
EDGE APPS AND SERVICES

User Guide

EDGE SOFTWARE & SERVICES

Proprietary Notice
The information contained in this publication is believed to be accurate and reliable.
However, GE Vernova assumes no responsibilities for any errors, omissions or
inaccuracies. Information contained in the publication is subject to change without notice.

No part of this publication may be reproduced in any form, or stored in a database or
retrieval system, or transmitted or distributed in any form by any means, electronic,
mechanical photocopying, recording or otherwise, without the prior written permission of
GE Vernova. Information contained herein is subject to change without notice.

© 2024 GE Vernova and/or its affiliates. All rights reserved.

Trademark Notices
“VERNOVA” is a registered trademark of GE Vernova. “GE VERNOVA” is a registered
trademark of GE Aerospace exclusively licensed to GE Vernova. The terms “GE” and the
GE Monogram are trademarks of GE Aerospace and are used with permission.

Microsoft® is a registered trademark of Microsoft Corporation, in the United States and/or
other countries.

All other trademarks are the property of their respective owners.

We want to hear from you. If you have any comments, questions, or suggestions about our
documentation, send them to the following email address:
doc@ge.com

Contents

Predix Edge Apps and Services Overview.. v

About Predix Edge Applications...v

Setup Predix Edge Applications...vii

Predix Edge Applications.. vii

Installing an Application.. viii

Configuring an Application.. viii

Predix Edge Protocol Adapters...ix

Protocol Adapters Overview.. ix

EGD Protocol Adapters.. xxiii

MQTT Protocol Adapter... xlvii

Modbus Protocol Adapter..lii

OPC UA Protocol Adapter... lxvi

OSI PI Protocol Adapters..c

Predix Edge Cloud Gateways..cix

About Predix Edge Cloud Gateway... cix

Where Do I Get It?..cix

Overview of Capabilities... cx

Time Series Publisher Capabilities... cxi

Event Hub Publisher Capabilities.. cxiii

How Do I Deploy It?... cxiv

How Do I Configure It?...cxiv

Sample Files...cxxv

Predix Edge Deadband Application.. cxxix

Introduction... cxxix

Protocol Benchmarking..cxxix

Where Do I Get It?.. cxxix

Overview of Capabilities... cxxx

Contents | iii

Details of Capabilities... cxxx

Configuration Details.. cxxxi

Sample Files..cxxxiii

Custom Applications..cxxxiv

Building an Application...cxxxiv

Packaging an Application...cxxxviii

Application Signing...cxxxix

Running an Application.. cxlii

Accessing Devices...cxlvi

Application Custom Commands...cxlviii

Analytics Framework..clii

Analytic Engine Capabilities..clviii

Logging...clxiv

Predix Edge Logs...clxiv

Retrieving Predix Edge Device Logs...clxiv

Retrieve Logs From the Command Line...clxv

Predix Edge Applications and Services Release Notes... clxvi

OPC-UA Protocol Adapter Release Notes 24.07.0..clxvi

OPC-UA Protocol Adapter Release Notes 22.12.0... clxvii

OPC-UA Protocol Adapter Release Notes 21.10.0... clxvii

OPC-UA Protocol Adapter Release Notes 20.2.0.. clxviii

OSI-PI Protocol Adapter Release Notes 22.12.0... clxviii

OSI-PI Protocol Adapter Release Notes 21.11.0...clxix

OSI-PI Protocol Adapter Release Notes 21.5.0... clxix

OSI-PI Protocol Adapter Release Notes 20.2.0..clxx

EGD Protocol Adapter Release Notes 23.09.0...clxx

EGD Protocol Adapter Release Notes 22.12.0..clxxi

EGD Protocol Adapter Release Notes 22.08.0..clxxi

EGD Dynamic Binding Protocol Adapter Release Notes 21.03.0... clxxiii

Contents | iv

MQTT Protocol Adapter Release Notes 23.01.0... clxxiii

Cloud Gateway Release Notes 23.01.0..clxxiii

Modbus Protocol Adapter Release Notes 24.03.0..clxxiii

Deadband Application Release Notes 22.12.0..clxxiv

Deadband Application Release Notes 22.09.0..clxxiv

Deadband Application Release Notes 20.4.1.. clxxiv

Deadband Application Release Notes 20.4.0...clxxv

Cloud Gateway Release Notes 21.07.0...clxxv

Cloud Gateway Release Notes 20.12.0...clxxv

Cloud Gateway Release Notes 20.3.0..clxxvi

Predix Edge Applications and Services Release Notes 12-19..clxxvi

Predix Edge Applications and Services Release Notes 2.4.0... clxxviii

Predix Edge Applications and Services Release Notes 2.3.2...clxxix

Predix Edge Applications and Services Release Notes 2.3.0..clxxx

Predix Edge Applications and Services Release Notes 2.2.0..clxxxii

Predix Edge Applications and Services Release Notes 2.1.0...clxxxiv

v

Predix Edge Apps and Services Overview

About Predix Edge Applications

Architecture

The following diagram depicts the core components available for applications in Predix Edge and how

they interact with each other over the Predix Edge Broker.

Things to Know About Edge Applications

• All Predix Edge applications are deployed as Docker containers.

• Any development language can be used as long as it can be deployed as a Docker container in

a Linux environment and communicate with MQTT. Most modern languages you would consider

include MQTT libraries.

• Each application communicates with other applications through publishing and subscribing to

messages on the Predix Edge Broker. Predix Edge Broker is included when you download and

install Edge.

vi

1. The OPC-UA Protocol Adapter is configured to retrieve tag data and publish it to the broker on a

topic named opcua_data.

2. Your custom app running as a container subscribes to the opcua_data topic, manipulates the data

in some way and publishes the results back to the broker on the topic timeseries_data.

3. The Time Series Cloud Gateway application subscribes to the timeseries_data topic and sends the

data to Predix Time Series.

You can use the same “pub/sub“ data flow to route data to other applications such as Event Hub Cloud

Gateway, Predix Historian or other custom applications.

For more information on the applications provided with Edge refer to:

• Predix Edge Protocol Adapters Overview (on page ix)

• About Predix Edge Cloud Gateway (on page cix)

• Predix Historian (on page)

Additional Information

Hello World - A Local Microservice

unique_4
unique_4
unique_4
https://www.predix.io/resources/tutorials/tutorial-details.html?tutorial_id=2597

vii

Setup Predix Edge Applications

Predix Edge Applications
Predix Edge includes the following applications for acquiring, publishing and storing data at the Edge. The

applications are stored in Artifactory.

To access Artifactory downloads, you will require a GE SSO (single sign-on) username and approval to

access Artifactory.

Request a GE SSO

Use the following steps to obtain a GE SSO if you do not already have one.

1. Complete the Your GE SSO Account request form. All fields marked with a checkmark are required.

2. Click Submit.

Note:

The only non-alphanumeric characters allowed in your GE SSO are an underscore (_) and a period

(.). Using any other non-alphanumeric characters for your username will result in an invalid

authentication in Artifactory.

Request Artifactory Access

Once you have an SSO, use the following steps to request access to Artifactory.

1. Complete the Edge Artifactory Access Requests form.

2. Click Submit.

Application Downloads

Application Description

Cloud Gateway Sends data from the Predix Edge Broker to Time Series or

Event Hub instance(s)

EGD Protocol Adapter Acquires EGD data and publishes it to the Predix Edge Bro­

ker

MQTT Protocol Adapter Acquires data from an external MQTT broker and publishes

it to the Predix Edge Broker

https://mypassword.ge.com/b2bregistration/index.html#/signin
https://app.smartsheet.com/b/form/97c1fbee95df475e9849674a58332963
https://dig-grid-artifactory.apps.ge.com/ui/repos/tree/General/predix-edge-ext-mvn/Apps/cloud-gateway
https://dig-grid-artifactory.apps.ge.com/ui/repos/tree/General/predix-edge-ext-mvn/Adapters/egd-adapter
https://dig-grid-artifactory.apps.ge.com/ui/repos/tree/General/predix-edge-ext-mvn/Adapters/mqtt-adapter

viii

Application Description

OSI-PI Protocol Adapter Acquires data from an OSI-PI server and publishes it to the

Predix Edge Broker

OPC-UA Protocol Adapter Acquires data from an OPC-UA server and publishes it to

the Predix Edge Broker

Historian and Collectors (licensed sepa­

rately from Predix Edge)

Historian database and RESTful query engine for storing

and extracting data

Installing an Application
Download and install a Predix Edge application.

1. Click the application link to download the application to your machine.

2. Upload the file to your Edge Manager Repository as a Predix Edge application.

3. Deploy the application to an enrolled Predix Edge device.

Configuring an Application
Configure a Predix Edge application.

1. Download and extract the sample configuration ZIP for the application.

2. Modify the settings in the sample config file for your environment.

3. Re-zip the file.

4. Upload the new ZIP file to the Edge Manager Repository as a Predix Edge configuration.

5. Deploy the configuration to the corresponding application running on your Predix Edge device.

Related information

Predix Edge Protocol Adapters Overview (on page ix)

About Predix Edge Cloud Gateway (on page cix)

Uploading Software and Configuration Packages to the Predix Edge Manager Repository (on page

)

https://dig-grid-artifactory.apps.ge.com/ui/repos/tree/General/predix-edge-ext-mvn/Adapters/osipi-adapter
https://dig-grid-artifactory.apps.ge.com/ui/repos/tree/General/predix-edge-ext-mvn/Adapters/opcua-adapter
https://dig-grid-artifactory.apps.ge.com/ui/repos/tree/General/predix-edge-ext-mvn/EdgePlatform/2_4_0/apps/historian
unique_8
unique_8
unique_8

ix

Predix Edge Protocol Adapters

Protocol Adapters Overview

Predix Edge Protocol Adapters Overview
Learn about where to download the Predix Edge Protocol Adapters and their corresponding sample

configurations and understand how the blocks section is used.

Protocol-Specific Information

Specific protocol adapter information is available for:

• EGD (on page xxiii)

• MQTT (on page xlvii)

• Modbus (on page lii)

• OPC-UA (on page lxvi)

• OSI-Pi (on page c)

Download the Adapters

The Protocol Translator Apps and sample configurations in the table below are stored in Artifactory. Use

the following information to ensure you can access the apps.

