
datasheet with the ID TEST?&% must be entered as #record-manager/{1}?datasheetid=
TEST%3F%26%25, assuming that the entity key of the record appears in column 1 of the query.

The Expression Builder window closes, and in the grid in the Conditions section, <expr> appears
in the field on which you created the expression.

Results

Note: If you clear the Included check box for the System field, and then run the query in formatted mode,
selecting a hyperlink in the query results may cause the following error message to appear: An entity with
the key '{<X>}' could not be found. Please close the tab. If this occurs, select the Included check box for
the System field, and then rerun the query.

• You cannot modify a hyperlink using the URL Builder window. The URL Builder interface does not
store settings for existing hyperlinks.

• If you want to use the URL Builder window to modify a hyperlink, you can recreate the hyperlink and
include your modifications in the URL Builder window.

20 © 2024 General Electric Company

Delete a Hyperlink

Procedure

1. Access the Design workspace.

2. In the grid in the Conditions section, for the cell in which you want to delete a hyperlink, select .
The hyperlink is removed from the query.

© 2024 General Electric Company 21

Chapter

3
Query Sources, Fields, and Joins
Topics:

• About Query Sources, Fields,
and Joins

• Add a Source
• Add a Field to a Query
• Arrange Columns
• Modify the Properties of a Join
• Delete a Join
• Display the System and Inactive

Fields for a Query Source
• Remove a Query Source

22 © 2024 General Electric Company

About Query Sources, Fields, and Joins
The following topics describe available actions related to query sources, fields, and joins.

Add a Source

Procedure

1. To add a source to a new query:

a) Access the Design workspace.
b) Depending on the type of query source that you want to use, on the Select a Family or Query

window, select either the Families or Queries tab.
Depending on your selection, the list of entity families or Catalog folders to which you have at least
View privileges appears.

Note: If all sources have been removed from the Design workspace, in the page heading, select
Add Source to open the Select a Family or Query window.

c) In the Families section, in the list, select an entity family. Or, in the Queries section, navigate
through the folder hierarchy and select a query.

d) Select Add.
The Select a Family or Query window closes, and your selected query source appears as a node
on the design canvas.

2. To add a related source:

a) Access the Design workspace.
b) On the design canvas, select the source to which you want to add a related source.

© 2024 General Electric Company 23

c) Select the plus symbol, and then drag the pointer to another location on the design canvas.
A blank node appears, and, in the direction that you drag the pointer, a line connecting the two
nodes is drawn automatically.

d) In the location where you want to place the related source, release the pointer.

The Add Related Source window appears.
e) Depending on the type of related source you want to use, select one of the following tabs. Select

the Add Related Family tab to access the list of entity families to which you have at least View
privileges, as well as the corresponding APM relationship families that link those entity families to
the source you selected on the design canvas. Select the Add Manual Join tab to access options
that allow you to manually link a field in the predecessor source (the source you selected) to a field
in a successor family or query. Once you select a successor source, you can then define the type of
join you want to use.

f) In the Add Related Family section, select the desired entity family and relationship family
combination. Alternatively, add a manual join via the Add Manual Join section.

g) Select Add.

The design canvas appears, and the new source node is populated with the selected source. The
line connecting the two nodes changes to represent one of the following types of relationships.

Join Type Line Style

APM Inner Join

APM Outer Left Join

APM Outer Right Join

Manual Inner Join

Manual Outer Left Join

Manual Outer Right Join

Next Steps

• Add a field to a query.

24 © 2024 General Electric Company

Add a Field to a Query

Procedure

1. Access the Design workspace.
2. In the design canvas, select the source that contains the field you want to add to the conditions grid.

The [<Source Name>] window appears, where [<Source Name>] is the name that appears on the
query source node in the design canvas.

3. In the [<Source Name>] window, in the Fields section, select the field that you want to add to the
query.
The field appears in the grid in the Conditions section.

Note: If you add the same field from one source to the grid in the Conditions section twice, you must
specify a unique value in the Alias cell for each field. If you do not specify a unique alias, APM will add a
unique alias automatically.

Results

• The Field cell contains a drop-down list, where you can modify your field selection.

Next Steps

• Run the query.

Arrange Columns

Procedure

1. Access the Design workspace.
2. In the Conditions section, select the heading of the column that you want to move, drag the pointer

to a different location within the grid, and then release the pointer.
The column is moved to the specified location.

© 2024 General Electric Company 25

Modify the Properties of a Join

Procedure

1. To modify a join:

a) Access the Design workspace.
b) On the design canvas, select the line that connects two query sources.

The window for the selected relationship family appears.
c) Select Join Properties.

The Join Properties window appears.
d) On the Join Properties window, modify the join type to one of the following options, and then

select Done:

Option Description

Inner join Represented by the Only include rows that are linked
through '<Relationship Family>' option.

Left outer join Represented by the Include ALL rows from
'[<predecessor source>]' and only those rows from
'[<successor source>]' where the joined fields are equal
option.

Right outer join Represented by the Include ALL rows from '<Successor
Family>' and only those rows from '<Predecessor
Family>' that are linked through '<Relationship
Family>' option.

2. To modify a manual join:

a) Access the Design workspace.
b) On the design canvas, select the line that connects two query sources.

The window for the selected relationship family appears.
c) Select Join Properties.

The Join Properties window appears.
d) On the Join Properties window, modify the join type to one of the following options, and then

select Done:

• Inner join, represented by the Only include rows that are linked through '<Relationship
Family>' option.

• Left outer join, represented by the Include ALL rows from '[<predecessor source>]' and only
those rows from '[<successor source>]' where the joined fields are equal option.

• Right outer join, represented by the Include ALL rows from '<Successor Family>' and only
those rows from '<Predecessor Family>' that are linked through '<Relationship Family>'
option.

The properties of the join are modified.

Delete a Join

Procedure

1. Access the Design workspace for the query from which you want to delete a join.
2. On the design canvas, delete a source that is directly connected to the join that you want to delete.

26 © 2024 General Electric Company

The join is deleted.

Display the System and Inactive Fields for a Query Source

Procedure

1. Access the Design workspace.
2. Add one or more sources to the design canvas.
3. Select the source node for which you want to display system or inactive fields.

The window for the selected source node appears.

4. In the window, in the Fields section, select . Then, in the drop-down list, select either one or both of
the Show System Fields and Show Inactive Fields check boxes.
Depending on your selection, the system and/or inactive fields for the family appear in the Fields
section, at the end of the list. System fields are identified by their field IDs, and inactive fields are
identified by their field captions appearing within square brackets.

Remove a Query Source

Procedure

1. Access the Design workspace for the query from which you want to remove a source.
2. On the design canvas, select the source node that you want to remove.

The option buttons appear just above the source node.

3. Select the button.

The source and all connected joins are removed from the query.

© 2024 General Electric Company 27

Chapter

4
Query Expressions, Clauses, and Prompts
Topics:

• About Query Expressions,
Clauses, and Prompts

• Create an Expression
• Create a WHERE Clause
• Create a HAVING Clause
• Delete an Expression
• Access the Prompt Settings

Section
• Create a Prompt with No List of

Valid Values
• Create a Prompt with a Static

List of Valid Values
• Create a Prompt with a List of

System Codes
• Create a Prompt with a List of

Query Results
• Create a Prompt with a List of

Values from a Record
• Create a Prompt on a Logical

Field
• Filter Prompt Values Based on

Previous Prompt Selections
• Modify an Existing Prompt
• Delete a Prompt

28 © 2024 General Electric Company

About Query Expressions, Clauses, and Prompts

Create an Expression

Before You Begin

When you construct expressions in the Expression Builder window, the system does not check whether
your syntax is correct until you save it.

About This Task

There are two sections on the Expression Builder window: the Simple section and the Advanced
section. The steps that you follow to create an expression on a field depend on which cell that you select
in the grid in the Conditions section, and which type of expression you want to create.

Procedure

1. To create a simple expression:

a) For the query in which you want to create a simple expression, access the Design workspace.
b) In the grid in the Conditions section, for the field on which you want to create the expression, in

either the Criteria cell or the Or cell, select the button in the right side of the cell.
The Simple section of the Expression Builder window appears.

c) Using the fields provided, construct your expression.
d) Select Done.

The Expression Builder window closes, and in the grid in the Conditions section, <expr> appears
in the field on which you created the expression. You can modify the expression directly in the
Advanced section of the Expression Builder window.

2. To create an advanced expression:

a) For the query in which you want to create an advanced expression, access the Design workspace.
b) In the grid in the Conditions section, in the appropriate Field, Criteria, or Or cell, select the gray

button in the right side of the cell. If the Simple section is currently displayed, then select
Advanced.
The Advanced section of the Expression Builder window appears.

c) Using the fields provided, construct your expression.
d) Select Done.

The Expression Builder window closes, and in the grid in the Conditions section, <expr> appears
in the field on which you created the expression.

Tip: If you re-access the Expression Builder window via any cell, you can modify the expression
directly in the Advanced section of the Expression Builder window, or you can modify previously
made selections to update the expression.

Create a WHERE Clause

Procedure

1. Access the Design workspace for the query within which you want to create a WHERE clause.

© 2024 General Electric Company 29

2. For an aggregate query, select Where in the Total cell.
3. Access the Expression Builder window from the Criteria or Or cells, enter the necessary parameters,

and then select Done.
4. For an aggregate query, clear the Include and Display check boxes in the column in which you want to

create a WHERE clause.

Results

• The WHERE clause is generated in the SQL code.
• If you want to modify the clause, you can do so in the Expression Builder window, or you can modify

the SQL code directly.

Create a HAVING Clause

Procedure

1. Access the Design workspace for the query within which you want to create a HAVING clause.
2. In the Conditions section, make sure the Show Totals check box is selected.
3. In the Total cell of the desired field, in the drop-down list, select any option other than Where.
4. Access the Expression Builder window from the Criteria or Or cells, enter the necessary parameters,

and then select Done.

Results

• The HAVING clause is generated in the SQL code.
• If you want to modify the clause, you can do so in the Expression Builder window, or you can modify

the SQL code directly.

Delete an Expression

Procedure

1. Access the Design workspace.

2. In the grid in the Conditions section, for the cell in which you want to delete an expression, select .
The expression is removed from the query.

Access the Prompt Settings Section

Procedure

1. Access the Advanced section of the Expression Builder window for the field on which you want to
create a prompt.

2. Select .
The Prompt Settings section appears.

30 © 2024 General Electric Company

Note: Ensure that you always define a Prompt ID. This value is used internally by APM to identify the
prompt, and if not specified, it can cause unexpected behaviours.

Create a Prompt with No List of Valid Values

Procedure

1. Access the Prompt Settings section of the Expression Builder window.

2. Define the prompt settings as needed.

3. In the Valid Values list, select Prompt Has No Valid Values, and then select Next.
The Configure Default Prompt Value section appears.

4. In the Default Prompt Value box, you can enter a default value for the prompt that will appear when
a user runs the query, then select Finish.
The prompt appears in the Expression Builder window.

5. Select Done.
The Expression Builder window closes, and then, in the grid in the Conditions section, <expr>
appears in the field on which you created the prompt.

Results

• When a user runs the query, the prompt will appear. If you specified a default prompt value, that value
will appear in a modifiable text box.

• If the user enters a value that does not exist in the limiting field, the query will not return any results.
For example, if two asset types exist in the results, such as Rotating Pumps and Centrifugal Pumps,
and the user enters Reciprocating Pump, the query results will be empty.

Create a Prompt with a Static List of Valid Values

Procedure

1. Access the Prompt Settings section of the Expression Builder window.

2. Define the prompt settings as needed.

© 2024 General Electric Company 31

3. In the Valid Values list, select Static List of Values, and then select Next.
The Static List of Valid Values section appears.

4. In the Enter List of Values box, enter the first value that you want to appear in the list, and then

select . Repeat this step to continue adding values as needed. To delete a value from the list, select

the corresponding . If you are defining a list of values for a numeric field and you enter a non-
numeric character in the list, then the Next button will be disabled. You will not be able to proceed or
close the Prompt Builder until you replace the non-numeric character with a numeric value.

5. Select the Values are Exclusive check box if you want users to be able to select only from the list of
defined values in the prompt window. If you do not select this check box, users will be able to enter
alternate values.

6. Select the Allow Multiple Selections check box if you want users to be able to select multiple values
by which to filter the query results. The Allow Multiple Selections check box is enabled only if you
select the Values are Exclusive check box.

7. Select Next.
The Configure Default Prompt Selection section appears.

8. If you want a particular value to be selected by default, then select the row containing the necessary
value, and then select Finish.

Note: You can select multiple default prompt values only if the Prompt Data Type is set to Character,
and you selected the Allow Multiple Selections check box in the Static List of Valid Values section.

The prompt appears in the Expression Builder window.
9. Select Done.

The Expression Builder window closes, and then, in the grid in the Conditions section, <expr>
appears in the field on which you created the prompt.

Results

• When a user runs the query, the prompt will display the list of predefined values. The user will need to
select a value to view the query results.

Create a Prompt with a List of System Codes

Procedure

1. Access the Prompt Settings section of the Expression Builder window.
2. Define the prompt settings as needed.
3. In the Valid Values list, select Values From a System Code Table, and then select Next.

The Values From a System Code Table section appears.
4. In the System Code Table list, select the System Code Table whose values you want to display in the

prompt.
5. Select the Use Reference System Code check box if you want to specify a referenced System Code

Table (i.e., a System Code Table that is referenced within the original table in the Configuration
Manager). If you select this check box, then select values in the Reference Table and Reference
System Code lists.

6. Select the Values are Exclusive check box if you want users to be able to choose only from the list of
presented values in the prompt window. If you do not select this check box, users will be able to enter
an alternate value for the prompt.

7. Select the Allow Multiple Selections check box if you want users to be able to select multiple values
by which to filter the query results. The Allow Multiple Selections check box is enabled only if you
select the Values are Exclusive check box.

32 © 2024 General Electric Company

8. Select Next.
The Configure Default Prompt Selection section appears.

9. If you want a particular value to be selected by default, then select the row containing the necessary
value, and then select Finish.

Note: You can select multiple default prompt values only if the Prompt Data Type is set to Character,
and you selected the Allow Multiple Selections check box in the Values From a System Code Table
section.

The prompt appears in the Expression Builder window.

10. Select Done.
The Expression Builder window closes, and then, in the grid in the Conditions section, <expr>
appears in the field on which you created the prompt.

Results

• When a user runs the query, the prompt will contain a list of values as defined in the associated
System Code Table.

Create a Prompt with a List of Query Results

Before You Begin

You can use only a Select query for generating a list of prompt values. Note that:

• If the selected query contains only one column, the values return in that column will be displayed in
the list of available prompt values. For example, if the query contains the Equipment ID column, the
prompt will display a list of Equipment IDs.

• If the selected query contains more than one column, the list of prompt values will contain a
concatenated list of values from the second column and each subsequent column. For example, if the
query results look like this table:

Equipment ID Manufacturer Description Status

123 Alco Tank Active

456 Whitlock Pump Inactive

789 Delta Pressure Vessel Active

... the list of prompt values will look like this:

◦ Alco Tank Active
◦ Whitlock Pump Inactive
◦ Delta Pressure Vessel Active

About This Task

When you create a prompt that presents a list of results from another query, the prompt selection dialog
box will display a drop-down list of values retrieved by running that query.

Tip: You can use a prompt with a list of query results to filter a dependent prompt's values.

Procedure

1. Access the Prompt Settings section of the Expression Builder window.

© 2024 General Electric Company 33

2. Define the prompt settings as needed.

3. In the Valid Values list, select Values From Query, and then select Next.
The Values From a Query section appears.

4. In the Enter query text or click Browse button to select an existing query box, enter SQL code
directly. If you completed this task, then proceed to Step 6. Otherwise, select Browse, and then
proceed to step 5.
The Select a query from the catalog window appears.

5. Select a query from the folder hierarchy, and then select Open.

6. Select the Values are Exclusive check box if you want users to be able to choose only from the list of
presented values in the prompt window. If you do not select this check box, users will be able to enter
an alternate value for the prompt.

7. Select the Allow Multiple Selections check box if you want users to be able to select multiple values
by which to filter the query results.

Note: The Allow Multiple Selections check box is enabled only if you select the Values are
Exclusive check box.

8. Select Next.
The Configure Default Prompt Selection section appears.

9. If you want a particular value to be selected by default, then select the row containing the necessary
value, and then select Finish.
The prompt appears in the Expression Builder window.

Note: You can select multiple default prompt values only if the Prompt Data Type is set to Character
and you selected the Allow Multiple Selections check box in the Values From Query section.

10. Select Done.
The Expression Builder window closes, and then, in the grid in the Conditions section, <expr>
appears in the field on which you created the prompt.

Create a Prompt with a List of Values from a Record

About This Task

When you build a prompt that presents a list of fields from a table, the prompt will display a list of values
pulled from the specified field of all records in a given family. For example, you could build a prompt that
contains values pulled from the Taxonomy Type field of all records in the Equipment family.

Tip: You can use a prompt with a list of values from a record to filter a dependent prompt's values.

Note: For a family with a large number of records, it will take a long time to populate this list.

Procedure

1. Access the Prompt Settings section of the Expression Builder window.

2. Define the prompt settings as needed.

3. In the Valid Values list, select Distinct List of Values From [X], where X is the name of the field for
which you are defining the prompt criteria, and then select Next.
The Values From a Query section appears. And the SQL box is populated with a query to get the
distinct values.

4. Select the Values are Exclusive check box if you want users to be able to choose only from the list of
presented values in the prompt window. If you do not select this check box, users will be able to enter
an alternate value for the prompt.

34 © 2024 General Electric Company

5. Select the Allow Multiple Selections check box if you want users to be able to select multiple values
by which to filter the query results. The Allow Multiple Selections check box is enabled only if you
select the Values are Exclusive check box.

6. Select Next.
The Configure Default Prompt Selection section appears.

7. If you want a particular value to be selected by default, then select the row containing the necessary
value, and then select Finish. You can select multiple default prompt values only if the Prompt Data
Type is set to Character and you selected the Allow Multiple Selections check box in the Values
From Query section.

Note: You can select multiple default prompt values only if the Prompt Data Type is set to Character
and you selected the Allow Multiple Selections check box in the Values From Query section..

The prompt appears in the Expression Builder window.
8. Select Done.

The Expression Builder window closes, and then, in the grid in the Conditions section, <expr>
appears in the field on which you created the prompt.

Results

• When the user runs the query, the prompt will display a list of values pulled from the selected field for
all records in the selected family.

Create a Prompt on a Logical Field

Procedure

1. Access the Prompt Settings section of the Expression Builder window.
2. Define the prompt settings as needed.
3. In the Prompt Data Type section, select Logical.

All the options in the Valid Values section are disabled.
4. Select Next.

The Configure Default Prompt Value section appears.
5. In the Default Prompt Value list, select the value that you want to be selected by default. You can

select True or False, or you can select All, which returns both True and False values. Then, select Finish.
The prompt appears in the Expression Builder window.

6. Select Done.
The Expression Builder window closes, and then, in the grid in the Conditions section, <expr>
appears in the field on which you created the prompt.

Results

When a user runs the query, the prompt displays the values All, True, and False.

Filter Prompt Values Based on Previous Prompt Selections

Before You Begin

• These instructions assume that you have already created a Select query for a family that contains at
least two fields, and that you have added those fields to your query.

• The first prompt should exist in a column that appears to the left of the column on which you will build
the second prompt. If you do not order the fields this way, the values in the first prompt will still filter

© 2024 General Electric Company 35

the values in the second prompt, but the second prompt will appear first when you run the query,
which does not follow the appropriate workflow.

About This Task
You can configure multiple prompts where the value in one prompt filters the values available in another
prompt, which would further refine the records that are returned.

Procedure

1. Access the Prompt Settings section of the Expression Builder window for the field on which you
want to build the first prompt.

2. Define the prompt settings as needed for the first prompt.
3. In the Prompt ID box, specify a unique ID for the prompt. You will use this prompt ID in the second

prompt.
4. In the Valid Values list, select one of the following prompt types: No list of valid values; Static list of

valid values; List of query results; List of values from a record. Note that, if you select No list of valid
values, when you run the query, you must enter the exact value stored in the database to populate the
dependent prompt with the appropriate values.

5. Depending on the type of prompt you selected, finish defining the prompt settings, and then select
Finish in the Prompt Settings section. Then, select Done on the Expression Builder window.
The Expression Builder window closes, and then, in the grid in the Conditions section, <expr>
appears in the field on which you created the prompt.

6. Access the Prompt Settings section of the Expression Builder window from the Criteria cell for the
field on which you want to build the second prompt.

7. Define the prompt settings as needed for the second prompt.
8. In the Valid Values list, select one of the following prompt types: List of query results; List of values

from a record.
9. Depending on the type of prompt that you selected, finish defining the prompt settings, and then

select Finish.

The Expression Builder window returns to focus. The following instructions assume that you created
the second prompt with a list of values from a record.

10. On the Expression Builder window, in the text box, directly before the ORDER BY clause, enter a
WHERE clause to indicate the field on which the prompt is based and the prompt ID associated with
that field. The WHERE clause should look like this: WHERE [<FieldID 1>] =
(? :s :id=<PromptID 1>). In this example, <FieldID 1> represents the field ID of the field
on which you built the first prompt, and <PromptID 1> represents the prompt ID that you defined
for the first prompt in Step 3.

11. Select Done.

Results

When you run the query, the first prompt will display a list of values according to how you specified the
valid values (e.g., static list of valid values). The second prompt will display only values that apply to the
first prompt's value.

Modify an Existing Prompt

Before You Begin

• You cannot modify a prompt using the Prompt Settings section. The Prompt Settings interface does
not store settings for existing prompts.

36 © 2024 General Electric Company

• If you want to use the Prompt Settings section to modify a prompt, you can recreate the prompt and
include your modifications in the Prompt Settings section.

Procedure

1. Access the SQL workspace, or Access the Expression Builder window.
2. Modify the prompt as needed.

Delete a Prompt

Procedure

1. Access the Design workspace.

2. In the grid in the Conditions section, for the cell in which you want to delete a prompt, select .
The prompt is removed from the query.

© 2024 General Electric Company 37

Chapter

5
Query Settings
Topics:

• Access the Query Settings Page
• About Query Timeouts
• Specify the Limit for Query

Timeout
• About Purging Saved Exports
• Set Purge Export Frequency
• About Case Insensitive Filtering
• Set Case Insensitive Filtering

38 © 2024 General Electric Company

Access the Query Settings Page

About This Task

From the Query Settings page, you can set the query timeouts, purge the saved exports, or modify the
filtering options in result grid. To access the Query Settings page, complete the following steps:

Procedure

In the Applications menu, navigate to ADMIN > Operations Manager > Query Settings.
The Query Settings page appears.

About Query Timeouts
Using Query Timeouts, you can specify the query time-out limit. The query time-out limit is the amount of
time in seconds that the APM system will allow a new or modified query to attempt to return results
before timing out.

This setting allows you to control the performance of the queries in your system by enforcing a
requirement that they meet a specific performance goal. This setting is used in the query design when a
Security User whose query privilege setting is Restricted By Timeout Limit tries to save a new or
modified query.

Before a Security User whose query privilege is Restricted By Timeout Limit can save a new or modified
query, they will have to run the query so that the APM system can determine if it runs within the time-out
limit. Otherwise, the save options will remain disabled. If a query time-out limit has been specified in that
database, when the query runs, the APM system will allow the query to run until the specified query time-
out limit has been met. After the time-out limit is reached:

• If the query has not returned results, a message will appear, indicating that the query cannot be saved,
and the save options will remain disabled.

© 2024 General Electric Company 39

• If the query has returned results, the save options will be enabled, and the Security User can save the
query.

Specify the Limit for Query Timeout

About This Task

The following instructions provide details on specifying the query time-out limit for Security Users who
are restricted by query time-outs. These instructions do not provide a recommendation on choosing the
time-out value itself. The value that you choose should match the amount of time that your organization
has defined as a reasonable amount of time for a query to run before returning results. The value you
enter must be a whole number (i.e., not a decimal value).

Procedure

1. Access the Query Timeout Limits page.
2. In the Query Timeout Limit (in minutes) for Restricted Users box, enter the number that

represents amount of time to which you want to limit query runs.

3. Select .
A confirmation message appears, indicating that the query timeout is created.

About Purging Saved Exports
There is a scheduled job to purge old background exported queries. You can configure the day this job runs
and for how many days to keep the query exports on the Query Settings page.

Set Purge Export Frequency

Procedure

1. In the Applications menu, navigate to ADMIN > Operations Manager > Query Settings.
The Query Settings page appears.

2. In the Day of week to run export purge box, enter the day you want to run the scheduled job. It can
be set to any day of the week and runs at midnight UTC on that day. By default, it is set to Sunday.

3. In the Number of days to keep query exports box, enter the number of days that you want to keep
the query exports. Keeping this number low uses less database disk space and keep the scheduled job
from consuming too many resources. By default, it is set to 90 days.

About Case Insensitive Filtering
Filtering in result grid is case sensitive. Case-insensitive filtering can be enabled using the Filter Result
Grid Case Insensitive setting. This feature only affects the filtering in result grid.

40 © 2024 General Electric Company

Set Case Insensitive Filtering

Procedure

1. In the Applications menu, navigate to ADMIN > Operations Manager > Query Settings.
The Query Settings page appears.

2. Select the Filter Result Grid Case Insensitive check box.

© 2024 General Electric Company 41

Chapter

6
Workflow
Topics:

• Core Analysis: Query Analysis
Workflow

• Start
• Design a Query
• Run the Query
• Review Query Results
• Opportunity Exists?
• Manage Performance

Recommendations
• Queries Workflow

42 © 2024 General Electric Company

Core Analysis: Query Analysis Workflow
Core Analysis processes leverage APM data to identify opportunities for business improvement. When the
process identifies such an opportunity, a Performance Recommendation is raised to communicate the
need and track the required work. You can use the Query Analysis Workflow process to identify
opportunities or needs for improvement based on generated queries that identify bad actors or high-
impact failures.

In the following workflow diagram, the blue text in a shape indicates that the corresponding description
has been provided in the sections that follow the diagram. For more information, refer to the Interpreting
the Workflow Diagrams topic in the APM Product Workflows documentation.

Note: For information on the personas associated with a APM module, refer to the APM Product
Workflows documentation.

1. Start on page 43
2. Design a Query on page 44
3. Run the Query on page 44
4. Review Query Results on page 44
5. Opportunity Exists? on page 44
6. Manage Performance Recommendations on page 44

Start
Persona: Analyst

To satisfy a specific business problem, a APM User initiates a core analysis that applies standard data
analysis techniques.

© 2024 General Electric Company 43

Design a Query
Persona: Analyst

To satisfy a specific business need, design a query to select specific data from APM entities. Multiple
entities can be included in the query design to extract related records.

Run the Query
Persona: Analyst

Execute the query to produce results. The user modifies the query design to achieve the desired result.

Review Query Results
Persona: Analyst

Analyze the query results. The query can identify bad actors or high impact failures for further analysis. In
the analysis of query records, consult other forms of APM data.

Opportunity Exists?
Persona: Analyst

If a APM User identifies an opportunity or need for improvement, then a Performance Recommendation is
raised to communicate the need and track the required work. Otherwise, the workflow ends.

Manage Performance Recommendations
Persona: Analyst

If a APM User identifies an opportunity or need for improvement, then a Performance Recommendation is
raised to communicate the need and track the required work.

For more information, please consult the Manage Performance Recommendations documentation.

Queries Workflow
This workflow provides the basic, high-level steps for using this module. The steps in this workflow do not
reference every possible procedure.

Procedure

1. Access the Design workspace.

Note: Interaction with diagramming and design canvases is not available on touch-screen devices.
2. Add at least one query source.
3. Add at least one field from that query source.
4. Run the query to make sure it returns the expected results.

44 © 2024 General Electric Company

5. Save the query.
The process of creating a more complicated query might include the following additional steps:
6. Add criteria using expressions.
7. Add prompts.
8. Add hyperlinks.
9. Define the results.

Next Steps

After you have initiated the process of creating a Select query using either of these options, when the
Design workspace appears, you can modify the query type to create any of the following types of queries
based on that Select query:

• Crosstab query
• Delete query
• Update query
• Append query

© 2024 General Electric Company 45

Chapter

7
Reference
Topics:

• Reference Information: Query
Types

• Reference Information: Query
Results

• Reference Information: Query
Joins, Functions, and
Hyperlinks

• Reference Information: Query
Expressions, Clauses, Prompts,
and Operators

46 © 2024 General Electric Company

Reference Information: Query Types

About Select Queries
A Select query returns a list of records that belong to one or more specified families and match your query
criteria.

The results of a Select query can provide you with a comprehensive or custom view of the data that exists
in the families in your database, allowing you to see only the records and fields that you need to see.
Creating a Select query is also often the first step in a process that involves using the query results to
perform a certain task. For example, you might create a Select query and then use those results to build a
report or create a graph.

About Crosstab Queries
A Crosstab query lets you group data into categories, where a category is determined by a value that
exists in multiple fields across multiple families in the database.

In the results of a Select query, each field appears in a column, providing a simple list of data. The results
of a Crosstab query appear in a grid. In other words, a Crosstab query presents the same information as a
Select query, but in a different format. The format that you choose will depend on the type of information
that is returned by the query, and how you want to view it.

Example: Select vs. Crosstab Query Results

Suppose you have a family called Pumps, which stores data on Pump Location, Pump
Manufacturer, and Pump Failures. If you queried the family and included the location,
manufacturer, and failures fields:

• A Select query would display the results as shown in the following table.

Pump
Location

Pump
Manufacturer

Pump Failures

Zone 1 ACME 3

Zone 1 SUPER 5

Zone 2 ACME 4

...where each field appears as a separate column of information.
• A Crosstab query would display the results as shown in the following table.

Zone ACME SUPER

Zone 1 3 5

Zone 2 4 NULL

...where locations appear as rows, and manufacturers appear as columns.

In this example, you can see that ACME is the manufacturer of multiple pumps. The
manufacturer, therefore, represents the category by which you want to display the
remaining data (pump location). Each column in the results grid represents a separate
value within the same category. So, in this example, ACME and SUPER are different
types of manufacturers within the manufacturer category.

© 2024 General Electric Company 47

Example: Crosstab Query

When management personnel request that work be performed on a piece of
equipment, the work results in some amount of downtime for the piece of equipment.
Some work activities result in longer amounts of downtime than others. In your
company, work requests are recorded in Work Request records, which contain the
following fields:

• Work Request ID Identifies the work request with a unique value.
• Work Activity Indicates the type of work that should be performed (e.g., repair).
• Downtime Indicates the total amount of time that the equipment was out of

service while work was being performed on it.

If you were to create a Select query to view information about work requests that
have been completed, the results might look something like those shown in the
following image.

In these results, you can see each work request ID, the corresponding work activity,
and the total amount of downtime per request. The format of these results, however,
does not display the work requests grouped by activity type. While this result set is
small, which allows you to visually determine how many work requests fall into each
activity type, more typical query results will contain enough rows of data that it will
be difficult to divide it into categories by visually comparing the data. This is especially
true when the results span multiple pages.

To group the results such that you can see at a glance how many work requests fall
into each activity type, you could decide to make the query an aggregate query. If you
use the COUNT function on the Work Request ID field and the SUM function on the
Downtime field, the query results would look similar to those shown in the following
image.

In these results, you can see that three work requests asked for an adjustment, three
requests asked for something to be cleaned, and four work requests asked for a
repair. You can also see that the total amount of downtime for all adjustments was
four days, the total amount of downtime for all cleaning tasks was six days, and the
total amount of downtime for all repairs was 20 hours.

While the stored data is interesting when viewed in this format, you might be more
interested in determining which work requests resulted in a downtime over a certain
number of days. For instance, suppose that you expect repairs to take over seven
days, but cleaning tasks that take more than seven days are unacceptable to
management personnel. You might want to construct the query such that it groups
the raw data into two categories: downtime and work activity. You then want to
determine how many work requests in each type of activity resulted in downtime
between one and seven days, and how many resulted in downtime over seven days.

48 © 2024 General Electric Company

The results of a Select query cannot present the data in this format. To format the
data such that it provides the desired information, you must create a Crosstab query,
where you can:

• Convert the stored downtime values into categories: 1 to 7 Days and Over 7 Days.
• Determine the total amount of downtime per work activity.
• Divide the total amount of downtime per work activity into the predefined

categories of 1 to 7 Days and Over 7 Days.

The Crosstab query will contain the same fields as the Select query: Work Request ID,
Work Activity, and Downtime.

To convert the stored downtime values into categories, however, you will need to add
another column that includes a DECODE statement that uses the SIGN function.

The DECODE statement would look like this:

 Decode(SIGN(([Work Request].
[Downtime] - 7)), -1, '1-7 Days', 0, '1-7 Days', 'Over 7
Days')

This statement indicates that:

• First, the value seven should be subtracted from the actual downtime values.
Because the Downtime field has a unit of measure of Days, and there are seven
days in a week, each downtime value will be greater than or equal to zero and less
than or equal to seven. After subtracting the value seven from these stored
downtime values, the calculated result will be either a negative number, zero, or a
positive number.

• After subtracting seven from the actual downtime value:

◦ If the value is negative or zero, the record should be grouped into the category
1 to 7 Days. This means that any work request with the following downtime
values will be grouped into the 1 to 7 Days category: 0, 1, 2, 3, 4, 5, 6.

◦ If the value is anything other than zero or a negative number, the record should
be grouped into the category Over 7 Days. This means that any work request
with a downtime value greater than or equal to eight will be grouped into the
category Over 7 Days.

In the grid in the Conditions section, the Work Activity field will be the row heading,
and the column with the DECODE statement will be the column heading. The Work
Request ID field will be the intersecting field, or the Value, and a COUNT function will
be defined in the Total cell for the Work Request ID field. This means that the
intersecting cell in the results will contain a number instead of a Work Request ID. The
number will indicate the number of work requests that fall into the category defined
by the intersection of the row and the column (e.g., the number of repair work
requests that resulted in a downtime of over seven days).

In addition, the SUM function will be defined in the Total cell for the Downtime field.
This will ensure that the results contain only one row representing each work activity
instead of multiple rows containing the same work activity. For example, if there are
three repair requests, because the SUM function is defined on the Downtime field, the
results will contain only one row representing the repair work type (displaying the
total number of work requests of that type) instead of three rows representing the
repair work type (displaying only one work request of that type for each row).

© 2024 General Electric Company 49

The results will be grouped as shown in the following table.

Work Activity Downtime
Category (1 to
7 Days)

Downtime
Category (Over
7 Days)

Work Activity

(Repair)

of Repairs with

a Downtime of 1

to 7 Days

of Repairs with

a Downtime

Over 7 Days

Work Activity

(Clean)

of Cleaning

Tasks with a

Downtime of 1

to 7 Days

of Cleaning

Tasks with a

Downtime Over

7 Days

Work Activity

(Adjust)

of

Adjustments

with a

Downtime of 1

to 7 Days

of

Adjustments

with a

Downtime Over

7 Days

About Update Queries
An Update query modifies the records that match the criteria that you have specified in the query. An
Update query makes global changes to a group of records belonging to one or more families.

An Update query is similar to a Select query in that it retrieves records from the database that match the
criteria defined within the query. The difference is that instead of displaying the results, the results are
modified according to the criteria defined in the query.

For example, if an equipment manufacturer name has changed, you would need to update all the existing
records for equipment made by that manufacturer so that the value in the Manufacturer field is the new
name of the manufacturer. Instead of manually modifying these values, you could create an Update query
to modify all the records for this family.

Only Super Users and members of the MI Power User Role Security Group can create and run the Update
queries, provided that they have been granted View permissions to the Catalog folder in which they are
stored. To update the records returned by the query, a user must have Update permissions to the family
to which those records belong.

Note: The recommended workflow to create an Update query is to first design a Select query and review
the results. After you have confirmed that the Select query returns the required records correctly, in the
Design workspace, change the query type to Update, and then set the update value. This ensures that the
Update query does not alter the records that you did not intend to change.

Note: Modifications made by an Update query cannot be undone automatically. If you need to undo your
changes, you will need to create another Update query or modify the records individually.

About Append Queries
An Append query adds a group of records from one or more families to another family.

An Append query lets you:

• Use a predefined Select query to find records in one or more families that you want to add to another
family.

• Take the records that are returned and add them to other families, thereby creating new records in
those families.

50 © 2024 General Electric Company

For example, you might create a set of records in one family that are the same or similar to a set of
records that you also need to create in another family. You can also consolidate records that currently
exist in multiple families into a single family. In either of these cases, you can use an Append query to find
the records that currently exist in one family and add them to another family. In cases where you are using
an Append query to move records, you might also want to use a Delete query to delete the records from
the original family after they have been moved.

In an Append query, you will define field mappings to map fields in the source family to fields in the target
family. Only fields that are included in the Select query can be mapped to the target family, so you will
want to make sure that the query includes all the columns containing values that you want to use to
populate new records. Any fields that are not mapped will not be populated in the new records. The
process of defining mappings is facilitated by the Append To cell, which appears in the grid in
the Conditions section when you create an Append query, and which allows you to select the target field
to which each source field corresponds.

Only Super Users and members of the MI Power User Role Security Group can create and run the Append
queries, provided that they have been granted View permissions to the Catalog folder in which they are
stored. To create the records returned by the query, a user must have Insert permissions to the family in
which the records are being created.

About Delete Queries
A Delete query deletes records that meet the criteria in the query from the database. Delete queries
delete entire records, not just individual fields in records.

If you need to delete many records at once, this type of query can save you time. For example, suppose
you created various records in a family and later determined that those records were invalid. You could
create a Delete query to delete those records from the family based on the desired criteria, such as a
value in the record, the creation date, or the user who created them.

Only Super Users and members of the MI Power User Role Security Group can create and run the Delete
queries, provided that they have been granted View permissions to the Catalog folder in which they are
stored. To delete the records returned by the query, a user must have Delete permissions on the family to
which those records belong.

Note: Deletions performed by a Delete query cannot be undone.

Note: The recommended workflow to create a Delete query is to first design a Select query and review
the results. After you have confirmed that the Select query returns the required records correctly, in the
Design workspace, change the query type to Delete. This ensures that the Delete query does not delete
records that the you did not intend to remove

Reference Information: Query Results

About Displaying Custom Text Instead of Field Values
By default, the values displayed in each column in the results are the values in the fields of records
included in the results. You can modify the default behavior, however, if you want all cells in a column to
display the same text.

To modify the values displayed in a column, you will need to modify the value in the Field cell for the
appropriate column in the grid in the Conditions section of the Design workspace.

Tip: If you modify the value in the Field cell for a column that contains Group By in the Total cell, an error
message will appear when you run the query. If you receive this error, try changing Group By to Min, Max,
or Expression.

© 2024 General Electric Company 51

Custom Text in the Installation Date Column

If your query returns the Asset Installation Date for all Pump records, the values in the
Asset Installation Date column will be the installation dates that are stored in the
Pump records in your database. You could, instead, make the column display custom
text instead of the stored dates. For example, the installation dates might fall within a
given time period, such as January 2005 and December 2005, so you might want the
text to read Installed in 2005 to indicate the time frame as opposed to the actual
date.

Hyperlinks

If your query results contain hyperlinks, you will probably want to customize the text
of your hyperlinks. For example, if your query returns all Pump records, you might
include the Asset ID, Asset Description, and Asset Installation Date in the results. By
default, the columns will display the value stored in the Asset ID, Asset Description,
and Asset Installation fields of each record.