To access Artifactory downloads, you will require a GE SSO (single sign-on) username and approval to

access Artifactory.

Use the following steps to obtain a GE SSO if you do not already have one.

1. Complete the Your GE SSO Account request form. All fields marked with a checkmark are required.

2. Click Submit.

Note:

The only non-alphanumeric characters allowed in your GE SSO are an underscore (_) and a period

(.). Using any other non-alphanumeric characters for your username will result in an invalid

authentication in Artifactory.

Request Artifactory Access

Once you have an SSO, use the following steps to request access to Artifactory.

https://mypassword.ge.com/b2bregistration/index.html#/signin

x

1. Complete the Edge Artifactory Access Requests form.

2. Click Submit.

Protocol Adapter Downloads

• EGD

• MQTT

• OPC-UA

• OSI-PI

Deployment

Go to your specific adapter documentation for a sample docker-compose.yml file, and use it as you

follow the Packaging and Deployment instructions.

Configuration

Each adapter requires a configuration file, and a sample is available in the documentation for each

adapter. The samples are named config.json, but the file name can be changed, as long as the change

is reflected in the docker-compose.yml. The configuration file is required as part of the Packaging and

Deployment process.

The configuration file is a JSON file that contains two sections—blocks and mappings. The format is as

follows:

{

 "blocks": {

 ...

 },

 "mappings": {

 ...

 }

}

The Blocks Section

The blocks section is used to initialize the blocks that will be used by the protocol translator. Declaring a

block in this section will instantiate it but it will not wire it to any other blocks.

Every block must have a type and config field in the configuration file. The type field defines what type

of block is to be instantiated. The config section defines the configuration fields for that block and will

https://app.smartsheet.com/b/form/97c1fbee95df475e9849674a58332963
https://dig-grid-artifactory.apps.ge.com/ui/repos/tree/General/predix-edge-ext-mvn/Adapters/egd-adapter
https://dig-grid-artifactory.apps.ge.com/ui/repos/tree/General/predix-edge-ext-mvn/Adapters/mqtt-adapter
https://dig-grid-artifactory.apps.ge.com/ui/repos/tree/General/predix-edge-ext-mvn/Adapters/opcua-adapter
https://dig-grid-artifactory.apps.ge.com/ui/repos/tree/General/predix-edge-ext-mvn/Adapters/osipi-adapter

xi

look different depending on the type of the block. The config section is passed to the block when it is

instantiated.

In the example below, two blocks are defined—one named block1 of type fooblock, and another named

block2 of type barblock.

{

 "blocks": {

 "block1": {

 "type": "fooblock",

 "config": {

 ...

 }

 },

 "block2": {

 "type": "barblock",

 "config": {

 ...

 }

 },

 ...

 },

 "mappings": {

 ...

 }

}

Mapping the Blocks
The mappings section is used to connect the blocks that were initialized in the blocks section.

If a block name referenced in this section does not exist in the blocks section, the protocol translator will

log an error and ignore the mapping. By default, most blocks have an implicit input and output port that

can be connected to a port from a different block so that data flows between the blocks.

In the example below, two blocks are mapped together. The output port of the block named block1 is

connected to the input port of the block named block2. Therefore, data will flow from block1 to block2.

{

 "blocks": {

xii

 ...

 },

 "mappings": {

 "block1:output":"block2:input",

 ...

 }

}

Flat JSON to Time Series Conversion Block

Table 1.

Type

'flattotimeseries

This block is used to convert data formatted as Flat JSON into the Predix Time Series data format. A

description of this format is in Pushing Time Series Data (on page).

Table 2.

Field Type Required Default

attributes Object

log_level String 'off'

log_name String <block_name>

attributes

The attributes field is an object with key/value pairs that will be directly injected into all output data as

Time Series attributes.

log_level and log_name

For details about the log_level and log_name fields, see Generic CDP Blocks (on page xvi).

Examples

The following is a sample configuration for this block.

"flat_to_time_series": {

 "type": "flattotimeseries",

unique_16
unique_16
unique_16

xiii

 "config": {

 "attributes": {

 "source": "Albuquerque"

 }

 }

}

An example of input data (Flat JSON) and output data (Predix Time Series) resulting from the above

configuration block is as follows. Its configuration fields are as follows.

Input Flat JSON

Input Flat JSON:

{

 "timestamp": "1504739531776",

 "data": {

 "temperature": {

 "val": 15,

 "type": "int16"

 },

 "pressure": {

 "val": 16.2,

 "type": "float"

 }

 }

}

Output Predix Time Series

{

 "messageId": "flex-pipe",

 "body": [

 {

 "name": "temperature",

 "datapoints": [

 [1504739531776, 15, 3]

],

 "attributes": {

 "source": "Albuquerque"

 }

xiv

 },

 {

 "name": "pressure",

 "datapoints": [

 [1504739531776, 16.2, 3]

],

 "attributes": {

 "source": "Albuquerque"

 }

 }

]

}

Since no configuration fields for this block are required, the entire ‘config’ field can be omitted:

"flat_to_time_series": {

 "type": "flattotimeseries"

}

Splitter Routing Block

Table 3.

Type

splitter

This block will receive data on a single input port and send that data on to any number of output ports

specified by the output_count field. Its configuration fields are as follows:

Table 4.

Field Type Required Default

output_count Integer yes

log_level String 'off'

log_name String <block_name>

xv

output_count

The output_count field determines how many output ports will be created for this block. The block’s

output ports are named "output#” where “#” is a number starting at 1. The ‘mappings’ section in the

example shows these output port names.

log_level and log_name

For details about the log_level and log_name fields, see Generic CDP Blocks (on page xvi).

Example

The following is a sample configuration file that includes this block.

{

 "blocks": {

 "input_block": {

 "type": "dummy",

 "config": { "field": "value" }

 },

 "splitter": {

 "type": "splitter",

 "config": {

 "output_count": 3

 }

 },

 "out_block1": {

 "type": "dummy",

 "config": { "field": "value" }

 },

 "out_block2": {

 "type": "dummy",

 "config": { "field": "value" }

 },

 "out_block3": {

 "type": "dummy",

 "config": { "field": "value" }

 }

 },

 "mappings": {

xvi

 "input_block:output":"splitter:input",

 "splitter:output1":"out_block1:input",

 "splitter:output2":"out_block2:input",

 "splitter:output3":"out_block3:input"

 }

}

Generic CDP Blocks
These are the possible options for the configuration fields of the CDP In, CDP Out, and CDP Out Queue

generic CDP blocks.

The block types CDP In, CDP Out, and CDP Out Queue are classified as generic CDP blocks because they

directly transfer the information in their configuration to the CDP library. In these blocks, the protocol

translator adds minimal functionality on top of the CDP library and directly calls the relevant CDP

procedures with the parameters collected from the configuration block.

For details on protocol specific documentation, refer to specific protocol adapter documentation.

The following table shows the possible options for the configuration fields of these blocks. The sections

after the below table go into more detail about each field.

Field Type Required Default CDP In CDP Out CDP Out Queue

transport_addr String yes yes yes yes

node_ref String yes yes yes yes

method String yes yes yes yes

interval Integer yes if method is ‘get‘ yes

log_level String ‘off‘ yes yes yes

log_name String <block_name> yes yes yes

options Object yes yes yes

directory String yes yes

max_cache_size Integer 90 yes

max_cache_size_units String ‘%‘ yes

xvii

transport_addr

The transport_addr field determines the protocol and location of the endpoint the block will communicate

with.

The prefix to the URI (for example, the "mqtt-tcp" in mqtt-tcp://localhost:1883 determines what protocol

to use:

Protocol Possible Prefixes

EGD 'egd'

EGD Read Only 'egd-ro'

Modbus 'modbus-tcp', 'modbus-rtu', 'modbus-ascii', 'modbus-rtu-tcp', 'modbus-ascii-tcp'

MQTT 'mqtt-tcp'

OPC-UA 'opc-tcp'

OSI-PI 'osipi-http', 'osipi-https'

Predix Time Series 'pxts', 'pxtss'

node_ref

The node_ref field means a slightly different thing for each protocol but is essentially the specific node

that is to be communicated with in the protocol specified by the transport_addr. For MQTT, this means

the topic to publish to or subscribe from.

Note:

This field is unused for the Timeseries CDP library, but is still a required field for the protocol

translator to work properly.

method

The method field determines the method of the communication (synch/asynch, send/receive). This field’s

possible values are dependent on both the block type and protocol used, for example, some protocols

support only the publish/subscribe or get/set type of communication.

Block Type
Possible

Method Values

cdpin 'get', 'sub'

xviii

Block Type
Possible

Method Values

cdpout 'set', 'pub'

cdpoutqueue 'set', 'pub'

interval

The interval field is only relevant (and required) if the block is of type cdpin and the method field is get.

This determines the interval (in milliseconds) at which the block will poll its endpoint for data.

For example, if this is set to 1000, the block will attempt to get data every second.

log_level

The log_level field determines which level of logs to output. If the field is not set to one of the following

values, the block will not log anything.

Possible Values

'debug', 'info', 'warn', 'err', 'critical'

log_name

The log_name field defines a name to identify the block’s logs. This is typically prepended to the log output.

If unset, it defaults to the block name.

options

The options field is a JSON object whose contents are specific to the protocol specified in the

transport_addr field.

This is not considered a required field, but some protocols may require it to function properly. For

example, if the Time Series protocol ('pxtss') is specified in the transport_addr field and the options

field does not contain the token_file and predix_zone_id, the block will be unable to connect to the Time

Series endpoint.

directory

The directory field is only used in the CDP Out Queue block. This field determines the directory where the

block’s store-and-forward files (a disk-backed queue of data to be sent) will be created and updated. If the

directory does not exist, it will be created, but if its parent directory does not exist, an error will be thrown.

xix

Important:

Be careful about the directory you specify here. If the path in this field is the same as the path in

the config of another block within the same Docker application, there will be a conflict between

the two blocks’ disk-backed queue (store-and-forward) files.

For example, if you have an OPC-UA Adapter container and a Cloud Gateway container both

within the same Docker application, they will both receive the same /data mount directory.