You might decide to add a hyperlink to the Asset ID field that will open each record in
the results in the Record Manager. Suppose you want the hyperlinks to display some
text other than the Asset ID. For example, you might want the hyperlink to display the
text Open in Record Manager.

About Formatted and Unformatted Mode
You can run Select queries in two different modes: formatted and unformatted.

Details

• Formatted Mode: Causes the results to display formatted values rather than stored values. In other
words, the values displayed in the results will be formatted based on any format rules or criteria
defined for the fields included in the query.

• Unformatted Mode: Causes the results to display stored values rather than formatted values. In
other words, any format rules that have been defined will not be applied, and the results will display
values exactly as they exist in the database.

Note: When you run a query in unformatted mode, the results will still display formatted date values.
Date values will always be displayed in the local time for the user; however, if you export the
unformatted query result set to a dataset, the exported date values will be unformatted.

Formatted Mode

Consider an example where the System Code Table Priority contains the System
Codes listed in the following table and is configured to display descriptions only.

ID Description

1 Very High

2 High

3 Medium

4 Low

5 Very Low

52 © 2024 General Electric Company

Suppose that your database contains the Task family, which contains a Priority field,
and also assume that a Valid Values rule has been applied to this field so that it
displays a list of values from the Priority System Code Table. Because this System
Code Table is set up to display descriptions only, the available values for this field will
be Very High, High, Medium, Low, and Very Low. When a user selects one of these
values, the corresponding numeric ID will be stored in the field.

When you create a Select query on the Task family, you can choose to run it in
formatted or unformatted mode. If you create a query that includes the Task ID, Task
Type, and Priority fields and run it in unformatted mode, the results might look
something like the following image.

Notice in this image that numeric values are displayed in the Priority column. These
are the System Code ID values that are stored in the Priority fields of these records. If
you run the same query in formatted mode, the results would look like the following
image.

Notice that the Priority column now displays the System Code descriptions that
correspond to the stored IDs. In other words, the results now show the formatted
values rather than the stored values.

By default, newly created Select queries will run in unformatted mode. You can
change the mode and save it with the query so that the next time you run the query, it
will use the mode that you last saved. Note that the Formatted check box is available
only for Select queries.

Note: If you select the Show Totals option, the query behaves as if it were running in
unformatted mode even if you select to run it in formatted mode.

About Defining an Alias
The alias for a field specifies how it will be labeled in the query results and in any report or graph that is
created from the query. When you add fields to the grid in the Conditions section, the alias is set
automatically to the field caption. You can modify the alias.

Details

When defining aliases, keep in mind the following considerations:

• Within a given query, each alias must be unique. If you specify an alias that has already been defined
for another column in the same query, a number will be appended to the end of each duplicate alias to
distinguish them from the other aliases in the query. For example, if you specify Asset as the alias in
four columns, the aliases would be changed to:

◦ Asset

© 2024 General Electric Company 53

◦ Asset0
◦ Asset1
◦ Asset2

Each duplicate alias will be numbered in this way using the next available number (i.e., 3, 4, 5, and so
on).

• The alias cannot exceed 27 characters in length (including spaces). You will not be able to enter more
than 27 characters into any Alias cell.

About Displaying Unique Records Only
You can specify that results of a query return only unique records. For example, if you design a query to
return all types of Air Cooled Heat Exchangers, you might get 10 results, but there might be only two
different types of Air Cooled Heat Exchangers within those results, such as Air Cooled Heat Exchanger and
Cooling Tower. If you specify that the query return only records where the asset type is unique, you will
see only two results: one Air Cooled Heat Exchanger result and one Cooling Tower result.

Uniqueness is defined at the query level, not the field level. This means that if the same query that returns
two results with different asset types is also designed to return the asset status, and you specify that the
query return only unique records, you will see records where the asset type and status are unique. You
could see results where there are active Air Cooled Heat Exchangers, Inactive Air Cooled Heat Exchangers,
and active Cooling Towers in the database.

About Query Performance
Query performance is influenced by a number of factors, including hardware efficiency (e.g., how fast the
Server machines are), the system's workload at the time you run the query (e.g., how many users are
logged in and making requests), and the efficiency of the database (e.g., how well the database is being
maintained). As you can see, many of the factors that influence query performance are beyond your
control. For example, you cannot control how many other users are currently using the system.

Query performance is also affected by a number of factors that you can control, including how you
construct the query and the options that you choose for running it. The following Details sections discuss
things that you can do to maximize the performance of queries.

Note: The suggestions provided here may not improve the performance of all queries. In addition, other
factors (e.g., deficiencies in hardware resources) may negate any improvement that would otherwise be
achieved by implementing these suggestions.

Limiting the Size of the Query

Generally, the more data that you attempt to retrieve with a query, the longer the query will take to run.
For example, a query that retrieves data for all fields in the Recommendation family (which has many
subfamilies) will take longer to run than a query that returns only a few fields from the APM General
Recommendation family (A subfamily of the Recommendation family).

Knowing this, you can improve query performance by limiting the amount of data that you return in the
query results. For example:

• Always query on the lowest-level family possible. For example, instead of querying on a family, query
on individual subfamilies. If you need to query on more than one subfamily, you might want to create
more than one query.

• Only include in your query results the fields that you actually need. Instead of returning the
information for all fields in a given family, limit your results to only the specific fields that you want to
analyze.

54 © 2024 General Electric Company

• Use criteria to limit results to a specific set of records. For example, if you are interested only in the
pumps associated with a given manufacturer, limit your query results by applying criteria to the
Manufacturer field.

Note: Performance improvement from limiting the size of the query will be seen only when comparing
queries that are otherwise similar.

Running Select Queries in Unformatted Mode

APM provides two output modes for running Select queries: formatted mode and unformatted mode.

Because unformatted mode returns results without taking the extra step of applying formatting before
displaying results, running a query in unformatted mode can be more efficient than running the same
query in formatted mode. This performance improvement is particularly significant when you run a query
that includes many formatted fields.

Note: Unformatted mode is the default output format for new Select queries.

Other Recommendations

• Avoid outer joins because they can impact the performance.
• Avoid using OR. Instead use UNION for better performance.
• If using Like with a leading wildcard character on an indexed field, the index will not be used.
• Avoid unnecessary joins. If no fields are used from a family, do not add the family to the query.
• Avoid Distinct when possible.
• When writing aggregate queries, use Where and Having correctly; Where is used to filter results before

calculating the aggregate, whereas Having is used to filter out the results based on the aggregation.

About Limiting the Number of Results
You might want to limit the number of results that are returned for certain queries such that only the first
n number of records are returned based on a specific set of criteria.

Note: This feature can be used only with Select queries.

Limit the Number of Results

Suppose you want to view the 20 most expensive equipment items according to total
cost, where the value in the Breakdown Indicator field is set to True. In this case, you
would create the query on the Equipment and Work History fields, joined via the Has
Work History relationship, and add the Equipment ID, Equipment Short Description,
and Total Cost fields to the query.

The Total Cost field is included, and the query is configured to show the sum of all
total cost values, grouped by Equipment ID. In this case, rather than showing two
separate rows in the results for each Work History record that is linked to this
Equipment record, the results will contain one row for this Equipment record, and the
Total Cost column will display the sum of the individual values in the Total Cost field
in each Work History record. Additionally, the query is configured to show the results
in descending order according to total cost.

Based on this query configuration, if you were to run the query at this point, you
would see all Equipment records that meet the query criteria.

In this scenario, however, you want to view only the 20 most expensive pieces of
equipment. To refine this query to suit your needs, in the Conditions section heading,

© 2024 General Electric Company 55

set the limit to 20. When you run the query again, only those 20 Equipment records
will be returned by the query.

SQL Servers and Duplicate Values

If you are using a SQL Server database, sort the query by a field, and then configure
the query to return a limited number of records, if more than one record contains the
same value in the field by which you sorted the query, those records will be displayed
in a random order relative to one another. For instance, if two Equipment records are
linked to Work History records with the same total cost, each time you ran the query,
those Equipment records would be displayed in a random order relative to one
another. In other words, the first time you ran the query, the Equipment record with
the ID 000000000001060839 might appear above the Equipment record with the ID
000000000001060840. The second time you ran the query, however, those
Equipment records might appear in the reverse order. This limitation applies to
SQL Server databases only.

Query URLs
There are two URL routes associated with queries: query and qdetail. The following table describes the
various paths that build on the route, and the elements that you can specify for each.

Element Description Accepted Value(s) Syntax

query : Displays the Query page.

query/<EntityKey>/<WorkspaceName> : Displays the <QueryName> or New Query page.

Catalog Item Key Specifies the Catalog Item Key

of the query that you want to

open in the Query tool.

Numeric Catalog item key #query/Catalog Item Key

Catalog Item Path Specifies the path and name of

the query that you want to

open in the Query tool.

Catalog item path #query?path=Catalog Path
\Query name

p0, p1, p2 etc. (specifying a

literal value)

Specifies a literal value that

will be passed into a query

containing a prompt.

Any value that is acceptable

for the prompt type (e.g.,

numeric values for numeric

prompts)

#query/Catalog Item Key?
p0=Literal Value

#query?path=Catalog Path
\Query name&p0=Literal
Value

p0, p1, p2 etc. (specifying a

variable value)

Specifies a variable value from

a specified column key in a

query that will be passed from

a query into a query containing

a prompt.

Any value that is acceptable

for the prompt type (e.g.,

numeric values for numeric

prompts)

#query/Catalog Item Key?
p0={Column Key}

#query?path=Catalog Path
\Query name&p0={Column
Key}

56 © 2024 General Electric Company

Element Description Accepted Value(s) Syntax

qdetail/<Catalog Item Key>: Displays the query in a new, view-only page.

Parameter Name =

Parameter Value
Specifies the Parameter Name

and Parameter Value of the

query whose results you want

to open in a new, view-only

page.

Parameter Names and

Parameter Values

#qdetail/Catalog Item Key?

Parameter
Name=Parameter Value

Examples: Query URLs

Example URL Destination

#query/3223198 Opens the query with the

Catalog Item Key of 3223198 in

the Query tool.

#query?path=Public\Meridium
\Modules\Core\Queries\APM
Query

Opens the query named 'APM

Query' in the Query tool that is

found in the specified Catalog

folder.

#query/3223198?p0=Literal
Value

Opens the query with the

Catalog Item Key of 3223198 in

the Query tool and passes the

specified literal value into the

first prompt in the query.

#query?path=Public\Meridium
\Modules\Core\Queries\APM
Query&p0=Literal Value

Opens the query named 'APM

Query' in the Query tool that is

found in the specified Catalog

folder and passes the specified

literal value into the first prompt

in the query.

#query/3223198?p0={1} Opens the query with the

Catalog Item Key of 3223198 in

the Query tool and passes the

specified variable from an

existing query into the first

prompt of the query.

© 2024 General Electric Company 57

Example URL Destination

#query?path=Public\Meridium
\Modules\Core\Queries\APM
Query&p0={1}

Opens the query named 'APM

Query' in the Query tool that is

found in the specified Catalog

folder and passes the specified

variable value from an existing

query into the first prompt of

the query.

#qdetail/900000003707?
Manufacturer=UNITED
%2BPUMPS

Opens the results of the query

with the Catalog Item Key

900000003707, Parameter

Name Manufacturer, and

Parameter Value UNITED

%2BPUMPS in a new, view-only

page.

Reference Information: Query Joins, Functions, and Hyperlinks

About APM Inner Joins
When you use two related entity families as query sources, APM creates an inner join between the two
entity families by default. This inner join causes the query results to include only the records that are
linked through the specified relationship.

If two entity families are not related through a relationship family, you can manually create an inner join to
connect one or more fields in one family to one or more fields in the other family.

The following table shows the line style that appears in the design canvas to represent APM inner joins.

Join Type Line Style

APM Inner Join

Example: Inner Join

Suppose you add the Equipment entity family, Work History entity family, and Has Work History
relationship family as query sources. Assuming that the Has Work History family relates the Equipment
family to the Work History family, APM will create an inner join between the Equipment and Work History
families by default. As a result, the query results will return only Equipment records that are linked to a
Work History record through the Has Work History relationship. The query results will not include any
Equipment records that are not linked to a Work History record or any Work History records that are not
linked to an Equipment record.

About APM Outer Joins
An outer join allows you to return records that satisfy the join conditions and records from one family for
which there are no matching records in the other family.

You can modify the default inner join to manually create an outer join for families that are related through
a relationship family.

The following table shows the line styles that appear in the design canvas to represent APM outer joins.

58 © 2024 General Electric Company

Join Type Line Style

APM Outer Left Join

APM Outer Right Join

Example 1: Creating a APM Outer Join

If you use two unrelated families as query sources, such as the Centrifugal Pump
family and the Rotary Pump family, you can create an outer join to view all Centrifugal
Pumps and Rotating Pumps whose manufacturer is the same and all Centrifugal
Pumps with a different manufacturer. If the Centrifugal Pump family was added as a
query source as Table #1 and the Rotary Pump family was added as Table #2, this
would create a left join, which would be indicated in the SQL code.

On the other hand, if you wanted to view all Rotary Pumps and Centrifugal Pumps
whose manufacturer is the same and all Rotary Pumps with a different manufacturer,
you would create a right join, which would be indicated in the SQL code.

Example 2: Creating a APM Outer Join

You can modify a relationship-driven inner join to create an outer join. For example,
suppose that you use the Centrifugal Pump entity family, the Failure entity family, and
the Asset Has Failure relationship family as query sources. If your system is
configured such that the Asset Has Failure family relates the Centrifugal Pump family
to the Failure family, APM would create an inner join between the two entity families
automatically.

If you ran the query using the default join, the results would include all Centrifugal
Pump records that are linked to a Failure record. If you wanted to modify those
results, however, to view all Centrifugal Pumps with their linked Failure records and all
Centrifugal Pumps that did not have linked Failure records, you would need to modify
the inner join to create an outer join. This would return Centrifugal Pumps with and
without linked Failure records, but not Failure records without linked Centrifugal
Pump records. For example, you could configure a query to show all the Centrifugal
Pump records, where only three are linked to Failure records.

This type of join is considered a left join, as indicated by the following SQL code:

 SELECT [Centrifugal Pump].
[ASSET_ID_CHR] "Asset ID", [Failure].[EFAIL_ASSETID_CHR]
"Failure ID"

 FROM [Centrifugal Pump]RIGHT
JOIN SUCC [Failure] ON {Asset Has Failure}

You could also decide to return all Failure records with their linked Centrifugal Pump
records and all Failure records that do not have linked Centrifugal Pump records.

This type of join is considered a right join, as indicated by the following SQL code:

 SELECT [Centrifugal Pump].
[ASSET_ID_CHR] "Asset ID", [Failure].[EFAIL_ASSETID_CHR]

© 2024 General Electric Company 59

"Failure ID"

 FROM [Centrifugal Pump]RIGHT
JOIN SUCC [Failure] ON {Asset Has Failure}

About Manual Joins
In many cases, you will want to query the database for information that exists in more than one family.
When you do so, you may also want to join a field in a family with a similar field in another family, which
will create an ad hoc association between the two families. By joining a field in one family to a field in
another family, you create a query join.

Details

There are two types of manual joins in APM:

• Manual Inner Join: Returns a row for every record where the values in the joined fields in both
families are equal. An inner join returns only those records that satisfy the join conditions, so any
unmatched records are dropped from the result set.

• Manual Outer Join: Returns a row for every record in one family, and a row for every record where the
values in the joined fields in both families are equal. An outer join can be either a left outer join or a
right outer join. When you add query sources to the grid in the Conditions section and join their fields,
the family that you added first is referred to as Table #1, and the family that you added second is
referred to as Table #2.

◦ A left outer join returns every record in Table #1, regardless of whether each record is linked to a
record from Table #2. The results also include the records in Table #2 in which the value in the
joined field is equal to that in Table #1.

◦ A right outer join returns every record in Table #2, regardless of whether each record is linked to a
record in Table #1. The results also include the records in Table #1 in which the value in the joined
field is equal to that in Table #2.

The following table shows the line styles that appear in the design canvas to represent manual joins.

Join Type Line Style

Manual Inner Join

Manual Outer Left Join

Manual Outer Right Join

Example: Manual Inner Join

Suppose that you notice that two pieces of equipment, such as a centrifugal pump
and an air cooled heat exchanger, have been malfunctioning recently. You suspect
that the failures could be caused by human error during installation. You decide to
query the database to find instances where these pieces of equipment were installed
on the same day by the same person.

To do so, you would need to add the Centrifugal Pump family and the Air Cooled Heat
Exchanger family as query sources. You would then need to join the Asset Installation
Date fields and the Responsible Installer fields between the two families via an inner

60 © 2024 General Electric Company

join. Doing so would return only records where a centrifugal pump was installed by
the same person on the same date as an air cooled heat exchanger.

What is a Function?
A function is a SQL component that manipulates data and returns a value that is not stored in the
database, but is derived from calculating or reformatting values. Functions can be used to calculate or
reformat values:

• Stored in the database.
• Based on static data (e.g., the current date).

In SQL code, a function can be included as part of the SELECT statement, WHERE clause, the GROUP BY
clause, or the HAVING clause, or it can exist outside of these SQL components. You can write functions in
the SQL code, or in the Expression Builder.

You can use the following functions in APM:

• Aggregate Functions
• Character Functions
• Conversion Functions
• Number/Mathematical Functions
• The DECODE Function
• Date Functions

Tip: For more information on functions, refer to MetaSQL Functions on page 77.

Note: Throughout this documentation, functions are grouped into categories according to how they are
grouped in the Expression Builder.

Example 1: SUM Function Contained within the SELECT Statement

In the following SQL code, the SUM function is displayed in bold text.

SELECT [Asset].[ASSET_ID_CHR] "Asset ID", Sum([Failure].
[EFAIL_TOTCST_FROM]) "Total Failure Cost"
 FROM [Asset] JOIN SUCC [Failure] ON {Asset Has Failure}
 WHERE [Failure].[EFAIL TOTCST FRM] > 50000
GROUP BY [Asset].[ASSET ID CHR]

In this example, the SUM function is contained within the SELECT statement.

Example 2: SUM Function Contained within the SELECT Statement and in the
HAVING Clause

In the following SQL code, the SUM function is displayed in bold text and appears
twice: once in the SELECT statement and once in the HAVING clause.

SELECT [Asset].[ASSET_ID_CHR] "Asset ID", Sum([Failure].
[EFAIL_TOTCST_FROM]) "Total Failure Cost"
FROM [Asset] JOIN SUCC [Failure] ON {Asset Has Failure}
GROUP BY [Asset].[ASSET ID CHR]
HAVING Sum([Failure].[EFAIL TOTCST FROM]) > 5000

© 2024 General Electric Company 61

About the GROUP BY Clause
A GROUP BY clause is used to group query results.

The GROUP BY Clause

Suppose that you want to see the total number of failures your equipment has
experienced per equipment manufacturer.

You would add the Asset Manufacturer field and the Failure ID field to the grid in the
Conditions section. The Total row indicates that you want to group the results by
manufacturer and display a total count of failures for each manufacturer that is
returned. The sort preference indicates that you want to sort the results in
descending order according to the failure count.

In the results, each row represents a different manufacturer and the total count of
failures for each manufacturer that is returned.

In this example, the query results are grouped by one field only, so each manufacturer
appears only one time. You can, however, group query results by more than one field.
When you group a query by multiple rows, the query determines all possible
combinations of results and returns each distinct combination. Therefore, the more
fields you group by, the more results you will see.

Continuing with this example, if you add the Asset ID field to the query, the results will
contain many more rows because there are more combinations to display. In this
case, one manufacturer may be displayed twice if that manufacturer manufactures
multiple equipment items.

About Aggregate and Analytic Functions
Aggregate functions perform a calculation on a set of values and return a single value. Analytic functions
compute an aggregate value based on a set of values, and, unlike aggregate functions, can return multiple
rows for each set of values. Throughout this documentation, we refer to queries that contain aggregate
functions as aggregate queries, and queries that contain analytic functions as analytic queries.

If you want to run a query using only aggregate functions, the query will return one row with a column for
each field. If you want to run a query using an aggregate function in conjunction with the
GROUP BY clause, the query will return one row for each value found in the grouped field.

Aggregate functions are used in conjunction with the GROUP BY clause, which specifies how the query
results will be grouped and displayed. In other words, if you use any aggregate functions on fields in a
query, then all remaining fields must appear in the GROUP BY clause.

Aggregate functions and analytic functions can be selected in the Total cell of the grid in the Conditions
section.

The SUM and AVERAGE functions can be used only on numeric query fields. The MIN, MAX, and
COUNT functions can be used on date, numeric, or character fields.

Tip: For more information on functions, refer to MetaSQL Functions on page 77.

Analytic functions compute an aggregate value based on a set of values, and, unlike aggregate functions,
can return multiple rows for each set of values. Use analytic functions to compute moving averages,
running totals, percentages, or top-N results within a group.

If you want to run a query using an analytic function, the query will return one row for each field in the
defined range of fields used to perform the calculations.

62 © 2024 General Electric Company

Note: In the following table, items in the special font (that is, field, field1) represent user-supplied
parameters. Items contained within brackets are optional. Do not enter the brackets themselves.

Analytic Function Format of Code Using the Function

AVG AVG(field) OVER([PARTITION BY field1[,

field2, ...]] ORDER BY field1[, field2, ...])

CUME_DIST CUME_DIST() OVER([PARTITION BY field1[, field2, ...]]

ORDER BYfield1[, field2, ...])

FIRST_VALUE FIRST_VALUE(field) OVER([PARTITION BY

field1[,field2, ...]] ORDER BY field1[,

field2, ...])

LAST_VALUE LAST_VALUE(field) OVER([PARTITION BY

field1[,field2, ...]] ORDER BY field1[,

field2, ...])

MAX MAX(field) OVER([PARTITION BY

field1[,field2, ...]] ORDER BY field1[,

field2, ...])

MIN MIN(field) OVER([PARTITION BY field1[,

field2, ...]] ORDER BY field1[, field2, ...])

NTILE NTILE(number) OVER([PARTITION BY

field1[,field2, ...]] ORDER BY field1[,

field2, ...])

ROW ROW_NUMBER() OVER([PARTITION BYfield1[,

field2, ...]] ORDER BY field1[, field2, ...])

SUM SUM(field) OVER([PARTITION BY

field1[,field2, ...]] ORDER BY

field1[,field2, ...])

About Character Functions
Character functions are used to manipulate values returned on character fields.

Tip: For more information on functions, refer to MetaSQL Functions on page 77.

Example: REPLACE Function

Suppose that you want to view the Failure ID of the failure associated with each piece of equipment or
location in your database. Failure IDs are stored with a dash in the syntax, and you want to display them
with a double colon instead of the dash.

In this case, you might configure a query on the Asset and Failure families, joined via the Asset Has Failure
relationship, and add the Asset ID and Failure ID fields to the query.

In this example, to return the Failure IDs and replace the dash with a double colon, you would configure an
expression using the REPLACE function. You would also configure the alias to ensure that the column
displays the text Failure ID.

© 2024 General Electric Company 63

In this case, the expression syntax is:

 REPLACE([Failure].[Failure ID], '-', '::')

The syntax indicates that you want to replace the dash (-) with a double colon (::).

More Examples of Character Functions

The following table lists more examples of using Character functions:

Function Description Example Stored Value Result

CONCAT Concatenates two field

values and displays the

result.

CONCAT ([Asset)ID],

[Asset Type])
Asset ID: T-101

Asset Type: Tank

T-101Tank

& Concatenates two or

more field values and

adds delimiters

between the values.

[Asset ID] &':' & [Asset

Type]
Asset ID: T-101

Asset Type: Tank

T-101:Tank

LOWER Displays the value in all

lowercase letters.

LOWER ([Asset Type]) Tank Tank

UPPER Displays the value in all

uppercase letters.

UPPER ([Asset Type]) Tank Tank

SUBSTR Displays a specific

number of characters

depending on the

starting point you

specify and the number

of characters that you

specify should be

returned.

SUBSTR ([Asset ID],0,3)

Zero (0) specifies the

starting point (from left

to right) and three (3)

specifies the number of

characters after the

starting point that you

want to display.

PMP-101 PMP

IsNull Displays a specified

value when a null value

is found.

IsNull ([Asset Type],'No

Value Listed')

Asset Type field

contains a null value

No Value Listed

LTRIM Displays the value with

the specified characters

removed from the

beginning (left) of the

string.

LTRIM
([PhoneNumber],

'(540)-')

(540) 344-9205 344-9205

RTRIM Displays the value with

the specified characters

removed from the end

(right) of the string.

RTRIM ([Failure ID],

'-0123456789')

FAIL-1234 FAIL

64 © 2024 General Electric Company

Function Description Example Stored Value Result

STRING_AGG Concatenates the string

values and places

separator values

between them. The

separator is not added

at the end of string. If

this function is used

with group by, it returns

one row per grouping,

else returns one row.

You can also control the

order in which the

values are

concatenated. The SQL

server has a 8,000

character limit. Oracle

and Postgres return

CLOB and TEXT

respectively.

SELECT

String_Agg([MI_EQUIP0

00].

[MI_EQUIP000_EQUIP_I

D_C], ',') "Equipment"

FROM [MI_FNCLOC00]

JOIN_SUCC

[MI_EQUIP000] ON

{MIR_FLHSEQ} GROUP

BY [MI_FNCLOC00].

[MI_FNCLOC00_FNC_LO

C_C]

000000000001056781

000000000010000068

000000000001056781,

000000000010000068

JSON_VALUE Gets a single value from

a JSON string. Always

returns as a character.

JSON_VALUE([FAMILY].

[JSON field], `

$.property')

{"property": 1} "1"

About Conversion Functions
A Conversion function is used to modify query results by reformatting the data. You can use this type of
function if you want to reformat the data to simplify it (e.g., you could remove unnecessary zeros from
dates, where 01/07/2007 could be converted to 1/7/2007) or if you want to reformat the data so it
appears as a different data type completely (e.g., you could spell out a month instead of representing the
month with a number, where 01/07/2007 could be converted to January 7, 2007).

Description Function

Convert a number or date to a character CastChar

Convert a character to a date CastDate

Convert a character to a number CastNum

About Date Functions
Date functions are used to manipulate values returned on date fields.

Tip: For more information on functions, refer to MetaSQL Functions on page 77.

Example: MI_DateAdd

Suppose that all air cooled heat exchangers in your facility require inspection every six months. You might
want to run a query to see the last inspection date of all air cooled heat exchangers and the date that is
six months after that date. If each Air Cooled Heat Exchanger record in your database contains an Asset
Inspection Date value, you could do so using the MI DateAdd function.

© 2024 General Electric Company 65

Note: Oracle databases do not support date math by year ('yy') or month ('mm') with time stamps
enabled; therefore, the DateAdd function for Oracle databases will use 365.25 days for years and 30 days
for months.

You might configure a query on the Air Cooled Heat Exchanger family, and add the Asset ID, Asset
Description, Asset Inspection Date, and Next Inspection Date fields to the query.

In this example, to return the next inspection date, you would configure an expression using the MI
DateAdd function. You would also configure the alias of this column to indicate that the column returns
the next inspection date.

The expression syntax is:

MI DateAdd('mm', 6, [Air Cooled Heat Exchanger].[Asset Inspection
Date])

The following table lists more examples of how you can use the MI DateAdd function.

Parameter Example Description Stored Value Result

yy MI DateAdd(' yy ', 1, [Air

Cooled Heat

Exchanger].[Asset

Installation Date])

Adds one year to the

date on the Asset

Installation Date field in

Air Cooled Heat

Exchanger records.

11/01/2009 11/01/2010

mm MI DateAdd(' mm ', 6,

[Air Cooled Heat

Exchanger].[Asset

Installation Date])

Add six months to the

date on the Asset

Installation Date field in

Air Cooled Heat

Exchanger records.

11/01/2009 05/01/2010

dd MI DateAdd(' dd ', 4, [Air

Cooled Heat

Exchanger].[Asset

Installation Date])

Adds four days to the

date on the Asset

Installation Date field in

Air Cooled Heat

Exchanger records.

11/01/2009 11/05/2009

hh MI DateAdd(' hh ', 4, [Air

Cooled Heat

Exchanger].[Asset

Installation Date])

Adds four hours to the

date on the Asset

Installation Date field in

Air Cooled Heat

Exchanger records.

11/01/2009 4:00:00 11/01/2009 8:00:00

mi MI DateAdd(' mi ', 4, [Air

Cooled Heat

Exchanger].[Asset

Installation Date])

Adds four minutes to

the date on the Asset

Installation Date field in

Air Cooled Heat

Exchanger records.

11/01/2009 4:00:00 11/01/2009 4:04:00

66 © 2024 General Electric Company

Parameter Example Description Stored Value Result

mi MI DateAdd(' mi ', -4,

[Air Cooled Heat

Exchanger].[Asset

Installation Date])

Subtracts four minutes

from the date on the

Asset Installation Date

field in Air Cooled Heat

Exchanger records.

11/01/2009 4:00:00 11/01/2009 3:56:00

ss MI DateAdd(' ss ', 4, [Air

Cooled Heat

Exchanger].[Asset

Installation Date])

Adds four seconds to

the date on the Asset

Installation Date field in

Air Cooled Heat

Exchanger records.

11/01/2009 4:00:00 11/01/2009 4:00:04

Example: MI_DatePart

Suppose that you want to view only the month in which the shell and tube heat exchangers were installed
in your facility. If all Shell and Tube Heat Exchanger records in your database contain an Asset Installation
Date field, and the values are stored in the format mm/dd/yyyy, you could do so using the MI DatePart
function.

You might configure a query on the Shell and Tube Heat Exchanger family, and add the Asset ID, Asset
Description, and Installation Month fields to the query.

In this example, to return the month in which each shell and tube heat exchanger was installed, you would
configure an expression using the MI DatePart function. You would also configure the alias to indicate that
the column returns the year the piece of equipment was installed.

The expression syntax is:

MI DatePart('mm', [Shell and Tube Heat Exchanger].[Asset Installation
Date])

Using this syntax, instead of displaying the installation date in the stored format of mm/dd/yyyy, the query
results will display only the value representing the month.

The following table lists more examples of how you can use the MI DatePart function.

Parameter Example Description Stored Value Result

yy MI DatePart('yy', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

Displays only the year

from a stored date

value.

11/01/2009 2009

yyyy MI DatePart('yyyy',

[Shell and Tube Heat

Exchanger].[Asset

Installation Date])

year MI DatePart('year',

[Shell and Tube Heat

Exchanger].[Asset

Installation Date])

© 2024 General Electric Company 67

Parameter Example Description Stored Value Result

q MI DatePart('q', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

Displays a number

representing the

quarter of the year

based on a stored date

value.

11/01/2009 4

qq MI DatePart('qq', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

quarter MI DatePart('quarter',

[Shell and Tube Heat

Exchanger].[Asset

Installation Date])

m MI DatePart('m', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

Displays only the month

from a stored date

value.

11/01/2009 11

mm MI DatePart('mm',

[Shell and Tube Heat

Exchanger].[Asset

Installation Date])

month MI DatePart('month',

[Shell and Tube Heat

Exchanger].[Asset

Installation Date])

wk MI DatePart('wk', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

Displays a number

representing the week

of the month based on a

stored date value.

11/01/2009 1

weekofmonth MI

DatePart('weekofmont
h', [Shell and Tube Heat

Exchanger].[Asset

Installation Date])

d MI DatePart('d', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

Displays only the day

from a stored date

value.

11/01/2009 01

dd MI DatePart('dd', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

day MI DatePart('day', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

68 © 2024 General Electric Company

Parameter Example Description Stored Value Result

dw MI DatePart('dw', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

Displays a number

representing the day of

the week based on a

stored date value

(where 1 = Sunday, 2 =

Monday, etc.).

11/01/2009 1

weekday MI DatePart('weekday',

[Shell and Tube Heat

Exchanger].[Asset

Installation Date])

y MI DatePart('y', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

Displays a number

representing the day of

the year based on a

stored date value.

11/01/2009 305

dy MI DatePart('dy', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

dayofyear MI

DatePart('dayofyear',

[Shell and Tube Heat

Exchanger].[Asset

Installation Date])

hh MI DatePart('hh', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

Displays only the hour

from a stored date

value.

11/01/2009 4:00:00 4

hour MI DatePart('hour',

[Shell and Tube Heat

Exchanger].[Asset

Installation Date])

n MI DatePart('n', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

Displays only the

minutes from a stored

date value.

11/01/2009 4:00:00 00

mi MI DatePart('mi', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

minute MI DatePart('minute',

[Shell and Tube Heat

Exchanger].[Asset

Installation Date])

© 2024 General Electric Company 69

Parameter Example Description Stored Value Result

s MI DatePart('s', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

Displays only the

seconds from a stored

date value.

11/01/2009 4:00:00 00

ss MI DatePart('ss', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

second MI DatePart('second',

[Shell and Tube Heat

Exchanger].[Asset

Installation Date])

Example: NOW

Suppose that you want to see the tasks that are assigned to a specific user and due in the next thirty
days. If Task records contain the Next Date field that stores the date on which the task is due, you could
do so using the NOW function.

You might configure a query on the Task family, and add the Task ID, Next Date, and Task Assigned To
fields to the query.

In this example, you would configure an expression on the Next Date field using the NOW function.
Additionally, you would configure a prompt to prompt the user for the name of the user whose Task
records you want to view.

The expression syntax is:

(>= Now() AND <= (Now() + 30))

The syntax indicates that you want to view the tasks that are due today and within the next thirty days.
For example, if a task is due thirty-one days after today's date, it will not appear in the query results.

The following table lists more examples of how you can use the NOW function.

Example Expression Description Current Date Result

NOW(0) or NOW() Displays the current date. 11/01/2009 11/01/2009

NOW() - 3 Displays the date that is three

days prior to the current date.

11/01/2009 10/29/2009

NOW() + 3 Displays the date that is three

days later than the current

date.

11/01/2009 11/04/2009

Example: LastDate

Suppose that you want to see all the air cooled heat exchanger failures in your facility that occurred in a
given month. If each Air Cooled Heat Exchanger record is linked to a Failure record, and each Failure record
contains the Failure Date/Time field that stores that date and time on which a failure occurred, you could
do so using the LAST DATE function.

You might configure a query on the Air Cooled Heat Exchanger and Failure families, joined via the Asset
Has Failure relationship, and add the Asset ID, Failure ID, Failure Date/Time, and Last Day fields to the
query.

70 © 2024 General Electric Company

In this example, you would configure an expression using the LAST DATE function. Additionally, you would
create a prompt that prompts you to select the last day of the month whose failures you want to view.
You would configure the alias to indicate that the column displays the last day of the month.

The expression syntax is:

LastDate([Failure].[Failure Date/Time])

The prompt syntax is:

((? :d :caption='Last Day' :id=Last Day))

When you run the query, a prompt appears, where you can select 11/30/2009 12:00:00 A.M. to indicate
that you want to view failures that occurred during the month of November.

Example: ISNULL

Suppose that you want to see the installation date of the shell and tube heat exchangers in your facility
even if the Asset Installation Date field in the Shell and Tube Heat Exchanger records is empty, and if the
Asset Installation Date field is empty, you want to show the value Not Installed.

In this case, you might configure a query on the Shell and Tube Heat Exchanger family, and add the Asset
ID, Asset Description, and Installation Dates (ALL) fields to the query.

In this example, you would configure an expression using the ISNULL function. You would also configure
the alias to indicate that the column returns the installation dates.

In this case, the expression syntax is:

IsNull([Shell and Tube Heat Exchanger].[Asset Installation Date], 'Not
Installed')

...where Not Installed is the value that will appear where a null value is found on the Asset Installation
Date field in the Shell and Tube Heat Exchanger records.

Example: ROUND

Suppose that you want to see the values on the As Left fields for the analyzer instruments in your facility
rounded to two decimal places. If all Analyzer Calibration records contain the As Left field, you can do so
using the ROUND function.

You might configure a query on the Analyzer Calibration family, and add the Analyzer ID, Calibration Date,
and As Left (rounded) fields to the query.

In this example, you would configure an expression using the ROUND function. You would also configure
the alias to indicate that the column displays the rounded as left values.

The expression syntax is:

ROUND([Analyzer Calibration].[As Left], '2')

...where 2 is the number of decimal places to which the values will be rounded in the results.

Example: DATENAME

Suppose that you want to see the name of the month in which the shell and tube heat exchangers were
installed. Instead of 11, you want to see November, and you do not want to return the year or day in the
query results. If all Shell and Tube Heat Exchanger records in your database contain an Asset Installation
Date field, and the values are stored in the format mm/dd/yyyy (e.g., 11/01/2009), you could do so using
the DATENAME function.

© 2024 General Electric Company 71

You might configure a query on the Shell and Tube Heat Exchanger family, and add the Asset ID, Asset
Description, and Installed by Month fields to the query.

In this example, you would configure an expression using the DATENAME function. You would also
configure the alias to indicate that the results display the month.

The expression syntax is:

DATENAME('mm', [Shell and Tube Heat Exchanger].[Asset Installation
Date])

...where mm indicates the part of the date (i.e., month) that you want to convert to its character format.

The following table lists more examples of how you can use the DATENAME function.

Parameter Description Example Stored Value Result

yy

year

Displays a number

representing the year

from a stored date

value.

DATENAME('year',

[Shell and Tube Heat

Exchanger].[Asset

Installation Date])

11/01/2009 2009

qq

quarter

Displays a number

representing the

quarter of the year

based on a stored date

value.

DATENAME('qq', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

11/01/2009 4

mm

month

Displays the month

from a stored date

value.

DATENAME('mm', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

11/01/2009 November

ww Displays a number

representing the week

of the month based on a

stored date value.

DATENAME('ww', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

11/01/2009 1

dd

day

Displays a number

representing the day

from a stored date

value.

DATENAME('day', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

11/01/2009 01

dw Displays the day of the

week based on a stored

date value.

DATENAME('dw', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

11/01/2009 Sunday

dy

dayofyear

Displays a number

representing the day of

the year based on a

stored date value.

DATENAME('dayofyear'

, [Shell and Tube Heat

Exchanger].[Asset

Installation Date])

11/01/2009 305

Example: DATEPART

Suppose that you want to see the year in which the shell and tube heat exchangers were installed in your
facility. If all Shell and Tube Heat Exchanger records in your database contain an Asset Installation Date
field, and the values are stored in the format mm/dd/yyyy (e.g., 11/01/2009), you could do so using the
DATEPART function.

72 © 2024 General Electric Company

You might configure a query on the Shell and Tube Heat Exchanger family, and add the Asset ID, Asset
Description, and Installation Year fields to the query.

In this example, you would configure an expression using the DATEPART function. You would also
configure the alias to indicate that the column displays the installation year.

The expression syntax is:

DATEPART('year', [Shell and Tube Heat Exchanger].[Asset Installation
Date])

...where year is the portion of the date value that you want to view.

Parameter Example Description Stored Value Result

yy DATEPART('yy', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

Displays a number

representing the year

from a stored date

value.

11/01/2009 2009

yyyy DATEPART('yy', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

year DATEPART('year', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

q DATEPART('q', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

Displays a number

representing the

quarter of the year

based on a stored date

value.

11/01/2009 4

qq DATEPART('qq', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

quarter DATEPART('quarter',

[Shell and Tube Heat

Exchanger].[Asset

Installation Date])

© 2024 General Electric Company 73

Parameter Example Description Stored Value Result

m DATEPART('m', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

Displays a number

representing the month

from a stored date

value.