If /data is specified as the directory field for a block in both the OPC-UA and Cloud Gateway

configuration files, they will both fail to maintain their own disk-backed queue files.

max_cache_size

The max_cache_size field determines the maximum amount of disk space allowed for this block to use for

one of its disk-backed queues (store-and-forward file).

If left unset, this field’s value will default to 90 and the max_cache_size_units field will default to %.

Important:

Due to the way these files are managed, the block may consume up to 2 times the size of

max_cache_size on disk. For example, a 100MB queue may consume up to 200MB of actual disk

space.

max_cache_size_units

The max_cache_size_units field determines the units to use for the max_cache_size field.

This field’s default value is %.

Val­

ue
Meaning

'%' Percentage of available disk

space

'B' Bytes

'KB' Kilobytes

'MB' Megabytes

'GB' Gigabytes

xx

CDP In

Type

'cdpin'

This block is used to receive data from any transport on the CDP. Its configuration fields are as follows:

Field Type Required Default

transport_addr String yes

node_ref String yes

method String yes

interval Integer yes if method is ‘get‘

log_level String ‘off‘

log_name String <block_name>

options Object

For more specific information on these fields, see the high level description of generic CDP blocks above.

Example CDP In Block:

"example_cdpin_mqtt_source_block": {

 "type": "cdpin",

 "config": {

 "transport_addr": "mqtt-tcp://predix-edge-broker",

 "node_ref": "predix_historian",

 "method": "sub",

 "log_name": "mqtt_source_block",

 "log_level": "err"

 }

}

CDP Out

Type

'cdpout'

xxi

This block is used to send data to any transport on the CDP. Its configuration fields are as follows:

Field Type
Re­

quired
Default

transport_addr String yes

node_ref String yes

method String yes

log_level String ‘off‘

log_name String <block_name>

options Object

For more specific information on these fields see the high level description of generic CDP blocks above.

Example CDP Out Block:

"example_cdpout_mqtt_sink_block": {

 "type": "cdpout",

 "config": {

 "transport_addr": "mqtt-tcp://predix-edge-broker",

 "node_ref": "data/pressure",

 "method": "pub",

 "log_name": "mqtt_sink",

 "log_level": "err",

 "options": {

 "qos": 1

 }

 }

}

CDP Out Queue

Type

'cdpoutqueue'

This block is used to send data to any transport on the CDP. It is identical to the CDP Out block above,

except that this block will also queue messages on a disk-backed queue (store-and-forward) if it is unable

to deliver them. Its configuration fields are as follows:

xxii

Field Type
Re­

quired
Default

transport_addr String yes

node_ref String yes

method String yes

log_level String ‘off‘

log_name String <block_name>

options Object

directory String yes

max_cache_size Integer 90

max_cache_size_units String ‘%‘

Example CDP Out Queue Block:

"example_cdpoutqueue_timeseries_sink_block": {

 "type": "cdpoutqueue",

 "config": {

 "transport_addr": "pxtss://timeseries-instance.run.aws-usw02-pr.ice.predix.io/v1/stream/messa

ges",

 "node_ref": "doesn't_matter_for_timeseries",

 "method": "set",

 "log_name": "timeseries_sink",

 "log_level": "err",

 "directory": "/data/container_name/timeseries_sink/dbq/",

 "max_cache_size": 100,

 "max_cache_size_units": "MB",

 "options": {

 "token_file": "/edge-agent/access_token",

 "predix_zone_id": "01234567-8987-6543-2101-234567898765",

 "proxy_url": "https://proxy.proxy.proxy.com:8080"

 }

 }

}

xxiii

If these blocks are used to communicate to an MQTT broker (and ‘mqtt-tcp’ is specified in the

‘transport_addr’ field), the “options” field can contain the following optional sub-fields:

• ‘qos’: This field can be set to the desired “quality of service” for any MQTT message transfers.

This field’s value can be 0, 1, or 2. These values correspond to “at most once”, “at least once”, and

“exactly once” message delivery respectively.

• ‘clientid’: This field can be set to the desired client ID for the block’s connection to the MQTT broker.

The client ID helps the MQTT broker to identify the block. NOTE: If either the ‘client_id’ is not set, or

the ‘qos’ is 0, the MQTT “clean_session” flag will be set when connecting to the broker. Otherwise,

the broker will persist this block’s connection information and subscriptions.

• ‘username’: This field can be set if the MQTT broker being connected to requires username/

password authentication.

• ‘password’: This field can be set if the MQTT broker being connected to requires username/

password authentication.

EGD Protocol Adapters

EGD Protocol Adapters Overview

Protocol Adapters - EGD

Ethernet Global Data (EGD) is a protocol that supports the ability to share information between controllers

(nodes) in a networked environment. EGD allows one controller, referred to as the producer of the data, to

simultaneously send information to any number of peer controllers (consumers) at a fixed periodic rate.

A network based on this capability will support a large number of controllers, each of which is capable

of both producing and consuming information. Thus, EGD allows data to be shared globally between

controllers. In addition, EGD supports a set of commands for accessing data and protocol information on

EGD nodes. EGD also defines a mechanism for sharing configuration information among nodes.

The following diagram shows a simple use case where the data from an external device flows through the

EGD protocol adapter and is finally sent to the Predix cloud.

xxiv

Figure 1. Protocol Adapter - EGD

Where Do I Get the EGD Protocol Translator Application?

The EGD Protocol Translator App and sample configuration file are stored in Artifactory.

To access Artifactory downloads, you will require a GE SSO (single sign-on) username and approval to

access Artifactory.

Request a GE SSO

Use the following steps to obtain a GE SSO if you do not already have one.

1. Complete the Your GE SSO Account request form. All fields marked with a checkmark are required.

2. Click Submit.

Note:

The only non-alphanumeric characters allowed in your GE SSO are an underscore (_) and a period

(.). Using any other non-alphanumeric characters for your username will result in an invalid

authentication in Artifactory.

Request Artifactory Access

Once you have an SSO, use the following steps to request access to Artifactory.

1. Complete the Edge Artifactory Access Requests form.

2. Click Submit.

EGD Protocol Adapter Downloads

The downloadable files for the EGD Protocol Adapter are available here.

https://mypassword.ge.com/b2bregistration/index.html#/signin
https://app.smartsheet.com/b/form/97c1fbee95df475e9849674a58332963
https://dig-grid-artifactory.apps.ge.com/ui/repos/tree/General/predix-edge-ext-mvn/Adapters/egd-adapter

xxv

To configure and use the EGD Read/Write Protocol Adapter, see EGD Read/Write Protocol Adapter (on

page xxvi).

To configure and use the EGD Dynamic Binding Protocol Adapter, see EGD Dynamic Binding Protocol

Adapter (on page xli).

The latest version of the EGD adapter is protocol-adapter-egd:amd64-latest.

Protocol Benchmarking - EGD

The numbers in the tables below represent the ideal throughput for the data pump use case (data

traveling from a protocol adapter to the Predix Edge MQTT Broker to the Cloud Gateway to Time Series).

The tests were executed in a controlled environment with one adapter running at a time, under ideal

network conditions with a local time series simulator. The rate was deemed successful if there was

less than a 1 percent loss rate over the course of a multi-hour test. Based on the testing, data loss rates

dramatically increase as tag counts pass these thresholds.

The tested VMs were configured as follows (with a 2GHz vCPU):

Table 5. Tested VM Configurations

VM Processors RAM (GB) Disk Space (GB)

VM (small) 1 1 5

VM (medium) 2 4 20

VM (large) 4 8 20

Table 6. EGD Dynamic

Environment Period (seconds) Acceptable Tag Rate

1 4950VM (small)

10 21000

1 4875VM (medium)

10 23625

1 4875VM (large)

10 23625

Predix Edge Gateway 3002 1 5100

xxvi

Table 6. EGD Dynamic (continued)

Environment Period (seconds) Acceptable Tag Rate

10 18150

The number of tags per adapter does not scale with the device’s performance characteristics. It is

recommended to add new adapters to support higher tag counts along with corresponding physical

hardware to support the additional applications.

EGD Read/Write Protocol Adapter

Overview of Capabilities

The EGD protocol adapter enables data transfer from any controller that supports EGD protocol to the

Predix cloud. It supports both Read and Write. It is important to note that while the EGD protocol supports

several classes of devices, the Predix EdgeOS EGD Protocol adapter supports only Class 1 devices and

associated data messages.

Deployment and Configuration Resources

There are three possible EGD configuration types: EGD, EGD Flat, and EGD Sink Flat. The following fields

are common to all three configuration types: transport_addr, log_level and log_name, and options.

transport_addr

The transport_addr field determines the location of the EGD endpoint the block will communicate with. Its

prefix must be 'egd://'

log_level and log_name

For details about the log_level and log_name fields, see the Generic CDP Blocks (on page xvi) section

of the Protocol Adapters (on page ix) documentation page.

options

The options field contains any other miscellaneous configuration options necessary for the desired EGD

communication.

EGD

xxvii

Table 7.

Type

'egd'

This block is used to source raw data from any number of EGD exchanges. Its configuration fields are as

follows:

Table 8.

Field Type Required Default

transport_addr String yes

subs Array yes

log_level String 'off'

log_name String

options Object

subs

The subs field determines which EGD exchanges to subscribe to.

Example EGD Config Block

"egd_source_block": {

 "type": "egd",

 "config": {

 "transport_addr": "egd://localhost",

 "subs": [

 "4026531967/150/0/0",

 "5126541937/151/2/1"

],

 "log_level": "info",

 "log_name": "egd_source",

 "options": {

 "foo": "bar"

 }

 }

}

xxviii

EGD Flat

Type

'egdflat'

This block is used to source raw data from any number of EGD exchanges and transform the data into flat

JSON format. Its configuration fields are as follows:

Field Type Required Default

transport_addr String yes

data_map Object yes

log_level String 'off'

log_name String

egress Object no

Transport Address (transport_addr)

The host address where EGD messages are expected to be received. It is recommended

to keep this field set as "127.0.0.1" unless multicast is used. The transport_addr can be

specified as either of the following:

• "transport_addr":"egd://<ip address>"

• "transport_addr":"egd://<FQDN>"

Data Map (data_map)

The data_map field determines which EGD exchanges to subscribe to and how to convert

their data to flat JSON format. The data_map follows the following format:

"data_map": {

 "<EGD Node Reference>": [

 {<Data Map Object>},

 {<Data Map Object>}

],

 "<EGD Node Reference>": [

 {<Data Map Object>},

 {<Data Map Object>}

xxix

]

}

The format for EGD Node Reference is production_id/exchange_id/sig_major/sig_minor. The

Data Map Objects have the following fields:

Field Type Required

alias String yes

bit_offset Integer yes

type String yes

• Alias (alias) - The alias field of the data_map determines the name of the requested

value that should mean something to the target application. Examples are

“temperature”, “pressure”, etc.