11/01/2009 11

mm DATEPART('mm', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

month DATEPART('month',

[Shell and Tube Heat

Exchanger].[Asset

Installation Date])

wk DATEPART('wk', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

Displays a number

representing the week

of the month based on a

stored date value.

11/01/2009 1

ww DATEPART('ww', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

week DATEPART('week',

[Shell and Tube Heat

Exchanger].[Asset

Installation Date])

d DATEPART('d', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

Displays a number

representing the day

from a stored date

value.

11/01/2009 1

dd DATEPART('dd', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

day DATEPART('day', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

dw DATEPART('dw', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

Displays a number

representing the day of

the week based on a

stored date value.

11/01/2009 1 (i.e., Sunday)

weekday DATEPART('weekday',

[Shell and Tube Heat

Exchanger].[Asset

Installation Date])

74 © 2024 General Electric Company

Parameter Example Description Stored Value Result

y DATEPART('y', [Shell and

Tube Heat Exchanger].

[Asset Installation

Date])

Displays a number

representing the day of

the year based on a

stored date value.

11/01/2009 305

dy DATEPART('dy', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

dayofyear DATEPART('dayofyear',

[Shell and Tube Heat

Exchanger].[Asset

Installation Date])

hh DATEPART ('hh', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

Displays only the hour

from a stored date

value.

11/01/2009 4:00:00 4

hour DATEPART ('hour', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

n DATEPART ('n', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

Displays only the

minutes from a stored

date value.

11/01/2009 4:00:00 00

mi DATEPART ('mi', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

minute DATEPART ('minute',

[Shell and Tube Heat

Exchanger].[Asset

Installation Date])

s DATEPART ('s', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

Displays only the

seconds from a stored

date value.

11/01/2009 4:00:00 00

ss DATEPART ('ss', [Shell

and Tube Heat

Exchanger].[Asset

Installation Date])

second DATEPART ('second',

[Shell and Tube Heat

Exchanger].[Asset

Installation Date])

© 2024 General Electric Company 75

About Number/Mathematical Functions
A number/mathematical function is used to manipulate values returned on numeric fields.

Tip: For more information on functions, refer to MetaSQL Functions on page 77.

About the DECODE Function
A DECODE function is used to evaluate a value in the query results and, based on that evaluation, trigger
an action or return a different value.

Example: DECODE Function

Suppose that, in your organization, you have open and closed work history events.
Each Work History record contains an Order System Status field, which is used to
record the status of that work history event. You want to see how many open work
history events you have and how many closed work history events you have. Instead
of the stored values of CLSD TECO or OPEN, however, you want to see the values
Closed or Open in your query results.

In addition, you are concerned that not all Work History records contain a value in the
Order System Status field. You also want to see in your query results which records do
not have a value in this field so that you can update those records.

In this case, you might configure a query on the Work History family, and then add the
Expr and Order System Status fields to the query.

In this example, to return the status of each work history event as Closed, Open, or
No Status (meaning that the record does not contain a value in the Order System
Status field), you can configure an expression using the DECODE function.

In this case, the expression syntax is:

 Decode([Work History].[Order System
Status], 'CLSD TECO', 'Closed', 'OPEN', 'Open', 'No
Status')

This syntax indicates that for Work History records that contain the value CLSD TECO
in the Order System Status field, you want to return the value Closed. For those
records with the value OPEN in the Order System Status field, you want to return the
value Open. For records where the Order System Status field is empty, you want to
return the value No Status.

You would also add a COUNT function on the Order System Status field so that you
can see the number of work history events that fall into each category.

Other possible uses include:

• You want to review the types of maintenance activities that are being performed
in your plant and the total number of failures that resulted in each type of activity.
Users can enter any value they choose into a field that tracks maintenance
activities, so you know that your users are using different terminology to mean the
same thing. For example, to indicate that they replaced broken components,
different users might enter replace, replacing, or replacement. You can write a
DECODE statement to indicate that the values replace, replacing, and replacement
should return the value Replace in the query results.

76 © 2024 General Electric Company

• Members of management want to investigate failures that resulted in a failure
cost of $50,000 or more. You can write a DECODE statement to indicate that
failures with a failure cost greater than or equal to $50,000 should return the
value Please Investigate in the query results. Other failures should return the value
OK in the query results.

MetaSQL Functions

Aggregate Functions

Aggregate functions perform a calculation on a set of values and return a single value. Use of the OVER
clause converts the function into an Analytic Function.

• AVG
• COUNT
• MAX
• MIN
• SUM

Meridium Functions

Meridium functions are supported regardless of what database management system you use. The
MetaSQL compiler will automatically convert the expression to a native SQL expression.

Function Syntax:

<meridium_function> ::=
{
 function_id ([{ <expression> [,...n] } | *])
}

...where function_id is the name of the function you are executing.

The following functions are supported:

UserKey
Gets the key of the current logged-in user.

SELECT UserKey()
FROM <source>

Str
Converts the designated field to a VARCHAR value.

-- Syntax
SELECT Str(<expression> [, <size>]) "Expr" FROM <source>

-- Simple Example
SELECT [MI_ACTION].ENTY_KEY "ENTY_KEY"
, Str([MI_ACTION].ENTY_KEY) "Str Enty Key"
FROM [MI_ACTION]

-- Specify the size
SELECT [MI_ACTION].ENTY_KEY "ENTY_KEY"

© 2024 General Electric Company 77

, Str([MI_ACTION].ENTY_KEY, 20) "Str Enty Key"
FROM [MI_ACTION]

IsNull
Evaluates an expression. If the value is null, evaluates the expression in the second argument and
returns its result.

Note: Both arguments must return the same data type.

-- Syntax
SELECT IsNull(<expression>, <expression>) "Expr" FROM <source>

-- Example (Note the conversion of number to string ensuring
consistent data types)
SELECT [MI_ACTION].[MI_ACTION_ID_C] "Action ID"
, [MI_ACTION].[MI_ACTION_SHORT_DESC_C] "Name"
, IsNull(Str([MI_ACTION].[MI_ACTION_RESOURCE_COST_N]), 'No Cost
Data') "Cost"
FROM [MI_ACTION]

Now
Returns the DBMS system date.

-- Syntax
SELECT Now()
FROM <source>

LocalizedCaption
Returns a localized Family Caption for a given Family Key and User Key.

-- Syntax
SELECT LocalizedCaption(<family_key>, <user_key>)
FROM <source>

-- Example
SELECT mi_families.FMLY_CAPTION_TX "Caption"
, LocalizedCaption(mi_families.FMLY_KEY, 64251708261) "Localized
Caption"
FROM mi_families

Decode
Returns a given output based on one or more possible inputs.

-- Syntax
SELECT DECODE(<field_id>, <input_value>, <output_value> [,
<input_value>, <output_value>], <default_value>)
FROM <source>

-- Example
SELECT [MI_ACTION].[MI_ACTION_ID_C] "Action ID"
, [MI_ACTION].[MI_ACTION_SHORT_DESC_C] "Name"
, [MI_ACTION].[MI_ACTION_RESOURCE_COST_N] "Cost"
, Decode([MI_ACTION].[MI_ACTION_RESOURCE_COST_N], 100, 'Cheap',
10000, 'Moderately Expensive', 100000, 'Expensive', 'Misc') "Cost
Category"

78 © 2024 General Electric Company

FROM [MI_ACTION]
ORDER BY "Cost" Desc

DatePart
Returns the specified part of a date/time value. DatePart and MI_DatePart are equivalent. The return
is a number.

--Syntax
SELECT DatePart(<date_part>, <expression>)
FROM <source>

-- Example
SELECT [MI_ACTION].[MI_ACTION_ID_C] "Action ID"
, [MI_ACTION].[MI_ACTION_SHORT_DESC_C] "Name"
, [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR] "Target Completion
Date"
, DatePart('yy', [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR])
"Year"
, DatePart('mm', [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR])
"Month"
, DatePart('dd', [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR]) "Day"
, DatePart('hh', [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR])
"Hour"
, DatePart('mi', [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR])
"Minute"
, DatePart('ss', [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR])
"Second"
, DatePart('dw', [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR]) "Day
of the week"
, DatePart('qq', [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR])
"Quarter"
, DatePart('dy', [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR]) "Day
of the year"
, DatePart('ww', [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR])
"Week"
FROM [MI_ACTION]
WHERE [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR] IS NOT NULL

The date_part can contain any of the following values:

• ‘quarter’, ‘qq’, ‘q’ - Quarter of the year, 1 - 4
• ‘year’, ‘yyyy’, ‘yy’ - Year, 4 digits (always)
• ‘month’, ‘mm’, ‘m’ - Month of the year, 1 - 12
• ‘day’, ‘dd’, ‘d’ - Day of the month, 1 - 31
• ‘hour’, ‘hh’, ‘h’ - Hour of the day, 0 - 23
• ‘minute’,’mi’, ‘n’ - Minute of the hour, 0 - 59
• ‘second’, ‘ss’, ‘s’ - Second of the minute, 0 - 59
• ‘dayofyear’, ‘dy’, ‘y’ - Day of the year
• ‘dayofweek’, ‘weekday’, ‘dw’ - Day of the week, 1 - 7, Sunday is 1
• ‘weekofyear’, ‘week’, ‘ww’ - Week of the year
• ‘weekofmonth’, ‘wk’ - Week of month

© 2024 General Electric Company 79

DateAdd
Adds the specified number of units to a given date/time and returns a new date/time value. DateAdd
and MI_DateAdd are equivalent. On Oracle databases, adding years and months is not supported.

-- Syntax
SELECT DateAdd(<date_part>, <num_const>, <expression>)
FROM <source>

-- Example
SELECT [MI_ACTION].[MI_ACTION_ID_C] "Action ID"
, [MI_ACTION].[MI_ACTION_SHORT_DESC_C] "Name"
, [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR] "Target Completion
Date"
, DateAdd('yy', 10, [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR])
"Add 10 Years"
, DateAdd('mm', 10, [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR])
"Add 10 Months"
, DateAdd('dd', 10, [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR])
"Add 10 Days"
, DateAdd('hh', 10, [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR])
"Add 10 Hours"
, DateAdd('mi', 10, [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR])
"Add 10 Minutes"
, DateAdd('ss', 10, [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR])
"Add 10 Seconds"
FROM [MI_ACTION]
WHERE [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR] IS NOT NULL

The date_part can contain one of the following values:

• ‘year’, ‘yyyy’, ‘yy’ - Year
• ‘month’, ‘mm’, ‘m’ - Month
• ‘day’, ‘dd’, ‘d’ - Day
• ‘hh’, ‘h’ - Hour
• ‘minute’, ‘mi’, ‘n’ - Minute
• ‘second’, ‘ss’, ‘s’ - Second

The num_const is the number of units that will be added to the provided date.

DateFormat
Returns a date/time value formatted as a string.

--Syntax
SELECT DateFormat(<date_format>, <expression>)
FROM <source>

-- Example
SELECT [MI_ACTION].[MI_ACTION_ID_C] "Action ID"
, [MI_ACTION].[MI_ACTION_SHORT_DESC_C] "Name"
, [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR] "Target Completion
Date"
, DateFormat('yyyy-mm-dd', [MI_ACTION].
[MI_ACTION_TARGE_COMPL_DATE_CHR]) "Date"
FROM [MI_ACTION]
WHERE [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR] IS NOT NULL

The date_format can contain any reasonable combination of the following values:

80 © 2024 General Electric Company

• ‘yyyy’ - four digit year
• ‘yyy’ - last 3 digits of the year
• ‘yy’ - last 2 digits of the year
• ‘y’ - last digit of the year
• ‘mm’ - month of the year, 01 - 12
• ‘mon’ - abbrreviated month name
• ‘dd’ - Day of the month, 01 - 31
• ‘ddd’ - Day of the year, 001 - 366
• ‘d’ - Day of the week, 1 - 7, Sunday is 1
• ‘dy’ - abbrreviated day name
• ‘hh’ - Hour of the day, 01 - 12
• ‘hh12’ - Hour of the day, 01 - 12
• ‘hh24’ - Hour of the day, 00 - 23
• ‘mi’ - Minute of the hour, 00 - 59
• ‘ss’ - Second of the minute, 00 - 59
• ‘ms’ - Millisecond, 000 - 999
• ‘am’ - (or pm) meridiem indicator

Note:

• Oracle does not support fractional seconds.
• Microsoft does not support day of the year.

DateName
Returns the month or day name for date/time value. Note that this value will not be localized.

--Syntax
SELECT DateName(<date_format>, <expression>)
FROM <source>

-- Example
SELECT [MI_ACTION].[MI_ACTION_ID_C] "Action ID"
, [MI_ACTION].[MI_ACTION_SHORT_DESC_C] "Name"
, [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR] "Target Completion
Date"
, DateFormat('day', [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR])
"Day"
FROM [MI_ACTION]
WHERE [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR] IS NOT NULL

The date_format can contain any of the following values:

• ‘month’, ‘mm’, ‘m’ - Month of the year
• ‘day’, ‘dd’, ‘weekday’, ‘dw’ - Day of the week

UTC
Returns the formatted string equivalent of the argument date/time value. The return will be
formatted ‘yyyy-mm-dd hh:mi:ss’.

--Syntax
SELECT UTC(<expression>)
FROM <source>

-- Example
SELECT [MI_ACTION].[MI_ACTION_ID_C] "Action ID"

© 2024 General Electric Company 81

, [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR] "Target Completion
Date"
, UTC([MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR]) "UTC Date"
FROM [MI_ACTION]
WHERE [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR] IS NOT NULL

DateDiff
Returns the difference between to date/time values as number. The argument determines the unit of
measure returned. The expression1 argument is subtracted from expression2.

--Syntax
SELECT DateDiff(<date_part>, <expression1>, <expression2>)
FROM <source>

-- Example
SELECT [MI_ACTION].[MI_ACTION_ID_C] "Action ID"
, [MI_ACTION].[MI_ACTION_SHORT_DESC_C] "Name"
, [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR] "Target Completion
Date"
, DateDiff('day', [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR],
[MI_ACTION].LAST_UPDT_DT) "Days"
FROM [MI_ACTION]
WHERE [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR] IS NOT NULL

The date_PART can contain any of the following values:

• ‘day’, ‘dd’, ‘d’ - Days
• ‘hour’, ‘hh’, ‘h’ - Hours
• ‘minute’, ‘mi’, ‘n’ - Minutes
• ‘second’, ‘ss’, ‘s’ - Seconds

Length
Returns the length of the specified expression.

-- Syntax
SELECT Length(<expression>)
FROM <source>

-- Example
, [MI_ACTION].[MI_ACTION_SHORT_DESC_C] "Name"
, Length([MI_ACTION].[MI_ACTION_SHORT_DESC_C]) "Name Length"
, [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR] "Target Completion
Date"
, Str([MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR]) "Target
Completion Date String"
, Length(Str([MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR])) "Target
Completion Date Length"
, (1000000 + 2689432) "Test"
, Length((1000000 + 2689432)) "Test Length"
FROM [MI_ACTION]

Note: When determining string length of a Date/Time value, the results may not be as expected. To
ensure predictable results, cast the Date/Time to a string with a known format prior to passing it into
the Length() function.

82 © 2024 General Electric Company

CastChar, CastNu,, CastDate
Takes an expression and attempts to return a value cast to the desired type.

-- Syntax
SELECT CastChar(<expression>, <size>)
FROM <source>

SELECT CastNum(<expression>)
FROM <source>

SELECT CastDate(<expression>, <date_format_string>)
FROM <source>

-- Example
SELECT TOP 1 CastChar(Now()) "Now string"
, CastChar(1234567, 7) "Number string"
, CastNum('1234567') "Number from string"
, CastDate('2009-01-01', 'YYYY-MM-DD') "Date from string"
FROM [MI_ACTION]

The size accepts a <num_const> representing the size of the VARCHAR.

The date_format_string is a format string for the date/time value (i.e. YYYY-MM-DD). This string
format needs to be compatible with the underlying DBMS.

IndexOf
Returns the index (1-based) of a given character expression within another character expression.

Note: This function is case-sensitive for Oracle and PostgreSQL, but case-insensitive for SQL.

-- Syntax
SELECT IndexOf(<char_const_to_search>, <char_const_to_find> [,
<start_position>])
FROM <source>

-- Example
SELECT [MI_ACTION].[MI_ACTION_ID_C] "Action ID"
, [MI_ACTION].[MI_ACTION_SHORT_DESC_C] "Name"
, INDEXOF([MI_ACTION].[MI_ACTION_SHORT_DESC_C], 'c') "Index of C"
FROM [MI_ACTION]

Modulus
Returns the modulus (remainder) of exp1 divided by exp2.

-- Syntax
SELECT Modulus(<exp1>, <exp2>)
FROM <source>

Substring

-- Syntax
SELECT Substring(<expression>, <start_pos> [, <end_pos>])
FROM <source>

-- Example
SELECT [MI_ACTION].[MI_ACTION_ID_C] "Action ID"
, [MI_ACTION].[MI_ACTION_SHORT_DESC_C] "Name"
, Substring([MI_ACTION].[MI_ACTION_SHORT_DESC_C], 2) "Name

© 2024 General Electric Company 83

substring from pos 2"
, Substring([MI_ACTION].[MI_ACTION_SHORT_DESC_C], 2, 6) "Name
substring from pos 2-6"
FROM [MI_ACTION]

Upper, Lower
Return the argument string expression in upper or lower case.

-- Syntax
SELECT Upper(<expression>)
FROM <source>

SELECT Lower(<expression>)
FROM <source>

-- Example
SELECT [MI_ACTION].[MI_ACTION_ID_C] "Action ID"
, [MI_ACTION].[MI_ACTION_SHORT_DESC_C] "Name"
, Upper([MI_ACTION].[MI_ACTION_SHORT_DESC_C]) "Upper"
, Lower([MI_ACTION].[MI_ACTION_SHORT_DESC_C]) "Lower"
FROM [MI_ACTION]

LTrim, RTrim, Trim
Return a character expression after removing the leading or trailing white space (or both, for Trim).

-- Syntax
SELECT LTrim(<expression>)
FROM <source>

SELECT RTrim(<expression>)
FROM <source>

-- Example
SELECT [MI_ACTION].[MI_ACTION_ID_C] "Action ID"
, [MI_ACTION].[MI_ACTION_SHORT_DESC_C] "Name"
, ('----|' & ' ' & [MI_ACTION].[MI_ACTION_SHORT_DESC_C] & '
' & '|----') "Untrimmed Name"
, ('----|' & LTRIM((' ' & [MI_ACTION].[MI_ACTION_SHORT_DESC_C]
& ' ')) & '|----') "LTrimmed Name"
, ('----|' & RTRIM((' ' & [MI_ACTION].[MI_ACTION_SHORT_DESC_C]
& ' ')) & '|----') "RTrimmed Name"
FROM [MI_ACTION]

LPad, RPad
Return a character expression of a specified length after padding with a specified character. A space is
the default padchar value.

-- Syntax
SELECT LPad(<expression>, <length> [, <padchar>])
FROM <source>

SELECT RPad(<expression>, <length> [, <padchar>])
FROM <source>

-- Example
SELECT [MI_ACTION].[MI_ACTION_ID_C] "Action ID"
, LPAD(CASTCHAR(DatePart('d', [MI_ACTION].

84 © 2024 General Electric Company

[MI_ACTION_TARGE_COMPL_DATE_CHR])), 2, ' ') "Day"
FROM [MI_ACTION]

Concat
Concatenates the arguments returning a string. The argument list is a params argument (multiple
arguments are supported). At least two arguments are required.

-- Syntax
SELECT Concat(<exp1>, <exp2> [,<expn>])
FROM <source>

SELECT Concat(<exp1>, <exp2>)
FROM <source>

-- Example
SELECT Concat('foo-', [MI_ACTION].[MI_ACTION_ID_C], '-bar') "Action
ID"
FROM [MI_ACTION]

Year, Month, Day
Return a part of the specified date expression. For more control or granularity when retrieving date
parts, see the DatePart function.