• Bit Offset (bit_offset) - The bit_offset field determines what bit offset into the EGD

page to start retrieving the value from. The EGD producer has a described data layout

that can be retrieved from a controller or workstation via the EGD HTTP configuration

API. Refer to the EGD protocol docs to learn more about the Production Data Unit

format.

• Type (type) - The type field of the data_map defines the type of data to pull from

the EGD page. This value will determine how many bytes after the bit_offset are

accessed and how to combine the bytes to form the requested type. Its possible

values are as follows:

◦ 'int8'

◦ 'uint8'

◦ 'int16'

◦ 'uint16'

◦ 'int32'

◦ 'uint32'

◦ 'int64'

◦ 'uint64'

◦ 'float'

◦ 'double'

◦ 'string'

◦ 'datetime'

◦ 'time'

xxx

Log Level (log_level)

Configures the logger for the EGD client used internally to the block, can be any of the

following (case insensitive):

• off (default)

• critical

• err

• warn

• info

• debug

Log Name (log_name)

Used in the log file to associate statements with the block. If omitted, the block name is

used for the log name.

Egress (egress)

Used to change the EGD output or egress formats.

Field Type Applicable to Default Description

Output Format String flat_json Format of the

JSON file out­

put by the

adapter into oth­

er blocks. Valid

entries:

• flat_json

• time_se­

ries

Batch Interval Integer 30 seconds Amount of time

(in milliseconds)

the batcher will

hold or accu­

mulate data be­

fore generating

a message. Up­

on sending da­

xxxi

Field Type Applicable to Default Description

ta, the internal

state is reset

and emptied.

Maximum Num­

ber of Data­

points

Integer 1 The maximum

number of da­

ta values the

batcher will

hold, per tag,

over a batch­

ing interval. This

functions as a

very simple fil­

tering step that

helps control

CPU usage.

Attributes String time_series empty block Attributes are

dependent on

the Output For­

mat value.

Timestamp

From

String source Configures how

the output time­

stamp values

are set. Valid en­

tries:

• host (the

adapter

will use

the local

time in its

output)

• source

(the

adapter

will use

xxxii

Field Type Applicable to Default Description

the time­

stamp

from the

EGDsource

in its out­

put, un­

less that

time is 0,

in which

case it

will use

the local

time)

Flat_json Output Example:

"egress": {

 "output_format": "flat_json",

 "timestamp_from": 1

 }

Time_series Output Example:

"egress": {

 "output_format": "time_series",

 "batch_interval": 30000,

 "max_num_datapoints": 1,

 "attributes": {},

 "timestamp_from": 1

 }

Example Output Data (Flat JSON)

{

 "timestamp": "1504739531776",

 "data": {

 "temperature": {

 "val": 15,

xxxiii

 "type": "int16"

 },

 "pressure": {

 "val": 16.2,

 "type": "float"

 }

 }

}

Example EGD Flat Config Block

"egd_source_block": {

 "type": "egdflat",

 "config": {

 "transport_addr": "egd://localhost",

 "data_map": {

 "4026531967/150/0/0": [

 {

 "alias": "sine01",

 "bit_offset": 1056,

 "type": "double"

 }

],

 "5126541937/151/2/1": [

 {

 "alias": "valve_on",

 "bit_offset": 8,

 "type": "int8"

 },

 {

 "alias": "valve_status",

 "bit_offset": 16,

 "type": "string"

 }

]

 },

 "log_level": "info",

 "log_name": "egd_source_flat",

xxxiv

 "options": {

 "foo": "bar"

 }

 }

}

EGD Sink Flat

Type

'egdsinkflat'

This block is used to send EGD data to multiple EGD exchanges. It translates input in the flat JSON format

into raw EGD payloads. Its configuration fields are as follows:

Field Type Required Default

transport_addr String yes

data_map Object yes

log_level String 'off'

log_name String

Transport Address (transport_addr)

The host address where EGD messages are expected to be received. It is recommended

to keep this field set as "127.0.0.1" unless multicast is used. The transport_addr can be

specified as either of the following:

• "transport_addr":"egd://<ip address>"

• "transport_addr":"egd://<FQDN>"

Data Map (data_map)

The data_map field determines which EGD exchanges to subscribe to and how to convert

their data to flat JSON format. The data_map follows the following format:

"data_map": {

 "<EGD Node Reference>": [

 {<Data Map Object>},

 {<Data Map Object>}

xxxv

],

 "<EGD Node Reference>": [

 {<Data Map Object>},

 {<Data Map Object>}

]

}

Where the objects shown above have the following fields:

Field Type Required

alias String yes

bit_offset Integer yes

type String yes

max_length Integer yes if type is 'string'

• Alias (alias) - The alias field of the data_map determines the name of the requested

value that should mean something to the target application. Examples are

“temperature”, “pressure”, etc.

• Bit Offset (bit_offset) - The bit_offset field determines what bit offset into the EGD

page to start retrieving the value from. The EGD producer has a described data layout

that can be retrieved from a controller or workstation via the EGD HTTP configuration

API. Refer to the EGD protocol docs to learn more about the Production Data Unit

format.

• Type (type) - The type field of the data_map defines the type of data to pull from

the EGD page. This value will determine how many bytes after the bit_offset are

accessed and how to combine the bytes to form the requested type. Its possible

values are as follows:

◦ 'int8'

◦ 'uint8'

◦ 'int16'

◦ 'uint16'

◦ 'int32'

◦ 'uint32'

◦ 'int64'

◦ 'uint64'

◦ 'float'

◦ 'double'

xxxvi

◦ 'string'

◦ 'datetime'

◦ 'time'

• Max Length (max_length) - The max_length field specifies the max number of

characters a string can contain. It is only required if the type field is 'string'.

Log Level (log_level)

Configures the logger for the EGD client used internally to the block, can be any of the

following (case insensitive):

• off (default)

• critical

• err

• warn

• info

• debug

Log Name (log_name)

Used in the log file to associate statements with the block. If omitted, the block name is

used for the log name.

Example Input Data (Flat JSON)

{

 "timestamp": "1504739531776",

 "data": {

 "temperature": {

 "val": 15,

 "type": "int16"

 },

 "pressure": {

 "val": 16.2,

 "type": "float"

 }

 }

}

Example EGD Sink Flat Config Block

xxxvii

"egd_sink_block": {

 "type": "egdsinkflat",

 "config": {

 "transport_addr": "egd://localhost",

 "data_map": {

 "4026531967/150/0/0": [

 {

 "alias": "sine01",

 "bit_offset": 1056,

 "type": "double"

 }

],

 "5126541937/151/2/1": [

 {

 "alias": "valve_on",

 "bit_offset": 8,

 "type": "int8"

 },

 {

 "alias": "valve_status",

 "bit_offset": 16,

 "type": "string",

 "max_length": 10

 }

]

 },

 "log_level": "info",

 "log_name": "egd_sink_flat",

 "options": {

 "foo": "bar"

 }

 }

}

Example configuration to send commands from MQTT to EGD

The following example may be useful for application authors who want to send EGD signals from MQTT.

xxxviii

config.json

{

 "blocks": {

 "mqtt_source": {

 "type": "cdpin",

 "config": {

 "transport_addr": "mqtt-tcp://predix-edge-broker",

 "node_ref": "opcua_source_test",

 "method": "sub",

 "log_level": "debug",

 "log_name": "opcua_mqtt_sink"

 }

 },

 "egd_sink_block": {

 "type": "egdsinkflat",

 "config": {

 "transport_addr": "egd://localhost",

 "data_map": {

 "4026531967/150/0/0": [

 {

 "alias": "sine01",

 "bit_offset": 1056,

 "type": "double"

 }

],

 "5126541937/151/2/1": [

 {

 "alias": "valve_on",

 "bit_offset": 8,

 "type": "int8"

 },

 {

 "alias": "valve_status",

 "bit_offset": 16,

 "type": "string",

 "max_length": 10

 }

xxxix

]

 },

 "log_level": "info",

 "log_name": "egd_sink_flat",

 "options" {

 "foo": "bar"

 }

 }

}

 },

 "mappings": {

 "mqtt_source:output": "egd_sink_block:input"

 }

}

Sample Files

docker-compose.yml

Version:"3.2"

services:

 egd:

 image: "dtr.predix.io/predix-edge/protocol-adapter-egd:amd64-1.1.0"

 environment:

 config: "/config/config-egd.json"

 deploy:

 restart_policy:

 condition: on-failure

 delay: 5s

 max_attempts: 5

 window: 30s

 ports:

 - target: 18246

 published: 18246

 protocol: udp

 mode: host

xl

 networks:

 - predix-edge-broker_net

networks:

 predix-edge-broker_net:

 external: true

config.json

{

 "blocks": {

 "egd": {

 "type": "egdflat",

 "config": {

 "transport_addr": "egd://<IP address>",

 "log_level":"err",

 "data_map": {

 "4026531967/150/2/1": [

 {

 "alias": "sine01",

 "bit_offset": 1056,

 "type": "double"

 }

]

 }

 }

 },

 "flat_to_timeseries": {

 "type": "flattotimeseries",

 "config": {

 "attributes": {

 "machine_type": "egd"

 }

 }

 },

 "mqtt_eventhub": {

 "type": "cdpout",

xli

 "config": {

 "transport_addr": "mqtt-tcp://predix-edge-broker",

 "node_ref": "eventhub_data/egd_data",

 "method": "pub",

 "log_level": "err",

 "log_name": "mqtt_eventhub"

 }

 }

 },

 "mappings": {

 "egd:output": "flat_to_timeseries:input",

 "flat_to_timeseries:output":"mqtt_eventhub:input"

 }

}

EGD Dynamic Binding Protocol Adapter

EGD Dynamic Binding Protocol Adapter

EGD Configuration

EGD configuration details need to be distributed to a large audience. EGD configurations support XML

format for extensibility and flexibility. The configuration description supports the inherent hierarchy of

nodes, exchanges, variables and variable attributes of an EGD producer.