-- Syntax
SELECT Year(<date_expression>)
FROM <source>

SELECT Month(<date_expression>)
FROM <source>

SELECT Day(<date_expression>)
FROM <source>

-- Example
SELECT [MI_ACTION].[MI_ACTION_ID_C] "Action ID"
, [MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR] "Target Completion
Date"
, YEAR([MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR]) "Target
Completion Year"
, MONTH([MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR]) "Target
Completion Month"
, DAY([MI_ACTION].[MI_ACTION_TARGE_COMPL_DATE_CHR]) "Target
Completion Day"
FROM [MI_ACTION]

SysDate
Retrieves the system date.

-- Syntax
SELECT SysDate()
FROM <source>

-- Example
SELECT [MI_ACTION].[MI_ACTION_ID_C] "Action ID"
, SYSDATE() "System Date"
FROM [MI_ACTION]

© 2024 General Electric Company 85

LastDate
Returns a date representing the last day of the month in which a given date occurs.

-- Syntax
SELECT LastDate(<const_char>)
FROM <source>

-- Example
SELECT [MI_ACTION].[MI_ACTION_ID_C] "Action ID"
, LASTDATE('2016-02-01') "Last Day of Feb, 2016"
, LASTDATE('2017-02-01') "Last Day of Feb, 2017"
, LASTDATE('2018-02-01') "Last Day of Feb, 2018"
, LASTDATE('2019-02-01') "Last Day of Feb, 2019"
, LASTDATE('2020-02-01') "Last Day of Feb, 2020"
FROM [MI_ACTION]

cost_char must be formatted as YYYY-MM-DD.

Case
Performs a series of evaluations and returns the first result that evaluates to True. The simple syntax
works well for an EQUALS comparison. However, if more complexity is required, you can use the
general CASE expression to perform various types of comparisons.

-- Syntax (simple CASE expression)
SELECT CASE <field_id>
 WHEN <expression> THEN <expression>
 [ELSE <expression>]
END
FROM <source>

-- Example
SELECT [MI_ACTION].[MI_ACTION_ID_C] "Action ID"
, [MI_ACTION].[MI_ACTION_DESCRIPTION_T] "Description"
, CASE [MI_ACTION].[MI_ACTION_DESCRIPTION_T]
 WHEN 'Perform check of lubricant, add or change oil when needed'
THEN 'Check'
 WHEN 'Perform changeout of lubricant' THEN 'Changeout'
ELSE 'Other'
END "Lubricant Action"
FROM [MI_ACTION]
WHERE [MI_ACTION].[MI_ACTION_DESCRIPTION_T] LIKE '%Lubricant%'

-- Syntax (general CASE expression)
SELECT CASE
 WHEN <boolean_expression> THEN <expression>
 [ELSE <expression>]
END
FROM <source>

-- Example
SELECT [MI_ACTION].[MI_ACTION_ID_C] "Action ID"
, [MI_ACTION].[MI_ACTION_DESCRIPTION_T] "Description"
, CASE
 WHEN [MI_ACTION].[MI_ACTION_DESCRIPTION_T] LIKE 'Perform check
of lubricant%' THEN 'Check'
 WHEN [MI_ACTION].[MI_ACTION_DESCRIPTION_T] LIKE 'Perform
changeout%' THEN 'Changeout'

86 © 2024 General Electric Company

ELSE 'Other'
END "Lubricant Action"
FROM [MI_ACTION]
WHERE [MI_ACTION].[MI_ACTION_DESCRIPTION_T] LIKE '%Lubricant%'

Sign
Returns the sign of the numeric argument (-1, 0, +1).

-- Syntax
SELECT Sign(<exp1>)
FROM <source>

Abs
Returns the absolute value of the numeric the argument.

-- Syntax
SELECT abs(<exp1>)
FROM <source>

Reverse
Returns the reverse order of a string value.

-- Syntax
SELECT Reverse(<exp1>)
FROM <source>

Floor
Returns the largest integer less than or equal to the argument numeric expression.

-- Syntax
SELECT Floor(<exp1>)
FROM <source>

Round
Returns the nearest integer for the argument numeric expression. Rounds to the precision, if
specified.

-- Syntax
SELECT Round(<exp1> [, <precision>])
FROM <source>

Analytic Functions

Analytic functions are used for aggregating data on a row-by-row basis. They work similar to aggregate
functions, except they can return multiple rows of results for each group. They are useful for calculating
running totals, moving percentages, and so on.

Analytic functions work the same way, regardless of the database management system. For more
information on analytic functions, refer to https://learn.microsoft.com/en-us/sql/t-sql/functions/analytic-
functions-transact-sql?view=sql-server-2017.

Syntax:

<analytic_function> ::= function_id() [OVER ([PARTITION BY field_id]
ORDER BY <order_by_expression>)]

© 2024 General Electric Company 87

https://learn.microsoft.com/en-us/sql/t-sql/functions/analytic-functions-transact-sql?view=sql-server-2017
https://learn.microsoft.com/en-us/sql/t-sql/functions/analytic-functions-transact-sql?view=sql-server-2017

...where function_id is the name of the function you are executing, field_id is the field used to group
results, and <order_by_expression> specifies which fields must be used to sort the results in the current
partition.

The following functions are supported:

SUM

SELECT SUM([FIELD]) OVER(PARTITION BY [FIELD], [FIELD]... ORDER BY
[FIELD] ASC, [FIELD] DESC... ROWS BETWEEN CURRENT ROW AND 1
FOLLOWING) "Cost" FROM [FAMILY]

MAX

SELECT MAX([FIELD]) OVER(PARTITION BY [FIELD], [FIELD]... ORDER BY
[FIELD] ASC, [FIELD] DESC... ROWS BETWEEN CURRENT ROW AND 1
FOLLOWING) "Cost" FROM [FAMILY]

AVG

SELECT AVG([FIELD]) OVER(PARTITION BY [FIELD], [FIELD]... ORDER BY
[FIELD] ASC, [FIELD] DESC... ROWS BETWEEN CURRENT ROW AND 1
FOLLOWING) "Expr" FROM [FAMILY]

COUNT

SELECT COUNT([FIELD]) OVER(PARTITION BY [FIELD], [FIELD]... ORDER
BY [FIELD] ASC, [FIELD] DESC... ROWS BETWEEN CURRENT ROW AND 1
FOLLOWING) "Expr" FROM [FAMILY]

ROW_NUMBER

SELECT ROW_NUMBER() OVER(PARTITION BY [FIELD], [FIELD]... ORDER BY
[FIELD] ASC, [FIELD] DESC...) "Row #" FROM [FAMILY]

CUME_DIST

SELECT CUME_DIST() OVER ([PARTITION BY [FIELD], [FIELD]...] ORDER
BY [FIELD] ASC, [FIELD] DESC...) "Expr" FROM [FAMILY]

PERCENT_RANK

SELECT PERCENT_RANK([FIELD]) OVER(PARTITION BY [FIELD], [FIELD]...
ORDER BY [FIELD] ASC, [FIELD] DESC... ROWS BETWEEN CURRENT ROW AND
1 FOLLOWING) "Expr" FROM [FAMILY]

PERCENTILE_DISC

SELECT PERCENTILE_DISC([FIELD]) OVER(PARTITION BY [FIELD],
[FIELD]... ORDER BY [FIELD] ASC, [FIELD] DESC... ROWS BETWEEN
CURRENT ROW AND 1 FOLLOWING) "Expr" FROM [FAMILY]

88 © 2024 General Electric Company

PERCENTILE_CONT

SELECT PERCENTILE_CONT([FIELD]) OVER(PARTITION BY [FIELD],
[FIELD]... ORDER BY [FIELD] ASC, [FIELD] DESC... ROWS BETWEEN
CURRENT ROW AND 1 FOLLOWING) "Expr" FROM [FAMILY]

NTILE

SELECT NTILE(num_const) OVER(PARTITION BY [FIELD], [FIELD]... ORDER
BY [FIELD] DESC) "Expr" FROM [FAMILY]

num_const is a positive integer representing the number of groups that will be created in the result

Using Max, Min, Avg, Count, and Sum

SELECT DISTINCT [MI_MRBIANAL].[MI_CRITANAL_RSK_CAT_C]
"Risk Category"
, Min([MI_MRBIANAL].[MI_CRITANAL_PROB_OF_FAIL_UP_C])OVER
(PARTITION BY [MI_MRBIANAL].[MI_CRITANAL_RSK_CAT_C])
"Min Prob of Fail"
, Max([MI_MRBIANAL].[MI_CRITANAL_PROB_OF_FAIL_UP_C])OVER
(PARTITION BY [MI_MRBIANAL].[MI_CRITANAL_RSK_CAT_C])
"Max Prob of Fail"
, Avg([MI_MRBIANAL].[MI_CRITANAL_INSPE_PRIOR_UP_N])OVER
(PARTITION BY [MI_MRBIANAL].[MI_CRITANAL_RSK_CAT_C])
"Avg Insp Priority"
, Count([MI_EQUIP000].ENTY_ID)OVER (PARTITION BY
[MI_MRBIANAL].[MI_CRITANAL_RSK_CAT_C]) "# Assets"
, Sum([MI_MRBIANAL].[MI_CRITANAL_LEAK_QUANTITY_N])OVER
(PARTITION BY [MI_MRBIANAL].[MI_CRITANAL_RSK_CAT_C])
"Total Leak Quantity"
FROM {MIR_HSRBICMP}
 JOIN [MI_CCRBICOM] ON {MIR_HSRBICMP}.SUCC_ENTY_KEY =
[MI_CCRBICOM].ENTY_KEY
 JOIN {MIR_HSRBICMP} Has_RBI_Components1 ON
[MI_CCRBICOM].ENTY_KEY =
Has_RBI_Components1.SUCC_ENTY_KEY
 JOIN {MIR_RBICRAN} ON [MI_CCRBICOM].ENTY_KEY =
{MIR_RBICRAN}.PRED_ENTY_KEY
 JOIN [MI_EQUIP000] ON Has_RBI_Components1.PRED_ENTY_KEY
= [MI_EQUIP000].ENTY_KEY
 JOIN [MI_MRBIANAL] ON {MIR_RBICRAN}.SUCC_ENTY_KEY =
[MI_MRBIANAL].ENTY_KEY
ORDER BY [MI_MRBIANAL].[MI_CRITANAL_RSK_CAT_C] Asc

Results:

© 2024 General Electric Company 89

R
i
s
k
C
a
t
e
g
o
r
y

M
i
n
P
r
o
b
o
f
F
a
i
l

M
a
x
P
r
o
b
o
f
F
a
i
l

A
v
g
I
n
s
p
P
r
i
o
r
i
t
y

#
A
s
s
e
t
s

T
o
t
a
l
L
e
a
k
Q
u
a
n
t
i
t
y

1 2 0 6

1

5

4

H

I

G

H

1 2 2

.

4

2

5

6

7

5

6

7

5

6

7

5

6

7

6

1

4

8

1

,

2

1

6

,

2

0

4

.

0

0

4

3

7

1

3

0

6

90 © 2024 General Electric Company

R
i
s
k
C
a
t
e
g
o
r
y

M
i
n
P
r
o
b
o
f
F
a
i
l

M
a
x
P
r
o
b
o
f
F
a
i
l

A
v
g
I
n
s
p
P
r
i
o
r
i
t
y

#
A
s
s
e
t
s

T
o
t
a
l
L
e
a
k
Q
u
a
n
t
i
t
y

L

O

W

3 5 2

2

.

4

3

9

7

5

9

0

3

6

1

4

4

5

8

1

6

6

5

9

0

,

2

5

1

.

1

2

5

3

4

4

9

4

5

1

© 2024 General Electric Company 91

R
i
s
k
C
a
t
e
g
o
r
y

M
i
n
P
r
o
b
o
f
F
a
i
l

M
a
x
P
r
o
b
o
f
F
a
i
l

A
v
g
I
n
s
p
P
r
i
o
r
i
t
y

#
A
s
s
e
t
s

T
o
t
a
l
L
e
a
k
Q
u
a
n
t
i
t
y

M

E

D

I

U

M

2 5 1

6

.

3

3

1

8

1

8

1

8

1

8

1

8

1

8

2

2

2

0

8

1

3

,

3

2

7

.

8

9

6

3

8

7

1

3

92 © 2024 General Electric Company

R
i
s
k
C
a
t
e
g
o
r
y

M
i
n
P
r
o
b
o
f
F
a
i
l

M
a
x
P
r
o
b
o
f
F
a
i
l

A
v
g
I
n
s
p
P
r
i
o
r
i
t
y

#
A
s
s
e
t
s

T
o
t
a
l
L
e
a
k
Q
u
a
n
t
i
t
y

M

E

D

I

U

M

H

I

G

H

1 4 8

.

4

8

9

2

4

7

3

1

1

8

2

7

9

5

6

1

8

6

1

,

3

0

5

,

5

5

4

.

6

6

0

2

7

3

2

1

9

5

Additional Meta-SQL Functions
Meta-SQL constructs are used in functions that pass SQL strings.

The following table provides a list of Meta-SQL functions that you can use in query expressions in APM.

© 2024 General Electric Company 93

Description Meta-SQL Function Construction

Return the local time of the database

server.

SysDate SysDate

Evaluate one or more When expressions

and return the appropriate Then

expression. The Else condition is optional.

The End statement is required. This

function returns the datatype

thenexpression.

Note: This function is not a selectable

option in the Design workspace, but you

can enter the function directly in the SQL
workspace.

Case Case evalexpression When
whenexpression Then thenexpression
[When whenexpression Then
thenexpression] [Else thenexpression]
End

Evalexpression: Any column or literal

value.

Whenexpression: Must be same

datatype of evalexpression.

Thenexpression: All must be the same

datatype. Does not have to be the same

datatype as evalexpression or

whenexpression.

Modulus Function

SELECT Modulus(ROUND([AQA REG All Fld Types].
[ARAQA_REG_ALL_FLD_TY_NUMER_NBR]), 2) "Modulus2"
, Modulus(ROUND([AQA REG All Fld Types].
[ARAQA_REG_ALL_FLD_TY_NUMER_NBR]), 3) "Modulus3"
FROM [AQA REG All Fld Types]

About Adding Hyperlinks to a Query
For each column in a query, you can configure one or more URLs to display as hyperlinks in the query
results. When a user runs the query, the APM system will build the URLs as needed, passing data from the
query results into the URL parameters if necessary, and will display in the query results hyperlinks that
the user can select to access the associated feature or perform the associated function.

For example, you might define a URL on a field to an external website. When a user runs the query, the
APM system will build a hyperlink from that URL and display the link to the user in the query results. The
user will be able to select the hyperlink to open the website in a new browser tab.

If you configure only one URL for a field, when you run the query, that URL will be used to build a single
hyperlink in that cell of the query results. If you have not modified the Field cell, whatever values are
found in the database for that column will serve as the text for each hyperlink. For example, if an Asset
ID column contains a URL to open a record in the Record Manager, when you run the query, the actual
Asset IDs retrieved by the APM system will appear as hyperlinks in the results.

94 © 2024 General Electric Company

Reference Information: Query Expressions, Clauses, Prompts,
and Operators

About the Expression Builder Window
The Expression Builder window contains various fields and controls to assist you in constructing an
expression for your query criteria.

The Expression Builder window is divided into two sections, Simple and Advanced. You can toggle
between the two sections by using the Simple and Advanced tabs at the top of the window.

If you access the Expression Builder window from the Field cell, the Advanced section is selected by
default, and the Simple button is disabled. If you access the Expression Builder window from the
Criteria cell or the Or cell, the Simple section is selected by default, and the Advanced button is
enabled.

Simple Section

The Simple section of the Expression Builder window lets you define a simple expression using
conditions on the field from which you accessed the Expression Builder window.

© 2024 General Electric Company 95

The Simple section of the Expression Builder window contains the following features:

• And/Or: A list that appears for all rows except the first. You can use the And and Or options to
establish relationships between expressions.

• Field : A read-only text box that displays the value in the Field cell for the field you selected.
• Operator: A list that displays the valid operators to use in the expression, depending on the type of

field on which the expression is built.

Field type Options

Text

-or-

Character

equals

not equals

contains

does not contain

starts with

ends with

is null

is not null

Numeric equals

is at most

is at least

not equals

is less than

is greater than

is null

is not null

Date on

at

at or before

at or after

not at

before

after

is null

is not null

96 © 2024 General Electric Company

Field type Options

Logical is true

is false

is null

is not null

• Value: A text box where you can enter the value you want to include in the expression.
• Add Condition : A button that displays another row of options which you can use to create additional

expressions on the field.

Advanced Section

The Advanced section of the Expression Builder window is divided into five main sections, as shown in
the following image. These labels correspond to the numbered list following the image.

1. A text box that displays the expression itself. To build the expression manually, you can enter text
directly into the text box. Otherwise, the expression will be built dynamically when you select tabs and
values in the Expression Builder window.

2. Buttons that insert symbols to establish a relationship between parts of an expression, or that insert
symbols to group those parts. Selecting a button will insert the corresponding symbol into the
expression.

Note:

• If you are using date to build an expression, note that date can be entered in any of the acceptable
formats. However, always be sure to select the date in the expression, and then select the Date
button. Selecting the Date button converts the date in the expression to yyy-mm-dd format.

• The button opens the Prompt Settings section of the Expression Builder window, which
has options that let you add a prompt to a query.

3. A list of tabs that you can use to toggle between categories for the valid components of the
expression, which can include the following:

• System Codes: This option appears only if a System Code Table Valid Values list has been defined
for the selected field in the Rules Editor (i.e., if no Valid Values list has been defined, if the Valid

© 2024 General Electric Company 97

Values list uses a static list of values, or if the Valid Values list is By Rule, this option does not
appear). If this option appears and you select it, list 5 displays the following:

◦ All the codes and descriptions for the appropriate System Code Table if the Valid Values rule is
defined as System Code Table Only.

◦ Only the codes and descriptions that meet the literal value criteria if the Valid Values rule is
defined as System Code Table with Literal Reference. Additionally, if a literal reference has been
defined, the reference value will appear in parentheses beside the table ID in list 4.

◦ All the codes and descriptions for the appropriate System Code Table if the Valid Values rule is
defined as System Code with Field Reference (i.e., in the absence of a field value to use as the
reference, there is no way to limit the list).

Note: When you select a System Code to include in your expression, the System Code
ID (rather than the description) will be used. Even though System Code descriptions appear in
the datasheet, the IDs are actually stored in the database. By using the ID instead of the
description in the expression, your criteria will apply to all System Codes, including those with
different, translated descriptions.

◦ Tables: The database tables from which you can select fields to include in the expression. When
you select the Tables option in list 3, list 4 displays the query source families, and list 5 displays
all the fields in those families.

◦ Functions: The three types of functions that you can include in the expression. When you
select a function category in list 3, list 4 displays the types of functions in that category, and list
5 displays all the available functions for that category.

◦ Constants: The constants that you can include in the expression. A constant is a static value
provided for comparative reasons. When you select the Constants option in list 3, and list 5
displays the available constants.

◦ Operators: The symbols that you use to join parts of the expression. When you select the
Operators option in list 3, list 4 displays different classifications of operators, and list 5 displays
all the valid operators.

• A list that displays a subset of options based on your selection in list 3. Selecting an item in this list
limits the options in list 5.

• A list that displays a subset of values based on your selections in lists 3 and 4. Selecting any item in
this list will insert the value into the expression. The value will be inserted wherever the cursor is
currently positioned.

What is an Expression?
An expression is a string of characters that, together, define a certain set of conditions to be applied to a
query. In other words, an expression is the code that APM reads in order to determine what you want to
retrieve from the database and how you want to display the query results.

Details

You can build simple expressions that limit the query results based on criteria that is applied to a single
field, or you can build complex expressions that can be used to perform calculations, reformat stored
values, concatenate stored values, and so on. As long as you understand the stored data and the way in
which you want to present it to users, you can construct expressions to perform simple to very complex
operations on the query data.