The EGD protocol uses HTTP 1.1 over TCP/IP as the transport mechanism for configuration messages.

The profile of the HTTP protocol required by this specification requires servers that are at least

conditionally compliant with HTTP 1.1 to be used. Although implementations are not required to support

the configuration port (7937), it is encouraged.

Overview of Capabilities

The EGD dynamic binding protocol adapter enables data transfer from any controller that supports EGD

protocol to MQTT or Predix cloud. Currently only Class 2 Dynamic Read is supported. The adapter is able

to determine when the configuration of the EGD producer it is listening on has changed and adapt in real

time by querying for a new configuration via HTTP 1.1 over TCP/IP REST calls. Events that would trigger

a configuration include moving a variable from one EGD exchange to another, causing the signature and

timestamp of the exchange to update.

xlii

Data Format

Once data has been sourced from an EGD producer exchange via UDP Data Production Packet, the binary

format of the desired EGD variables are extracted and transformed into a flat json format.

Example:

{

 "timestamp": "1504739531776",

 "data": {

 "temperature": {

 "val": 15,

 "type": "int16"

 },

 "pressure": {

 "val": 16.2,

 "type": "float"

 }

 }

}

Configuration Resources

The EGD dynamic binding protocol adapter supports the following configuration options:

Type Name

type egddynamicflat

Name Type Required

transport_addr String Yes

log_level String No

log_name String No

subscriptions Array Yes

egress Object No

Transport Address (transport_addr)

xliii

The host address where EGD messages are expected to be received. It is recommended to

keep this field as "127.0.0.1" unless multicast is used. The transport_addr can be specified

as either of the following:

• "transport_addr":"egd://<ip address>"

• "transport_addr":"egd://<FQDN>"

Log Level (log_level)

Configures the logger for the EGD client used internally to the block, can be any of the

following (case insensitive):

• off (default)

• critical

• err

• warn

• info

• debug

Log Name (log_name)

Used in the log file to associate statements with the block. If omitted, the block name is

used for the log name.

Subscriptions (subscriptions)

An array that contains JSON objects that describe a particular producer and its associated

configuration server. Within each subscription, the following configuration options are

supported:

Name Type Required

port Integer No

producer_id Integer Yes

config_url String Yes

variables Array No

• Port (port): The port on which EGD messages are expected to be received. The

default is port 18246.

• Producer ID (producer_id): Producer ID of the EGD producer whose values you want

to listen for.

xliv

• Config URL (config_url): URL of the EGD configuration server to request new

producer configurations from.

• Variables (variables): An array containing objects with the names of variables you

want to read from the EGD producer and optional aliases.

Note:

If variables is not included in config, all variables from the producer will be

returned to the user.

Egress

Used to change the EGD output or egress formats.

Field Type Applicable to Default Description

Output Format String flat_json Format of the

JSON file out­

put by the

adapter into oth­

er blocks. Valid

entries:

• flat_json

• time_se­

ries

Batch Interval Integer 30 seconds Amount of time

(in milliseconds)

the batcher will

hold or accu­

mulate data be­

fore generating

a message. Up­

on sending da­

ta, the internal

state is reset

and emptied.

xlv

Field Type Applicable to Default Description

Maximum Num­

ber of Data­

points

Integer 1 The maximum

number of da­

ta values the

batcher will

hold, per tag,

over a batch­

ing interval. This

functions as a

very simple fil­

tering step that

helps control

CPU usage.

Attributes Object time_series empty block Attributes are

dependent on

the Output For­

mat value.

Timestamp

From

String source Configures how

the output time­

stamp values

are set. Valid en­

tries:

• host (the

adapter

will use

the local

time in its

output)

• source

(the

adapter

will use

the time­

stamp

from the

xlvi

Field Type Applicable to Default Description

EGDsource

in its out­

put, un­

less that

time is 0,

in which

case it

will use

the local

time)

Flat_json Output Example:

"egress": {

 "output_format": "flat_json",

 "timestamp_from": 1

 }

Time_series Output Example:

"egress": {

 "output_format": "time_series",

 "batch_interval": 30000,

 "max_num_datapoints": 1,

 "attributes": {},

 "timestamp_from": 1

 }

Example

{

 "type": "egddynamicflat",

 "config": {

 "log_level": "debug",

 "log_name": "egddynamicflat",

 "transport_addr": "egd://127.0.0.1",

 "subscriptions": [

 {

xlvii

 "port": 18246,

 "producer_id": 1234,

 "config_url": "http://192.168.1.8:8080",

 "variables": [

 {

 "name": "01_BOOL",

 "alias": "EGD.01_BOOL"

 }

]

 },

 {

 "port": 18246,

 "producer_id": 1235,

 "config_url": "http://192.168.1.8:8080",

 "variables": [

 {

 "name": "02_BOOL",

 "alias": "EGD.02_BOOL"

 }

]

 }

]

 }

 }

MQTT Protocol Adapter

Protocol Adapters - MQTT

The MQTT Protocol Adapter container enables the transfer of data from any MQTT broker to another

using the CDP library. This includes data transfer from a remote broker to the local Predix Edge Broker,

from the local broker to remote, remote to remote, or local to local.

The following diagram shows a simple use case where the data from an external device flows through the

MQTT protocol adapter and is finally sent to the Predix cloud.

Figure 2.

Protocol Adapter - MQTT

xlviii

Where Do I Get the MQTT Protocol Translator Application?

The MQTT Protocol Translator App and sample configuration file are stored in Artifactory.

To access Artifactory downloads, you will require a GE SSO (single sign-on) username and approval to

access Artifactory.

Request a GE SSO

Use the following steps to obtain a GE SSO if you do not already have one.

1. Complete the Your GE SSO Account request form. All fields marked with a checkmark are required.

2. Click Submit.

Note:

The only non-alphanumeric characters allowed in your GE SSO are an underscore (_) and a period

(.). Using any other non-alphanumeric characters for your username will result in an invalid

authentication in Artifactory.

Request Artifactory Access

Once you have an SSO, use the following steps to request access to Artifactory.

1. Complete the Edge Artifactory Access Requests form.

2. Click Submit.

MQTT Protocol Adapter Downloads

The downloadable files for the MQTT Protocol Adapter are available here.

The latest version of the MQTT adapter is protocol-adapter-mqtt-amd64:latest.

Overview of Capabilities

Currently supported:

https://mypassword.ge.com/b2bregistration/index.html#/signin
https://app.smartsheet.com/b/form/97c1fbee95df475e9849674a58332963
https://dig-grid-artifactory.apps.ge.com/ui/repos/tree/General/predix-edge-ext-mvn/Adapters/mqtt-adapter

xlix

• Subscribe and publish to a topic on any MQTT broker endpoint.

Limitations:

• Can subscribe to only a single topic in each block in the configuration file. If multiple topics are

desired, multiple blocks must be included in the configuration.

Subscribe to a Topic

When an application is subscribed to a topic on an MQTT broker, it will receive any data that is published

to that topic on that broker. In order to subscribe to a topic on an MQTT broker endpoint using the MQTT

Protocol Adapter, you must define a block in the configuration file of type cdpin. The following block

configuration example will subscribe to the topic input_data on the broker located at broker.ip.com:1883.

"mqtt_subscriber": {

 "type": "cdpin",

 "config": {

 "transport_addr": "mqtt-tcp://broker.ip.com:1883",

 "method": "sub",

 "node_ref": "input_data",

 "log_level": "info",

 "log_name": "mqtt_subscribe_test"

 }

}

Publish to a Topic

When an application publishes to a topic on an MQTT broker, any subscribers of that topic will receive

the published data. In order to publish to a topic on an MQTT broker endpoint using the MQTT Protocol

Adapter, you must define a block in the configuration file of type cdpout. The following block configuration

example will publish data to the topic output_data on the broker located at broker.ip.com:1883.

"mqtt_publisher": {

 "type": "cdpout",

 "config": {

 "transport_addr": "mqtt-tcp://broker.ip.com:1883",

 "method": "pub",

 "node_ref": "output_data",

 "log_level": "info",

l

 "log_name": "mqtt_publish_test"

 }

}

Authentication

Username and password authentication are supported. No authentication is also supported.

To remove authentication, remove any authentication fields (username, password) from the options object.

Username/Password

To use username/password authentication, the username and password fields need to be in the options

object of your configuration.

"options": {

 "username": "<UserName>",

 "password": "<Password>"

 }

Configuration Properties for MQTT Protocol Adapter

The following are the configuration properties for the blocks named mqtt_source and mqtt_sink in the

configuration below which have the types cdpin and cdpout respectively. Read the Generic CDP Blocks (on

page xvi) section of the Protocol Adapters (on page ix) documentation page for more information

on these blocks and the fields within them.

Table 9.

Property Type Required Default Value

transport_addr String yes mqtt-tcp://predix-edge-

broker

node_ref String yes

method String yes pub

log_name String no

log_level String no

options Object no

li

Sample Files

docker-compose.yml

version: "3.0"

services:

 protocol_translator_mqtt:

 image: "protocol-adapter-mqtt-amd64:latest"

 environment:

 config: "/config/config.json"

 healthcheck:

 timeout: 5s

 retries: 3

 interval: 5s

 networks:

 - predix-edge-broker_net

networks:

 predix-edge-broker_net:

 external: true

config.json

The sample configuration below receives data from the MQTT broker located at

remote.hostname.or.ip.com on port 1883 via the block named mqtt_source. This block is of type

cdpin, the generic input CDP block. It then forwards that data directly to the local Predix Edge Broker

which has the hostname predix-edge-broker.

{

 "blocks": {

 "mqtt_source": {

 "type": "cdpin",

 "config": {

 "transport_addr": "mqtt-tcp://remote.hostname.or.ip.com:1883",

 "method": "sub",

 "node_ref": "data/temperature",

 "log_level": "info",

 "log_name": "mqtt_source_test"

lii

 }

 },

 "mqtt_sink": {

 "type": "cdpout",

 "config": {

 "transport_addr": "mqtt-tcp://predix-edge-broker",

 "method": "pub",

 "node_ref": "remote-device0/data/temperature",

 "log_level": "info",

 "log_name": "mqtt_sink_test",

 "options": {

 "qos": 2

 }

 }

 }

 },

 "mappings": {

 "mqtt_source:output": "mqtt_sink:input",

 }

}

Modbus Protocol Adapter

Where Do I Get the Modbus Protocol Translator Application?

The Modbus Protocol Translator App and sample configuration file are stored in Artifactory. Use the

following information to ensure you can access the files.

To access Artifactory downloads, you will require a GE SSO (single sign-on) username and approval to

access Artifactory.

Request a GE SSO

Use the following steps to obtain a GE SSO if you do not already have one.

1. Complete the Your GE SSO Account request form. All fields marked with a checkmark are required.

2. Click Submit.

https://mypassword.ge.com/b2bregistration/index.html#/signin

liii

Note:

The only non-alphanumeric characters allowed in your GE SSO are an underscore (_) and a period

(.). Using any other non-alphanumeric characters for your username will result in an invalid

authentication in Artifactory.

Request Artifactory Access

Once you have an SSO, use the following steps to request access to Artifactory.

1. Complete the Edge Artifactory Access Requests form.

2. Click Submit.

Modbus Protocol Adapter Downloads

The downloadable files for the Modbus Protocol Adapter are available here.

The latest version of the Modbus adapter is protocol-adapter-modbus-amd64:latest.

Protocol Benchmarking - Modbus

The numbers in the tables below represent the ideal throughput for the data pump use case (data

traveling from a protocol adapter to the Predix Edge MQTT Broker to the Cloud Gateway to Time Series).

The tests were executed in a controlled environment with one adapter running at a time, under ideal

network conditions with a local time series simulator. The rate was deemed successful if there was

less than a 1 percent loss rate over the course of a multi-hour test. Based on the testing, data loss rates

dramatically increase as tag counts pass these thresholds.

The tested VMs were configured as follows (with a 2GHz vCPU):

Table 10. Tested VM Configurations

VM Processors RAM (GB) Disk Space (GB)

VM (small) 1 1 5

VM (medium) 2 4 20

VM (large) 4 8 20

https://app.smartsheet.com/b/form/97c1fbee95df475e9849674a58332963
https://dig-grid-artifactory.apps.ge.com/ui/repos/tree/General/predix-edge-ext-mvn/Adapters/modbus-adapter

liv

Table 11. Modbus-Poll

Environment Period (seconds) Acceptable Tag Rate

1 1350VM (small)

10 9225

1 1200VM (medium)

10 9525

1 1425VM (large)

10 11850

1 675Predix Edge Gateway 3002

10 4650

The number of tags per adapter does not scale with the device’s performance characteristics. It is

recommended to add new adapters to support higher tag counts along with corresponding physical

hardware to support the additional applications.

Overview of Capabilities

Modbus communication is via a client–server technique, in which only one device (the client) can initiate

transactions (called ‘queries’). The other devices (the servers) respond by supplying the requested data to

the client, or by taking the action requested in the query. Predix EdgeOS with the Modbus protocol adapter

functions as a client device. Typical servers include programmable controllers, RTUs, DCS, I/O systems,

data concentrators, flow computers and various instrumentation. The client can address individual

servers, or can initiate a broadcast message to all servers. Servers return a message (called a ‘response’)

to queries that are addressed to them individually.

The Modbus protocol establishes the format for the client’s query by placing into it the device (or

broadcast) address, a function code defining the requested action, any data to be sent, and an error–

checking field. The server’s response message is also constructed using Modbus protocol. It contains

fields confirming the action taken, any data to be returned, and an error–checking field. If an error

occurred in receipt of the message, or if the server is unable to perform the requested action, the server

will construct an error message and send it as its response.

Currently Supported:

lv

• Read/write: Supports reads and writes. Pseudo-subscription through polling.

• TCP and RTU (serial) communication.

Limitations:

• Writing to coils is not supported.

• Writing arrays to a series of adjacent registers is not supported.

• The Modbus adaptor does not support Modbus 20 or Modbus 21 commands.

Read

Supported function codes include:

• 01 Read Coil Status (0x register)

• 02 Read Input Status (1x register)

• 03 Read Holding Registers (4x register)

• 04 Read Input Registers (3x register)

Note:

Function Code 20 Read General Reference (6x register) is not supported.

Write

Supported function codes include:

• 06 Preset Single Register

• 16 Preset Multiple Registers

Note:

The following function codes are not supported:

• 21 Write General Reference (6x register)

• 05 and 15 Coil (0x register) Writes

TCP Communication

lvi

A dedicated header is used on TCP/IP to identify the Modbus Application Data Unit. It is called the MBAP

header (ModBus Application Protocol header). This header provides some differences compared to the

Modbus RTU application data unit used on serial line:

• The Modbus ‘server address’ field usually used on Modbus Serial Line is replaced by a single

byte ‘Unit Identifier’ within the MBAP Header. The ‘Unit Identifier’ is used to communicate via

devices such as bridges, routers and gateways that use a single IP address to support multiple

independent Modbus end units.

• All Modbus requests and responses are designed in such a way that the recipient can verify that

a message is finished. For function codes where the Modbus PDU has a fixed length, the function

code alone is sufficient. For function codes carrying a variable amount of data in the request or

response, the data field includes a byte count.

• When Modbus is carried over TCP, additional length information is carried in the MBAP header

to allow the recipient to recognize message boundaries even if the message has been split into

multiple packets for transmission. The existence of explicit and implicit length rules, and use of a

CRC-32 error check code (on Ethernet) results in an infinitesimal chance of undetected corruption

to a request or response message.

RTU (Serial) Communication

The Modbus protocol defines a simple Protocol Data Unit (PDU) independent of the underlying

communication layers. The mapping of MODBUS protocol on specific buses or networks can introduce

some additional fields on the Application Data Unit (ADU). For Modbus Serial, the Address field only

contains the slave address. The valid slave nodes addresses are in the range of 0 – 247 decimal. The

individual slave devices are assigned addresses in the range of 1 – 247. A master addresses a slave by

placing the slave address in the address field of the message. When the slave returns its response, it

places its own address in the response address field to let the master know which slave is responding.

The function code indicates to the server what kind of action to perform. The function code can be

followed by a data field that contains request and response parameters.

Configuration Properties for Modbus Protocol Adapter

Modbus specific configurations are stored in the modbus_source block, and there are two types: Modbus

Flat (on page lx) and Modbus Sink Flat (on page lxi).

The following fields are common to both block types:

lvii

Table 12. Common Configuration Properties

Field Type Required Default

transport_addr string yes

data_map array yes

log_level string 'off'

log_name string

default_byte_order boolean true

first_16_bit_low boolean true

first_32_bit_low boolean true

options object

transport_addr

The transport_addr field determines the location of the Modbus endpoint the block will communicate

with. Its prefix can be any of the following:

• 'modbus-tcp'

• 'modbus-rtu'

• 'modbus-ascii'

• 'modbus-rtu-tcp'

• 'modbus-ascii-tcp'

data_map

The data_map field defines what registers to retrieve data from on the Modbus endpoint and how to

convert that data to flat JSON format. The data_map is an array of objects of the following structure:

Field Type Required

alias String yes

reg_type String yes

address Integer yes

type String yes if reg_type is 'holding' or 'in­

put'

lviii

Field Type Required

bit_index Integer yes if type is 'bool'

count Integer yes if type is 'string' or reg_type is

'coil'

• The alias field of the data_map determines the name of the requested value that should mean

something to the target application. Examples are “temperature” and “pressure”.

• The reg_type field determines what register type to retrieve data from. Possible values are:

◦ 'holding'

◦ 'input'

◦ 'coil'

• The address determines the starting address of the data point. This should be any number that is a

valid Modbus register.

• The type determines the type of data to pull from the Modbus endpoint. This value will determine

how many registers are accessed and how to combine the registers to form the requested type.

Possible values are:

◦ 'bool'

◦ 'int8'

◦ 'uint8'

◦ 'int16'

◦ 'uint16'

◦ 'int32'

◦ 'uint32'

◦ 'int64'

◦ 'uint64'

◦ 'float'

◦ 'double'

◦ 'string'

• The bit_index is used only when type is 'bool'. This specifies which bit the boolean value is stored

in.

• The count is used only when type is 'string' or reg_type is 'coil'. This specifies the number of

registers or bytes to read in order to form a string or byte array.

log_level and log_name

For details about the log_level and log_name fields, see the Generic CDP Blocks (on page xvi) section

of the Protocol Adapters (on page ix) documentation page.

lix

default_byte_order

The byte order used by the Modbus adapter can be changed from the default Modbus byte ordering (big

endian) to Intel byte ordering (little endian) by using this option. By default it is the normal setting for

Modbus compatible devices. If the device uses Intel byte ordering, setting this option to false will enable

the Modbus driver to properly read Intel formatted data.

first_16_bit_low

Two consecutive registers’ addresses in a Modbus device are used for 32-bit data types, like Integer

and Float. It can be specified whether the adapter should assume the first 16 bits is the low or the high

word of the 32-bit value. The default, first word low, follows the convention of the Modicon Modsoft

programming software. This is also applicable to the two 32-bit data in 64-bit data types, like Long and

Double.

first_32_bit_low

Four consecutive registers’ addresses in a Modbus device are used for 64-bit data types, like Long and

Double. It can be specified whether the driver should assume the first 32 bits is the low or the high double

word of the 64-bit value. The default, first 32 bits low, follows the default convention of 32-bit data types.

Note:

The interaction of multi-register values (e.g., 32-bit integers, 64-bit doubles, long strings) with

these settings is a little unintuitive. This is an illustration of the behavior on a 64-bit unsigned

integer 0x8877665544332211 for a few configurations.

default_byte_order first_16_bit_low first_32_bit_low transmitted as

true true true [11][22][33][44][55][66]

[77][88]

false true true [22][11][44][33][66][55]

[88][77]

true false true [33][44][11][22][77][88]

[55][66]

true true false [55][66][77][88][11][22]

[33][44]

false true false [66][55][88][77][22][11]

[44][33]

lx

You can think of these settings as only applying within “chunks” of the next largest size, i.e.,

default_byte_order controls byte orders within two-byte registers. first_16_bit_low controls byte

orders within four-byte “double registers”, and first_32_bit_low controls byte orders within 8-byte “quad

registers”. The National Instruments publication “The Modbus Protocol In-Depth” contains another

discussion of byte order in Modbus.

options

The options field contains any other miscellaneous configuration options necessary for the desired

Modbus communication.