You can think of an expression as the combination of any of the following items that together define the
conditions by which you want to limit the query results:

• Functions
• Clauses
• Operators

98 © 2024 General Electric Company

• Any other data required to yield results

In the grid in the Conditions section, you can construct an expression in the Criteria cell, the Or cell, and
the Field cell. Expressions can be constructed manually, or using the Expression Builder window, which
is accessible from the FieldField, Criteria, and Or cells of the grid in the Conditions section.

When building expressions, you must use the base (i.e., stored) values for Units of Measure, formatted
values, and translated strings. For example, consider a query that contains an expression in a field that
stores numeric values in inches. To filter your query results on that field, you must specify values as they
are stored in that field (i.e., in inches) rather than as they are displayed when the query is run in formatted
mode (e.g., in centimeters).

For instance, to return only the records in which 25 inches has been recorded in this field, your query
expression must contain the value 25, not 63.5, which is the stored value converted to centimeters, and
which might be displayed to some users. To determine how you should construct values in your
expressions, you can run the query in unformatted mode.

Example: Expressions using Functions

The following text is an example of an expression:

DECODE([Air Cooled Heat Exchanger].[Asset Status],
'Active', 'A', 'Inactive', 'I', 'No Status')

This expression combines the DECODE function, the Asset Status field, and additional
data that indicates that a stored value of Active should return the value A, a stored
value of Inactive should return the value I, and any other stored value (including null
values) should return the value No Status.

Example: Expressions Within Clauses

Expressions can exist within SELECT statements, WHERE clauses, or HAVING clauses,
or they can exist outside of these SQL components. For example, consider the
following WHERE clause:

 WHERE [Asset].[ASSET MANUF CHR]
= 'GOULDS'

The expression [Asset].[ASSET MANUF CHR] = 'GOULDS' is contained within the
WHERE clause.

About Formatted Expressions on Character Fields
This topic contains syntax suggestions and requirements for expressions on character fields, as well as
details about how APM reformats expressions on character fields.

When you create an expression on a character field, the actual field value(s) must be within single
quotation marks.

© 2024 General Electric Company 99

Example: Expression Syntax on Character Fields

If you want to return records where the Asset Status field contains the value Active,
the syntax would be:

WHERE [Asset].[ASSET STAT CHR] = 'Active'

...where Active is within single quotation marks because it is the stored value that
you want to use for limiting the query results.

If you want to search on multiple values, such as Centrifugal Pump and Rotating
Pump, you would again place the actual values within single quotation marks. The
syntax would be:

WHERE ([Asset].[ASSET TYPE CHR] = 'Centrifugal Pump' OR
[Asset].[ASSET TYPE CHR] = 'Rotating Pump')

...where Centrifugal Pump and Rotating Pump are within single quotation marks
because they are the actual values to be used in the query criteria.

Note: When you are using an Oracle schema, the value is case sensitive by default.
This means, for example, that if you enter WHERE_[Asset].
[ASSET_STAT_CHR]_=_'ACTIVE' for a field where values are stored in the database
as Active, the query will not return any results.

About Automatic Reformatting on Character Fields

If you enter something in the Criteria cell or the Or cell of the grid in the Conditions section of the
Design workspace for a character field, and you do not enter single quotation marks yourself, APM will
insert them automatically for you. For example, if you want to search for records where the Asset Status is
Active, you can enter either 'Active' or Active, APM will insert the single quotation marks
automatically, reformatting the entered text as 'Active'.

If the expression contains multiple words, or if you want to use operators other than is equal to, and you
do not enter the single quotation marks yourself, APM will insert the single quotation marks around the
entire phrase, including the operators. Depending on the values stored in the database, this may or may
not return the appropriate results.

For example, suppose you create a query on the Shell and Tube Heat Exchanger family, and you add the
Asset Manufacturer field to the grid in the Conditions section. If there are five different manufacturers of
Shell and Tube Heat Exchangers, but you want to return Shell and Tube Heat Exchangers manufactured by
only two of those manufacturers, Alco and Whitlock, the query expression on the Manufacturer field must
be formatted as follows:

='Alco' or 'Whitlock'

If you enter Alco or Whitlock in the Criteria cell for the Asset Manufacturer field, APM will reformat
the expression as 'Alco or Whitlock'. The query will not return any results because the syntax suggests
that you want to find Shell and Tube Heat Exchangers whose manufacturer is Alco or Whitlock, which
does not exist in the database.

Likewise, if you enter =Alco or Whitlock, APM will reformat the expression as ='Alco' or 'Whitlock',
which, again, would not return any results because there is no manufacturer named =Alco or Whitlock in
the database.

100 © 2024 General Electric Company

To return the appropriate results, you should enter 'Alco' or 'Whitlock' in the Criteria cell, or
enter Alco in the Criteria cell and Whitlock in the Or cell.

Note: If you enter an entirely numeric value (e.g., 123) or an expression that can be interpreted as a
mathematical equation (e.g., 123-12), APM will not insert single quotation marks automatically. This will
cause the expression to be invalid, and when you run the query, the system will display an error. To resolve
this problem, add the single quotation marks manually.

About Formatted Expressions on Text Fields
This topic contains syntax suggestions and requirements for expressions on text fields, as well as details
about how APM reformats expressions on text fields.

When you create an expression on a text field, the value(s) within the expression must be placed within
single quotation marks.

Example: Expression Syntax on Text Fields

If you want to create an expression for the Asset Description field to return the
records where the field contains the value This is a test, the expression would be:

WHERE [Asset].[ASSET DESC CHR] = 'This is a test'

...where This is a test is within single quotation marks because it is the stored
value that you want to use to limit the query results.

Note that text fields are stored in the database differently than character fields and
are, therefore, handled differently. One difference is that you cannot use the =
operator with text fields. Instead, you must use the like operator. When creating text
field expressions, be sure to specify the like operator with Oracle. The = operator
works for other databases.

Note: When you are using an Oracle schema, the value is case sensitive by default.
This means, for example, that if you enter WHERE [Asset].[ASSET DESC CHR] LIKE
'This is a test' in a field where values are stored in the database as This is a test, the
query will not return any results.

About Automatic Reformatting on Text Fields

If you enter something for a text field in the Criteria cell or the Or cell of the grid in the Conditions
section, and you do not enter single quotation marks yourself, APM will insert them automatically for you.
For example, if you want to search for records where the Asset Additional Information field contains the
text This asset exists for testing purposes, you can enter the phrase with or without the single quotation
marks. If you omit the single quotation marks, APM will insert them for you.

Note: While APM will insert the single quotation marks automatically, it will not insert the like operator.
When creating text field expressions on an Oracle database, be sure to specify the like operator.
Otherwise, APM will assume the is equal to (=) operator and the query will return an error.

About Formatted Expressions on Date Fields
This topic contains syntax suggestions and requirements for expressions on date fields, as well as details
about how APM reformats expressions on date fields.

© 2024 General Electric Company 101

When you create an expression on a date field, you should use the following syntax:

 (# :D 'yyyy-mm-dd')

Note: You will need to use the syntax yyyy-mm-dd on all workstations, regardless of your APM Culture
setting or your Windows Regional and Language options. Even if we input the date in the mm-dd-yyyy
format, the expression should still use the yyyy-mm-dd format. However, always be sure to select the
date in the expression, and then select the Date button. Selecting the Date button converts the date to
yyyy-mm-dd format.

Example: Expression Syntax on Date Fields

If you want to create an expression on the Asset Installation Date field to return the
records where the field contains the value 05-04-2005 (where 05 represents May, and
04 represents the fourth day of the month), the expression would be:

 WHERE [Asset].[ASSET INSL DT] =
(# :D '2005-05-04')

About Formatted Expressions on Logical Fields
This topic contains syntax suggestions and requirements for expressions on logical fields, as well as
details about how APM reformats expressions on logical fields.

A logical field represents a value of True or False. When you create an expression for a logical field, the
exact syntax to use is either 'Y' (True) or 'N' (False).

Example: Expression Syntax on Logical Fields

If you want to create an expression on the Spared field to return records where the
check box is selected (the value is True), the expression would be:

WHERE [Asset].[ASSET SPRD IND] = 'Y'

About Automatic Reformatting on Logical Fields

Some common syntax options that APM will reformat to match the syntax required for logical fields are:

• True (using any case combination, such as true or TRUE)
• False (using any case combination, such as false or FALSE)
• Yes (using any case combination, such as yes or YES)
• No (using any case combination, such as no or NO)

About Formatted Expressions on Numeric Fields
This topic contains syntax suggestions and requirements for expressions on numeric fields.

102 © 2024 General Electric Company

Details

When you create an expression on a numeric field, you must use the exact numeric value that are stored
in the database. Some numeric values may be displayed differently than they are stored. For example,
numbers may be formatted to display a certain number of decimal places, to include a currency symbol, or
to be converted to a different unit of measure (UOM).

To determine how values are stored in the database, run the query in unformatted mode. Then, format
numeric values in your query expressions exactly as they are displayed in the unformatted query results.

Unlike character and text field expression values, which require single quotation marks, the actual
numeric values that you want to return must not have single quotation marks in your expression.
Specifying the value as it is stored is sufficient to return the expected results. For example, an acceptable
way to express that returned records should contain a value of 5 in the Number of Storage Tanks field in
the Criticality Analysis family is:

WHERE [Criticality Analysis].[No of Storage Tanks] = 5

Expressions in the Field, Criteria, and Or Cells
You can build expressions in the Field, Criteria, and Or cells in the grid within the Conditions section in
the Design workspace. This topic includes formatting tips for creating expressions in each of those cells.

Expressions in the Field Cell

When you access the Expression Builder window from the Field cell, the Advanced tab is selected by
default, and the Simple tab is disabled. You can construct an expression on the Field cell to reformat the
results that are returned by the query.

For example, suppose that you want to display an installation date in two formats: the stored format and
a modified format. In this case, you would add the Installation Date field to the query twice. The first
would return the stored value, and the second could contain a Date function in the Field cell to indicate
how you want the date to appear in the results.

If you add an expression to the Field cell, you must enter the exact syntax that is required in order to run
the query. APM will not reformat any text that you enter in the Expression Builder window for a Field
cell.

Expressions in the Criteria Cell

When you access the Expression Builder window from the Criteria cell, the Simple tab is selected by
default, but the Advanced tab is enabled. You can construct an expression in the Criteria cell to limit the
results that are returned by the query.

Note: Anything you add to the Criteria cell will have the text WHERE or HAVING appended in front of the
expression in the SQL code. WHERE and HAVING do not appear in the grid in the Conditions section.

For example, suppose that you want to return only those pieces of equipment manufactured by GOULDS.
In this case, you would add the Manufacturer field to the query. You can then construct an expression in
the Criteria cell using either the Simple or Advanced section.

If you access the SQL workspace, you will see the following code:

SELECT [MI_EQUIP000].[MI_EQUIP000_MFR_C] "Manufacturer"
FROM [MI EQUIP000]
WHERE [MI EQUIP000].[MI EQUIP000 MFR C] = 'GOULDS'

© 2024 General Electric Company 103

The expression [MI EQUIP000].[MI EQUIP000 MFR C] = 'GOULDS' is inserted automatically into the
WHERE clause at the end of the SQL code.

Note: When you construct an expression in the Criteria cell, you can enter the exact syntax that is
required to run the query, or you can enter something that is close to the required syntax, and then let the
APM system reformat it automatically.

Constructing an expression in the Simple section

In the Simple section of the Expression Builder window, you could use the options to construct an
expression that looks something like the following image:

Constructing an expression in the Advanced section

In the Advanced section of the Expression Builder window, you could construct an expression that
looks something like the following code:

'GOULDS'

While this text alone does not constitute an entire expression, APM interprets the data in the remaining
cells to construct a valid expression. The equal (=) operator is understood, and the Field and Table cells
indicate the locations from which you want to retrieve data.

Expressions in the Or Cell

When you access the Expression Builder window from the Or cell, the Simple tab is selected by default,
but the Advanced tab is enabled. You can construct an expression in the Or cell to limit the results that
are returned by the query.

Note: Anything you add to the Or cell will have the text WHERE or HAVING appended in front of the
expression in the SQL code. WHERE and HAVING do not appear in the grid in the Conditions section.

For example, suppose you want to return only those pieces of equipment manufactured by JENSEN or
WESTERN SUPPLY. In this case, you would add the Manufacturer field to the query. You can then construct
an expression in the Or cell using either the Simple or Advanced section.

If you access the SQL workspace, you will see the following code:

SELECT [MI_EQUIP000].[MI_EQUIP000_MFR_C] "Manufacturer"
 FROM [MI EQUIP000]
 WHERE ([MI EQUIP000].[MI EQUIP000 MFR C] = 'JENSEN'
 OR [MI EQUIP000].[MI EQUIP000 MFR C] = 'WESTERN SUPPLY')

The expression [MI EQUIP000].[MI EQUIP000 MFR C] = 'JENSEN' OR [MI EQUIP000].[MI EQUIP000 MFR C] =
'WESTERN SUPPLY' is inserted automatically into the WHERE clause at the end of the SQL code.

Note: When you construct an expression in the Criteria cell, you can enter the exact syntax that is
required to run the query, or you can enter something that is close to the required syntax, and then let the
APM system reformat it automatically.

Constructing an expression in the Simple section

In the Simple section of the Expression Builder window, you could use the options to construct an
expression that looks something like that shown in the following image:

104 © 2024 General Electric Company

Constructing an expression in the Advanced section

In the Advanced section of the Expression Builder window for the Criteria cell, you could construct an
expression that resembles the following code:

'JENSEN'

Then, you could construct an expression in the Advanced section of the Expression Builder window for
the Or cell that resembles the following code:

'WESTERN SUPPLY'

While this text alone does not constitute an entire expression, APM interprets the data in the remaining
cells to construct a valid expression. The equal (=) operator is understood, and the Field and Table cells
indicate the locations from which you want to retrieve data.

About the WHERE Clause
A WHERE clause defines conditions that you want to apply to a query.

Details

WHERE clauses are used to define conditions that you want to apply to the query to limit the results.

Example: WHERE Clause

You might want to calculate the total failure cost for all pieces of equipment, but you
want to include in the calculation only failures with a total failure cost greater than
$5,000.00. You could create a query like this:

SELECT [Asset].[ASSET_ID_CHR] "Asset ID", Sum([Failure].
[EFAIL_TOTCST_FRM]) "Total Failure Cost"
FROM [Asset] JOIN SUCC [Failure] ON {Asset Has Failure}
WHERE [Failure].[EFAIL TOTCST FRM] > 5000
GROUP BY [Asset].[ASSET ID CHR]

In this query, you can see that the WHERE clause is:

WHERE [Failure].[EFAIL TOTCST FRM] > 5000

This WHERE clause returns the total failure cost for all pieces of equipment, but
calculates only the failures with a total failure cost greater than $5,000.00.

A piece of equipment might have failures whose failure costs were $5,050.00,
$1,000.00, and $500.00. Because the WHERE clause indicates that you want to return
the total failure cost for all pieces of equipment but only calculate the failures with a
total failure cost greater than $5,000.00, the total failure cost returned for this piece
of equipment would be $5,050.00 (the failures with a cost of $1,000.00 and $500.00
are not included in the calculation because they are less than $5,000.00 each).

© 2024 General Electric Company 105

About the HAVING Clause
A HAVING clause defines conditions that you want to apply to an aggregate query.

Details

In an aggregate query, HAVING clauses are used to define conditions that you want to apply to each
aggregate value after the calculation dictated by the aggregate function has been performed.

Example: HAVING Clause

You might want to see all pieces of equipment whose failures resulted in a total
failure cost greater than $5,000.00. To do so, you could create a query like this:

SELECT [Asset].[ASSET_ID_CHR] "Asset ID", Sum([Failure].
[EFAIL_TOTCST_FRM]) "Total Failure Cost",
Count([Failure].[MI_EVENT_ID]) "Failure Count"
FROM [Asset] JOIN SUCC [Failure] ON {Asset Has Failure}
GROUP BY [Asset].[ASSET ID CHR]
HAVING Sum([Failure].[EFAIL TOTCST FRM]) > 5000

In this query, you can see that the HAVING clause is:

HAVING Sum([Failure].[EFAIL TOTCST FRM]) > 5000

This HAVING clause returns pieces of equipment whose failures resulted in a total
failure cost greater than $5,000.00.

A piece of equipment might have failures whose failure costs were $3000.00,
$1,000.00, and $500.00. If you add these values together, you can see that the total
failure cost for failures associated with the piece of equipment is $4,500.00. Because
the HAVING clause indicates that you want to return only pieces of equipment with a
total failure cost greater than $5,000.00, this piece of equipment would not be
returned.

About Prompts on Queries
You can construct a query that will, when run, prompt the user to enter or select values by which the
results will be filtered.

Details

You can create a prompt on a character, numeric, date, or logical field in any type of query (Select,
Crosstab, Append, Update, or Delete). Like all query options, you can construct prompts by modifying the
SQL code directly, but APM provides the Prompt Settings section of the Expression Builder window,
which guides you step-by-step through the process of creating prompts. This documentation focuses
primarily on that feature.

Note: There are special considerations to take into account when you create a prompt on a date field.

When a user runs a query by opening it from the catalog, prompts appear in a window that disappears
when the query results are returned.

106 © 2024 General Electric Company

Example: Limiting Results Based on the Manufacturer

If you create a prompt on the Asset Manufacturer field to limit the query results based
on the manufacturer, when the query is run, a window appears, prompting the user to
supply the desired value for the manufacturer.

About the Prompt Settings Section
Using the Prompt Settings section of the Expression Builder window, you can define the basic settings
for the prompt that you want to create.

Prompt Settings

The following table includes details on the available settings on the prompt builder. After you have defined
the prompt settings you want, you can select Next to further define the prompt. The content that
appears on subsequent screens in the Prompt Builder depends on your selection in the Valid Values
section. These screens are documented in more detail in the topics that explain how to create specific
types of prompts.

© 2024 General Electric Company 107

Setting Description Notes

Prompt Caption A label that will indicate to the user what

type of value to enter or select for the

prompt. The prompt caption will appear

on the Enter parameter values window

to identify the prompt.

Prompt captions are optional.

• If you do not provide a prompt

caption, the prompt ID will be

displayed on the Enter parameter
values window, where spaces are

replaced with underscores. For

example, a prompt ID of Task Type

would be displayed as Task_Type.

• If you do not specify a prompt caption

or a prompt ID, the text Enter

Parameter Value will be displayed on

the Enter parameter values
window.

Prompt Data Type A property that identifies type of data

that exists in the field at the time the

query is run. Expressions may exist that

convert the stored value to a runtime

value (e.g., numeric values may be

converted to character values or strings).

You will want to choose a data type for

the prompt that is appropriate for the

runtime value. When you access the

Prompt Builder, this setting will be set by

default to the data type that corresponds

to the stored value of the field from which

you accessed the Expression Builder. You

may need to change the default setting.

The following options are available:

• Logical: For logical values (i.e., True

and False).

• Character: For character values.

• Number: For numeric values.

• Date/Time: For date values.

• Key: For key types (for example,

ENTY_KEY, FMLY_KEY)

• When you create a prompt that

allows multiple selections, you can

select multiple default values for that

prompt. Multiple default selections

will be allowed only when the

Character option is selected for this

setting.

• For prompts on numeric fields, the

corresponding UOM will be displayed

in the Enter parameter values
window for that field if the Number
option is selected for this setting. If

you select any other option, the UOM

will not be displayed.

• The Logical option is enabled only if

you accessed the Prompt Builder

from a Logical field.

• The Ignore Time check box is

enabled only if you select the Date/

Time data type. If you select the

Ignore Time check box, the prompt

will require only that you select a

date. If you do not select this check

box, the prompt will require that you

select both a date and time.

108 © 2024 General Electric Company

Setting Description Notes

Prompt ID A unique, alphanumeric ID for the prompt.

This value is used internally by APM to

identify the prompt.

The Prompt ID is required.