Modbus Flat

Type

'modbusflat'

This block is used to source raw data from multiple ranges of modbus registers and transform the data

into flat JSON format.

In addition to the configuration fields found in both Modbus types, Modbus Flat has the interval

configuration field.

interval

The interval field determines the interval (in milliseconds) at which the block will poll its endpoint for data.

For example, if this is set to 1000, the block will attempt to get data every second.

Example Output Data (Flat JSON)

{

 "timestamp": "1504739531776",

 "data": {

 "temperature": {

 "val": 15,

 "type": "int16"

 },

 "pressure": {

 "val": 16.2,

 "type": "float"

 }

http://www.ni.com/white-paper/52134/en/

lxi

 }

}

Example Config Block

"modbus_source": {

 "type": "modbusflat",

 "config": {

 "transport_addr": "modbus-tcp://localhost:1502",

 "interval": 1000,

 "data_map": [

 {

 "alias": "valve_on",

 "reg_type": "holding",

 "address": 15,

 "type": "bool",

 "bit_index": 8

 },

 {

 "alias": "valve_status",

 "reg_type": "holding",

 "address": 16,

 "type": "string",

 "count": 15

 }

],

 "log_level": "debug",

 "log_name": "modbus_source_flat",

 "options": {

 "slave_id": 0

 }

 }

}

Modbus Sink Flat

Type

'modbussinkflat'

lxii

This block is used to take flat JSON formatted data and write it to any number of modbus registers on a

single Modbus server.

Example Config Block

"modbus_output": {

 "type": "modbussinkflat",

 "config": {

 "transport_addr": "modbus-rtu://<PATH_TO_DEVICE_FILE>",

 "log_level": "debug",

 "interval": 1000,

 "first_16_bit_low": false,

 "data_map": [

 {

 "aliases": [

 "modbus_byte"

],

 "address": 0,

 "type": "int8"

 },

 {

 "aliases": [

 "modbus_string"

],

 "address": 4,

 "type": "string",

 "count": 10

 }

]

 }

}

Sample Files

docker-compose.yml

version: "3.0"

services:

lxiii

 modbus:

 image: "dtr.predix.io/predix-edge/protocol-adapter-modbus:amd64-1.1.0"

 environment:

 config: "/config/config-modbus.json"

 deploy:

 restart_policy:

 condition: on-failure

 delay: 5s

 max_attempts: 5

 window: 30s

 networks:

 - predix-edge-broker_net

networks:

 predix-edge-broker_net:

 external: true

config.json

This sample configuration file as written will:

• read from a Modbus TCP connection at the configured host and port, polling every 1000

milliseconds, assuming the Modbus source is configured for reverse byte order within two-byte

words.

• write to a Modbus RTU connection mounted as a file into the container, with the order of two-byte

words inside 32-byte chunks reversed.

• write the data to the MQTT broker on the topic out.

• read data from the MQTT broker on the topic in.

{

 "blocks": {

 "modbus_input": {

 "type": "modbusflat",

 "config": {

 "transport_addr": "modbus-tcp://<MODBUS_TCP_HOST>:<MODBUS_TCP_PORT>",

 "log_level": "debug",

 "interval": 1000,

 "default_byte_order": false,

lxiv

 "data_map": [

 {

 "alias": "modbus_byte",

 "reg_type": "input",

 "address": 0,

 "type": "int8"

 },

 {

 "alias": "modbus_bool",

 "reg_type": "holding",

 "address": 4,

 "type": "bool",

 "bit_offset": 9

 }

]

 }

 },

 "flat_to_timeseries": {

 "type": "flattotimeseries",

 "config": {

 "attributes": {

 "machine_type": "modbus"

 }

 }

 },

 "mqtt_sink": {

 "type": "cdpoutqueue",

 "config": {

 "transport_addr": "mqtt-tcp://<MQTT_HOST>:<MQTT_PORT>",

 "node_ref": "predix_historian",

 "method": "pub",

 "log_level": "debug",

 "directory": "/mqtt_store",

 "max_cache_size_units": "%",

 "max_cache_size": 90

 }

 },

lxv

 "modbus_output": {

 "type": "modbussinkflat",

 "config": {

 "transport_addr": "modbus-rtu://<PATH_TO_DEVICE_FILE>",

 "log_level": "debug",

 "interval": 1000,

 "first_16_bit_low": false,

 "data_map": [

 {

 "aliases": [

 "modbus_byte"

],

 "address": 0,

 "type": "int8"

 },

 {

 "aliases": [

 "modbus_string"

],

 "address": 4,

 "type": "string",

 "count": 10

 }

]

 }

 },

 "mqtt_source": {

 "type": "cdpin",

 "config": {

 "transport_addr": "mqtt-tcp://<MQTT_HOST>:<MQTT_PORT>",

 "node_ref": "in",

 "method": "sub",

 "log_level": "debug"

 }

 }

 },

 "mappings": {

lxvi

 "modbus_input:output": "flat_to_timeseries:input",

 "flat_to_timeseries:output": "mqtt_sink:input",

 "mqtt_output:output": "modbus_output:input"

 }

}

OPC UA Protocol Adapter

Protocol Adapters - OPC-UA

OPC Unified Architecture (OPC-UA) is an industrial communication protocol with robust security features

and a complex information architecture that asset maintainers can leverage to model and store their data.

The OPC-UA protocol adapter is a Predix Edge application that allows you to communicate with your OPC-

UA server. The following diagram shows a simple use case where data from an OPC-UA server is retrieved

by the OPC-UA adapter and finally send to the Predix cloud.

Figure 3. OPC-UA Sample Use Case

Where Do I Get the OPC-UA Protocol Adapter Application?

The OPC-UA Protocol Adapter App and sample configuration file are stored in Artifactory.

To access Artifactory downloads, you will require a GE SSO (single sign-on) username and approval to

access Artifactory.

Request a GE SSO

Use the following steps to obtain a GE SSO if you do not already have one.

1. Complete the Your GE SSO Account request form. All fields marked with a checkmark are required.

2. Click Submit.

https://mypassword.ge.com/b2bregistration/index.html#/signin

lxvii

Note:

The only non-alphanumeric characters allowed in your GE SSO are an underscore (_) and a period

(.). Using any other non-alphanumeric characters for your username will result in an invalid

authentication in Artifactory.

Request Artifactory Access

Once you have an SSO, use the following steps to request access to Artifactory.

1. Complete the Edge Artifactory Access Requests form.

2. Click Submit.

OPC-UA Protocol Adapter Downloads

The downloadable files for the OPC-UA Protocol Adapter are available here.

The latest version of the OPC-UA adapter is protocol-adapter-opcua-amd64:latest.

Protocol Benchmarking - OPC-UA

The numbers in the tables below represent the ideal throughput for the data pump use case (data

traveling from a protocol adapter to the Predix Edge MQTT Broker to the Cloud Gateway to Time Series).

The tests were executed in a controlled environment with one adapter running at a time, under ideal

network conditions with a local time series simulator. The rate was deemed successful if there was

less than a 1 percent loss rate over the course of a multi-hour test. Based on the testing, data loss rates

dramatically increase as tag counts pass these thresholds.

The tested VMs were configured as follows (with a 2GHz vCPU):

Table 13. Tested VM Configurations

VM Processors RAM (GB) Disk Space (GB)

VM (small) 1 1 5

VM (medium) 2 4 20

VM (large) 4 8 20

https://app.smartsheet.com/b/form/97c1fbee95df475e9849674a58332963
https://dig-grid-artifactory.apps.ge.com/ui/repos/tree/General/predix-edge-ext-mvn/Adapters/opcua-adapter

lxviii

Table 14. OPC-UA Poll

Environment Period (seconds) Acceptable Tag Rate

1 4200VM (small)

10 47407

1 4500VM (medium)

10 52983

1 5100VM (large)

10 53555

1 4500Predix Edge Gateway 3002

10 31275

The number of tags per adapter does not scale with the device’s performance characteristics. It is

recommended to add new adapters to support higher tag counts along with corresponding physical

hardware to support the additional applications.

Overview of Capabilities

Currently supported:

• Read/write: Supports write operations. Supports polling and subscription-style read operations.

• Events: Supports reception of base event attributes.

• Communication encryption.

• Authentication:

◦ username/password

◦ certificates

Details of Capabilities

In both reading and writing (GET and SET), tags are addressed using OPC-UA XML Syntax:

• String NodeID form: "ns=4;s=Foo.Bar.Baz"

• IntegerNodeID form: "ns=34;i=11902"

• OpaqueNodeID form: ns=;g=<UUID>

• BinaryNodeID form: ns=;g=<Base64 string>

lxix

If ns is omitted, namespace 0 is assumed: "s=Foo.Bar.Baz"

The value will be returned as a JSON string of the form:

{"val":<data>, "type":<typename>}

Only numeric and the STRING and DATE_TIME types are returned currently. Other data types are not

supported and the value will be “UNKNOWN”.

The supported types are:

• float

• double

• bool

• byte

• sbyte

• int16

• uint16

• int32

• uint32

• int64

• uint64

• string

• datetime

To be compatible with JSON style SET node refs (described below) the GET method will accept node refs

starting with “/json?”. So the two node refs /json?ns=4;i=1900 and ns=4;i=1900 are equivalent.

The supported types in flat JSON and their corresponding versions in the OPC-UA specification are as

follows:

Table 15. Supported Flat JSON Types and OPC-UA Equivalents

Flat JSON OPC-UA

bool boolean

int8 sbyte

int16 int16

int32 int32

int64 int64

lxx

Table 15. Supported Flat JSON Types and OPC-UA Equivalents (continued)

Flat JSON OPC-UA

uint8 byte

uint16 uint16

uint32 uint32

uint64 uint64

float float

double double

string string

datetime datetime

The OPC-UA data quality status is processed and bad or uncertain data will be forwarded as a null value

with the quality flag set to "0" to Time Series. The quality flag is set to "3" for good data.

Read

OPC-UA supports both polling and subscription-style reads.