Valid Values An option that defines the type of user-

input value that will be required for the

prompt. You can require users to specify a

value manually, or you can present them

with a list of valid options. Specifically,

you have the following options for

determining user-input values:

• No Valid Values: The prompt will not

offer a list of values. Rather, the

prompt will display a text box into

which users can type the value by

which they want to limit the results.

• Static List of Values: The prompt

will display a static list of values that

you define specifically for the prompt.

• Values from a System Code Table:
The prompt will display a list of

values that you define specifically for

the prompt.

• Values from a Query: The prompt

will display a list of values taken from

the query results of a query that you

select.

• Distinct List of Values From [X]:
The prompt will display a list of

values pulled from field X of all

records in a given family.

When the Logical option is selected for

the Prompt Data Type selection, the

Valid Values options will be disabled, and

a list of valid values will be created

automatically, providing the options True,

False, and All (i.e., both True and False)

when the query is run.

About Prompts on Date Fields
All date fields contain both a date and time value. When you apply specific criteria to a field, you can use
the DAYOF operator and omit the time to return all the records that contain the specified date and any
time.

Details

For example, specifying the criteria =DayOf(#:D '2000-03-10') would return records from any time in the
same day, for example, 12:00:00 A.M., 2:00:00 P.M., 5:00:17 P.M., or any other time. You can use the DAYOF
operator with prompts as well: DayOf(? :d :id=mydate).

Otherwise, you will need to know how to enter a date that will retrieve the desired results:

• If you enter a date with no time, the query will return records where the time is 12:00 A.M. Records
that contain any other time will not be included in the results.

• If you enter a date and a specific time, the query will return records that contain that specific date and
time.

© 2024 General Electric Company 109

Note: You must specify the seconds value as 00. Entering any other value will cause the query to not
return any results.

• If you use the Calendar to select a date, you will need to modify the time manually in order to include
seconds, which are required to return results. Either enter a different time, or delete the existing time
(to use a time of 12:00:00 A.M.).

All dates and times in APM are stored in UTC format, and, the time values will be displayed using the
appropriate conversion from UTC to the time zone that is associated with the Security User who is logged
in when the query is run. This allows any user who runs the query to provide a local date and time in the
prompt.

About Prompts on Numeric Fields
Units of measure (UOMs) can be associated with numeric fields. UOM Conversion Sets can be defined on
fields, and will convert stored numeric values to different values and UOMs.

Details

If a query has a prompt on a numeric field, when the query is accessed via the Catalog or a URL, the
associated UOM will appear on the Enter parameter values window. For example, you would define a
prompt on the Measurement Value field of the Thickness Measurement family to display returned values
in inches.

Note: This behavior applies only to prompts on fields where the stored data type is numeric, has a
UOM defined, and is not converted at runtime. If a numeric field is converted to a character field at
runtime, the UOM will not appear. Similarly, if a character field is converted to a numeric field at runtime,
no UOM will appear.

If you run a query in formatted mode, the Enter parameter values window will display the appropriate
UOM, based on the UOM Conversion Set that is associated with your Security User account. In order for
the query to return results, you will need to enter numeric values associated with the UOM that is
displayed.

If you run a query in unformatted mode, the Enter parameter values window will display the stored
values, and the base UOM will always be displayed.

About Configuring a Prompt to Accept a Percent Wildcard
Query prompts can help users limit the results that will be returned by the query. In some cases, however,
users might not know what to select or type in a query prompt. This might be especially true if the prompt
does not present a list of values and the user must enter the value as it is stored in the database in order
to return any results.

To address this concern, you can configure a query prompt to accept the percent (%) wildcard. When a
user enters only a percent symbol in the prompt text box, the query will return records where the field on
which the prompt was built contains any value. When a user enters a combination of text and the percent
symbol, the query will return records where the field on which the prompt was built contains a value that
contains the specified text, preceded or followed by any combination of characters (depending on where
the percent symbol is placed in the prompt text box).

To configure a prompt to accept a percent wildcard, you must use the Like operator instead of the equal
(=) operator in the expression that defines the prompt.

For example, suppose you build a prompt on the Asset Manufacturer field with no list of valid values. The
expression for the prompt would look like this:

 [Asset].[ASSET MANUF CHR] =

110 © 2024 General Electric Company

(? :s :caption='Manufacturer' :id=Manufacturer)

If you want users to be able to enter a percent symbol in the prompt to return records where the Asset
Manufacturer field contains any value, you can replace the equal operator (=) with the Like operator. The
expression for the prompt would look like this:

 [Asset].[ASSET MANUF CHR] Like
(? :s :caption='Manufacturer' :id=Manufacturer)

When you run the query, you could enter the percent symbol (%) in the Manufacturer box on the prompt
window. In this case, the results would display records where the Asset Manufacturer field contains any
value.

Additionally, you could enter SEI%, and the query would display records where the value in the Asset
Manufacturer field begins with the letters SEI, followed by any combination of characters, such as
SEIMENS-AL and SEIGER.

About Configuring a Prompt to Return Null Values
In some cases, records might contain fields that do not contain values. If you want to return a query with a
prompt on these fields to see all records where the field is empty, you must construct the query in a
certain way.

This query construction is best understood through an example. The following example assumes that you
want to return records where the Asset Description field of Air Cooled Heat Exchanger records is empty. It
also assumes that you want to see the Asset ID, Asset Description, and Asset Installation Date of the
returned records.

To configure a prompt to return records where the Asset Description field is empty, you would need to add
the following fields to the query:

• Asset ID
• Asset Description
• Asset Installation Date

You would need to add two expressions to the Asset Description field. In the Criteria cell, you would need
to add the prompt (? :s :caption='Description' :id=Description), and in the Or cell, you would need to
add the expression IS NULL.

The design grid would look like the following image:

When the query is run, the Description box appears in the prompt window. If a user selects Done
without entering a value in the prompt, the results will display records where the Asset Description field is
empty, like the ones in the following image:

© 2024 General Electric Company 111

If you enter a value in the Description
box, the query will return the matching records and the records where the Asset Description box is
blank.

About Operators to Use with Character Fields
This topic describes the operators that can be used to manipulate values in character fields.

Details

When you enter anything in the Criteria cell or the Or cell, the is equal to (=) operator is assumed at the
beginning of the text unless a different operator is specified.

It is not necessary to enter the = operator at the beginning of the expression in a given cell. If you do not
enter the operator, will insert it automatically, but it will not be displayed.

Available Operators for Character Fields

The following table provides examples of operators that you can use to manipulate values returned in
character fields.

Purpose Operator Example Outcome of Example

Return records that have an

exact value stored in a given

field.

= ='Rotating Pump' Returns records where the

field contains the exact value

Rotating Pump. (See note)

Return records that have one

value or another stored in a

single field.

Or ='Rotating Pump' or

'Centrifugal Pump'

Returns records where the

value stored in the field is

Rotating Pump, and records

where the value stored in the

field is Centrifugal Pump.

Returns records that do not

have a specified value in a

given field.

Not

!=

<>

Not 'Centrifugal Pump'

!= 'Centrifugal Pump'

<> 'Centrifugal Pump'

Returns records where the

field does not contain the

value Centrifugal Pump.

Returns records where a given

field contains the specified

value.

Like Like '%Pump' Returns records where the

specified field contains the

term Pump, preceded by any

number of characters, such as

Centrifugal (Centrifugal Pump)

or Rotating (Rotating Pump).

Returns records where a given

field contains the specified

value.

Like Like 'Pump_' Returns records where the

specified field contains the

term Pump, followed by any

one character, such as 1

(Pump1).

112 © 2024 General Electric Company

Purpose Operator Example Outcome of Example

Returns records where a given

field does not contain the

specified value.

Not Like Not Like 'Centrifugal%' Returns records where the

field value does not contain

Centrifugal followed by any

number of characters. For

example, this would eliminate

Centrifugal Pump, Centrifugal

Pump A, and Centrifugal

Pump1.

Returns records where a given

field does not contain the

specified value.

Not Like Not Like 'Pump_' Returns records where the

field value does not contain

Pump followed by any one

character. For example, this

would eliminate PumpA and

Pump1.

Return records that contain

any values in a given field.

Is Not Null Is Not Null Returns records where the

field contains any value.

Returns records that do not

contain any values in a given

field.

Is Null Is Null Returns records where the

field is empty.

About Operators to Use with Text Fields
This topic describes the operators that can be used to manipulate values in text in an Oracle database.
For SQL server and PostgreSQL, you can treat them the same as character fields.

Available Operators for Text Fields

The following table provides examples of operators that you can use to manipulate values returned in
character fields.

Purpose Operator Example Expression Outcome of Example

Return records where a given

field contains the specified

value.

Like Like '%Pump' Returns records where the

field contains the term Pump,

preceded by any number of

characters, such as Centrifugal

(Centrifugal Pump) or Rotating

(Rotating Pump).

Return records where a given

field contains the specified

value.

Like Like 'Pump_' Returns records where the

field contains the term Pump,

followed by any one character,

such as 1 (Pump1).

© 2024 General Electric Company 113

Purpose Operator Example Expression Outcome of Example

Return records where a given

field does not contain the

specified value.

Not Like Not Like 'Centrifugal%' Returns records where the

field value does not contain

Centrifugal followed by any

number of characters. For

example, this would eliminate

Centrifugal Pump, Centrifugal

Pump A, and Centrifugal

Pump1.

Return records where a given

field does not contain the

specified value.

Not Like Not Like 'Pump_' Returns records where the

field value does not contain

Pump followed by any one

character. For example, this

would eliminate PumpA and

Pump1.

Return records that contain

any values in a given field.

Is Not Null Is Not Null Returns records where the

field contains any value.

Return records that do not

contain any values in a given

field.

Is Null Is Null Returns records where the

field is empty.

About Operators to Use with Date Fields
When you enter anything in the Criteria cell or the Or cell, the is equal to (=) operator is assumed at the
beginning of the text unless a different operator is specified.

It is not necessary to enter the = operator at the beginning of the expression in a given cell. If you do not
enter the operator, will insert it automatically, but it will not be displayed.

Available Operators for Date Fields

The following table provides examples of operators that you can use to manipulate values returned in
date fields.

Purpose Operator Example Outcome of Example

Return records that have an

exact date stored in a field.

DAYOF= =(#:D '2000-03-10') Returns records where the

date is March 10, 2000 and the

time is any time.

Return records that have an

exact date and time stored in a

field.

= =(# :dt '2006-01-01 17:00:00') Returns records where the

date is January 1, 2006 and

the time is 5:00 P.M.

Return records that have a

date greater than the specified

date in a given field.

> >(#:D '2000-03-10') Returns records where the

date is after March 10, 2000.

Return records that have a

date less than the specified

date in a given field.

< <(#:D '2000-03-10') Returns records where the

date is before March 10, 2000.

114 © 2024 General Electric Company

Purpose Operator Example Outcome of Example

Return records that have a

date greater than or equal to

the specified date in a given

field.

>= >=(#:D '2000-01-10') Returns records where the

date is on or after March 10,

2000.

Return records that have a

date less than or equal to the

specified date in a given field.

<= <=(#:D '2000-03-10') Returns records where the

date is on or before March 10,

2000.

Return records that do not

have the specified date in a

given field.

Not

!=

Not (#:D '2000-03-10')

!= (#:D '2000-03-10')

Returns records where the

date is not March 10, 2000.

Return records that contain

any values in a given field.

Is Not Null Is Not Null Returns records where the

field contains any date.

Return records that do not

contain any values in a given

field.

Is Null Is Null Returns records where the

field is empty.

Return records that have a

date that falls within a certain

range with respect to the

current date.

Now()+

Now()-365

Now()-365 Returns records where the

date is one year before the

current date. The numeric

value can be any number of

days before or after the

current date (see note).

Return records falling within a

defined range of dates.

BETWEEN BETWEEN (? :d :caption='Start

Date' :id=startdate) AND

(? :d :caption='EndDate' :id=en

ddate

Returns records whose dates

fall within the defined range.

About Operators to Use with Logical Fields
This topic describes the operators that can be used to manipulate values in logical fields.

Details

When you enter anything in the Criteria cell or the Or cell, the is equal to (=) operator is assumed at the
beginning of the text unless a different operator is specified.

It is not necessary to enter the = operator at the beginning of the expression in a given cell. If you do not
enter the operator, will insert it automatically, but it will not be displayed.

Available Operators for Logical Fields

The following table provides examples of operators that you can use to manipulate values returned in
logical fields.

© 2024 General Electric Company 115

Purpose Operator Example Outcome of Example

Return records that have an

exact value in a given field.

= ='Y'' Returns records where the

field value is True.

Return records that do not

contain any values in a given

field.

Is Null Is Null Returns records where the

field is empty.

Return records that do not

have a specified value in a

given field.

Not

<>

!=

Not 'Y'

<> 'Y'

!= 'Y'

Returns records where the

field value is not True (i.e.,

False or Null).

About Operators to Use with Numeric Fields
This topic describes the operators that can be used to manipulate values in numeric fields.

Details

When you enter anything in the Criteria cell or the Or cell, the is equal to (=) operator is assumed at the
beginning of the text unless a different operator is specified.

It is not necessary to enter the = operator at the beginning of the expression in a given cell. If you do not
enter the operator, will insert it automatically, but it will not be displayed.

Available Operators for Numeric Fields

The following table provides examples of operators that you can use to manipulate values returned in
numeric fields.

Purpose Operator Example Outcome of Example

Return records that have an

exact value in a given field.

= =10 Returns records where the

specified field value is 10.

Return records where the

value in a given field is the sum

of the specified values.

+ =8+2 Returns records where the

specified field value is the sum

of 8 and 2, or 10.

Return records where the

value in a given field is the

difference between the

specified values.

- =11-1 Returns records where the

specified field value is the

difference between 11 and 1,

or 10.

Return records where the

value in a given field is the

outcome of the specified

values after they are divided.

/ =20/2 Returns records where the

specified field value is the

outcome of 20 divided by 2, or

10.

Return records where the

value in a given field is the

outcome of the specified

values after they are

multiplied.

* =5*2 Returns records where the

specified field value is the

product of 5 multiplied by 2, or

10.

116 © 2024 General Electric Company

Purpose Operator Example Outcome of Example

Return records that have a

value greater than the

specified value in a given field.

> >9 Returns records where the

specified field value is greater

than 9.

Return records that have a

value less than the specified

value in a given field.

< <11 Returns records where the

specified field value is less

than 11.

Return records that have a

value greater than or equal to

the specified value in a given

field.

>= >=10 Returns records where the

specified field value is greater

than or equal to 10.

Return records that have a

value less than or equal to the

specified value in a given field.

<= <=10 Returns records where the

specified field value is less

than or equal to 10.

Return records that do not

have the specified value in a

given field.

Not

!=

<>

Not 10

!= 10

<> 10

Returns records where the

specified field value is not 10.

Returns records that have

multiple values in a given field.

And <5 And >1 Returns records where the

specified field value is less

than 5 and greater than 1.

Return records that have one

value or another in a given

field.

Or 5 Or 10 Returns records where the

specified field value is 5 or 10.

Return records where a given

field contains a value that

results from a specified

grouping.

() (1000+1)-1 Returns records where the

specified field value is equal to

1000 plus 1, or 1001, minus 1,

which equals 1000.

Return records that contain

any value in a given field.

Is Not Null Is Not Null Returns records where the

field is not empty.

Return records that do not

contain any values in a given

field.

Is Null Is Null Returns records where the

field is empty.

Return records that contain

the specified values in a given

field.

In In (5, 10, 20) Returns records where the

specified value is 5, 10, or 20.

Return records that do not

contain the specified values in

a given field.

Not In Not In (5, 10, 20) Returns records where the

specified field value is not 5,

10, or 20.

Return records falling within a

defined range of numbers.

BETWEEN BETWEEN

(? :n :caption='Starting':id=star

t) AND

(? :n :caption='Ending':id=end

Returns records whose values

fall within the defined range.

© 2024 General Electric Company 117

	Contents
	Query Creation
	About Creating Queries
	About Running Queries
	About Saving Queries
	About SQL Code
	Access the Query Page
	Access the Design Workspace
	Access the SQL Workspace
	Modify a Query
	Modify the Query Type
	Include or Exclude a Field in the Query Results
	Create a Crosstab Query
	Create an Update Query
	Create an Append Query
	Create a Delete Query
	Run a Query
	Save a Query

	Query Results
	About Query Results
	Access the Results Workspace
	Sort the Query Results
	Sort Column Values in the Results Workspace
	Group by Column Values in the Results Workspace
	Filter the Query Results
	Export a Query Result Set to a File
	Export a Query Result Set to a Dataset
	Modify the Value in the Field Cell
	Remove the Limit on the Number of Results
	Modify the Output Mode of a Select Query
	Display Unique Records Only
	Limit the Number of Results
	Aggregate Query Results
	Show the Units of Measurement
	Create a Hyperlink
	Delete a Hyperlink

	Query Sources, Fields, and Joins
	About Query Sources, Fields, and Joins
	Add a Source
	Add a Field to a Query
	Arrange Columns
	Modify the Properties of a Join
	Delete a Join
	Display the System and Inactive Fields for a Query Source
	Remove a Query Source

	Query Expressions, Clauses, and Prompts
	About Query Expressions, Clauses, and Prompts
	Create an Expression
	Create a WHERE Clause
	Create a HAVING Clause
	Delete an Expression
	Access the Prompt Settings Section
	Create a Prompt with No List of Valid Values
	Create a Prompt with a Static List of Valid Values
	Create a Prompt with a List of System Codes
	Create a Prompt with a List of Query Results
	Create a Prompt with a List of Values from a Record
	Create a Prompt on a Logical Field
	Filter Prompt Values Based on Previous Prompt Selections
	Modify an Existing Prompt
	Delete a Prompt

	Query Settings
	Access the Query Settings Page
	About Query Timeouts
	Specify the Limit for Query Timeout
	About Purging Saved Exports
	Set Purge Export Frequency
	About Case Insensitive Filtering
	Set Case Insensitive Filtering

	Workflow
	Core Analysis: Query Analysis Workflow
	Start
	Design a Query
	Run the Query
	Review Query Results
	Opportunity Exists?
	Manage Performance Recommendations
	Queries Workflow

	Reference
	Reference Information: Query Types
	About Select Queries
	About Crosstab Queries
	About Update Queries
	About Append Queries
	About Delete Queries

	Reference Information: Query Results
	About Displaying Custom Text Instead of Field Values
	About Formatted and Unformatted Mode
	About Defining an Alias
	About Displaying Unique Records Only
	About Query Performance
	About Limiting the Number of Results
	Query URLs

	Reference Information: Query Joins, Functions, and Hyperlinks
	About APM Inner Joins
	About APM Outer Joins
	About Manual Joins
	What is a Function?
	About the GROUP BY Clause
	About Aggregate and Analytic Functions
	About Character Functions
	About Conversion Functions
	About Date Functions
	About Number/Mathematical Functions
	About the DECODE Function
	MetaSQL Functions
	Additional Meta-SQL Functions
	About Adding Hyperlinks to a Query

	Reference Information: Query Expressions, Clauses, Prompts, and Operators
	About the Expression Builder Window
	What is an Expression?
	About Formatted Expressions on Character Fields
	About Formatted Expressions on Text Fields
	About Formatted Expressions on Date Fields
	About Formatted Expressions on Logical Fields
	About Formatted Expressions on Numeric Fields
	Expressions in the Field, Criteria, and Or Cells
	About the WHERE Clause
	About the HAVING Clause
	About Prompts on Queries
	About the Prompt Settings Section
	About Prompts on Date Fields
	About Prompts on Numeric Fields
	About Configuring a Prompt to Accept a Percent Wildcard
	About Configuring a Prompt to Return Null Values
	About Operators to Use with Character Fields
	About Operators to Use with Text Fields
	About Operators to Use with Date Fields
	About Operators to Use with Logical Fields
	About Operators to Use with Numeric Fields