Polling (OPC-UA Poll Flat)

OPC-UA polling will read data from an OPC-UA server at a user specified frequency. Information about

configuring the interval is found in the Deployment and Configuration Resources (on page lxxxvi).

Subscription (OPC-UA Sub Flat)

OPC-UA polling will read data from a specific topic on an OPC-UA server. Information about configuration

is found in the Deployment and Configuration Resources (on page lxxxiv).

Write

SET supports setting simple primitive types. There are two ways to set values, using a simple binary

structure or using JSON.

Events

lxxi

SET supports setting simple primitive types. There are two ways to set values, using a simple binary

structure or using JSON.

Communication Encryption

Certificate encrypted connections will only be active if both encryption_cert_path and

encryption_private_key_path are specified in the options configuration object and are nonempty. The

encryption_cert_password option can be omitted if the private key at encryption_private_key_path is not

password-protected.

To use communication encryption, the application_uri, security_mode and pki_root_path must also be

specified in the options configuration object.

Create an Encryption Certificate on a Unix-type System

To create an encryption certificate using a Unix-like system, the following command can be used:

openssl req \

 -new \

 -newkey rsa:2048 \

 -days 3650 \

 -keyout encryption.key \

 -subj "/C=DE/ST=/O=Organization/CN=urn:ge.edge.research.com:GEPredix:OPCUAClient" \

 -reqexts SAN \

 -extensions SAN \

 -config <(cat /etc/ssl/openssl.cnf <(printf

 "[SAN]\nsubjectAltName=URI:urn:ge.edge.research.com:GEPredix:OPCUAClient")) \

 -x509 \

 -outform DER \

 -out encryption.der

Create an Encryption Certificate on a Windows System

1. Download OpenSSL for your Windows device (32-bit or 64-bit).

2. Navigate to where you downloaded the OpenSSL and install using the executable.

3. We first need to build the Encryption key, which uses the default openssl.cfg file, but we need to

modify it for Predix Edge by copying it to a new config called openssl_predix_edge.cfg and

modifying this new file. From the folder in which you want to generate your encryption certificate,

open a command prompt as Administrator and run:

lxxii

copy C:\OpenSSL-Win64\bin\openssl.cfg C:\OpenSSL-Win64\bin\openssl_predix_edge.cfg && ^

 echo [SAN]\nsubjectAltName=URI:urn:ge.edge.research.com:GEPredix:OPCUAClient >>

 C:\OpenSSL-Win64\bin\openssl_predix_edge.cfg && ^

 C:\OpenSSL-Win64\bin\openssl.exe req ^

 -new ^

 -newkey rsa:2048 ^

 -days 3650 ^

 -keyout encryption.key ^

 -subj "/C=DE/ST=MA/O=Organization/CN=urn:ge.edge.research.com:GEPredix:OPCUAClient" ^

 -reqexts SAN ^

 -extensions SAN ^

 -config "C:\OpenSSL-Win64\bin\openssl_predix_edge.cfg" ^

 -x509 ^

 -outform DER ^

 -out encryption.der

4. Your encryption.der and encryption.key files are now in the folder and need to be used in

both the Predix Edge device and the OPC-UA server.

application_uri

The application URI will be in the form urn:URI:COMPANY:APPLICATION where you replace the URI,

COMPANY, and APPLICATION fields with your URI, company and application name (see openssl

command above). This is created when creating your encryption certificate in the subj parameter of the

openssl command above.

security_mode

The following are the options for the security_mode field:

• 'NONE'

• 'BASIC128RSA15_SIGN'

• 'BASIC128RSA15_SIGN_ENCRYPT'

• 'BASIC256_SIGN'

• 'BASIC256_SIGN_ENCRYPT'

• 'BASIC256SHA256_SIGN'

• 'BASIC256SHA256_SIGN_ENCRYPT'

This should match what is set on the OPC-UA server.

lxxiii

pki_root_path

The pki_root_path is where the client PKI structure is created. Default pki_root_path:

pki/

├── client

│ ├── revoked

│ └── trusted

└── issuer

 ├── certs

 └── revoked

The default pki_root_path is /tmp/pki but can be changed to a custom location where you’d like to store

your encryption certificates.

This encryption certificate must be trusted by the server in order to form a secure connection.

Authentication

Username/password and certificate authentication are supported. Anonymous/no authentication is also

supported.

Username/password authentication can only be used when certificate authentication is inactive, i.e., if all

of username, user_cert_path, and user_private_key_path are specified, the OPC-UA transport will assume

that the user wants to use certificate authentication and ignore the username option.

Certificate user authentication will only be active if both user_cert_path and user_private_key_path

are specified and nonempty. The user_cert_password option can be omitted if the private key at

user_private_key_path is not password-protected.

Anonymous/no authentication is also possible. To remove authentication, remove any authentication

fields (username, password, user_cert_path, user_cert_password, user_private_key_path) from the options

object.

Username/Password

To use username/password authentication, the username and password fields need to be in the options

object of your configuration.

"options": {

 "username": "<UserName>",

lxxiv

 "password": "<Password>"

 }

Certificates

To use certificate authentication, the user_cert_path, user_private_key_path and user_cert_password

fields need to be active in the options object of your configuration, or the client_cert_path and

client_private_key_path fields need to be in that object.

"options":{

 "user_cert_path": "/config/client.der",

 "user_private_key_path":"/config/client.key",

 "user_cert_password":"<your password>"

 }

Note:

The user_cert_password is the password used when you created your authentication certificate.

To generate an authentication certificate using a Windows machine:

1. Download OpenSSL for your Windows device (32-bit or 64-bit).

2. Navigate to where you downloaded OpenSSL and install using the executable.

3. From the folder you want to generate your authentication certificate, open a command prompt and

run:

 > set RANDFILE=C:\<your folder structure>\.rnd

 > set OPENSSL_CONF=C:\OpenSSL-Win64\bin\openssl.cfg

 > C:\OpenSSL-Win64\bin\openssl.exe

4. You should now be at an OpenSSL> prompt, where you should run:

req -newkey rsa:2048 -days 3650 -keyout client.key -x509 -outform DER -out client.der

To generate an authentication certificate on a Unix-like system, use the following command.

openssl req -newkey rsa:2048 -days 3650 -keyout client.key -x509 -outform DER -out client.der

Note:

If you are running a simulator, be sure to copy these authentication certificates to your OPC-UA

simulator.

http://slproweb.com/products/Win32OpenSSL.html

lxxv

Alarm Acknowledgement

To acknowledge an activated alarm a Set or Pub with a JSON payload of type string must be performed

on the alarm object node Id. The alarm node reference must be prefixed with /acknowledge? followed by

the standard OPC-UA identifier ns=<idx>;[s|i]=<OPC ID>. The string value in the payload represents the

comment to be added to the acknowledgement.

 { "type": "string", "val": "my comment" }

SET /acknowledge?ns=2;MyLevel.Alarm

This will change ns=2;s=MyLevel.Alarm/0:AckedState to "Acknowledged" and ns=2;s=MyLevel.Alarm/

0:Comment to "my comment".

To be notified of an alarm becoming active or inactive simply perform a Get or Sub on the Active State

variable of the alarm object.

Example: The prosys opcua simulation server (https://www.prosysopc.com/products/opc-ua-simulation-

server/) has an alarm object ns=2;s=MyLevel.Alarm.

Using the OPC-UA Protocol Adapter you can subscribe to the tag ns=2;s=MyLevel.Alarm/0:ActiveState to

be notified when the alarm has been activated.

"data_map": [

 {

 "alias": "example_alarm",

 "id": "ns=2;s=MyLevel.Alarm/0:ActiveState"

 }

]

If simulation is running, an alarm will activate/deactivate approximately every 30 seconds.

Configuration Properties for OPC-UA Protocol Adapter

OPC-UA configurations are stored in the opcua block, and there are four different types:

• OPC-UA Sub Flat (on page lxxxiv)

• OPC-UA Poll Flat (on page lxxxvi)

• OPC-UA Sink Flat (on page lxxxviii)

• OPC-UA Event (on page lxx)

https://www.prosysopc.com/products/opc-ua-simulation-server/
https://www.prosysopc.com/products/opc-ua-simulation-server/

lxxvi

The following fields are common among all four block types: transport_addr, data_map, log_level,

log_name, trace_level and options.

transport_addr

The transport_addr field determines the location of the OPC-UA endpoint the block will communicate with.

Its prefix can be any of the following:

Possible prefixes

'opc-tcp'

data_map

An array of objects. Each object has a type key and an alias key. The top-level key is the address of the tag

to be written on the OPC-UA server, in OPC-UA XML Notation.

• The type value is the data type to be written. It corresponds to one of the types described in Key

Concept - Flat JSON format.

• The alias value is an array of strings. If the string "X" is in alias, then any JSON in flat JSON format

received where data.X is a key will have data.X.val written to the OPC-UA server.

Note:

The data_map field's structure is different for the OPC-UA Sub/Poll Flat and the OPC-UA Sink Flat

blocks. To see the structure for each block, see that block's section below.

log_level and log_name

For details about the log_level and log_name fields, see the Generic CDP Blocks (on page xvi) section

of the Protocol Adapters (on page ix) documentation page.

trace_level

The trace_level enables logging for the underlying client that connects to the OPC-UA device. It

should be set once for the adapter and will affect every OPC-UA block (poll, subscription, etc.) in the

configuration file. When used multiple times, the first trace_level encountered will be used. The default

value is none.

Possible Values

content, debug, info, warning, error, none

http://documentation.unified-automation.com/uasdkcpp/1.5.6/html/L2UaNodeIds.html

lxxvii

options

Field Type Required Default Description

username String yes if using user­

name/password

authentication

Username for

OPC-UA user­

name/password

authentication

password String yes if using user­

name/password

authentication

Password for pri­

vate key in clien­

t_private_key_­

pathwhen using

certificate authenti­

cation or username­

when using user­

name/password

authentication

client_private_key_­

path

String Path to the private

key for OPC-UA

certificate authen­

tication. This pri­

vate key should

be kept secret and

not moved to any

other server. Inter­

changeable with

user_private_key_­

path.

client_cert_path String Path to the public

certificate for OPC-

UA certificate au­

thentication. The

file at this path

should be added to

your OPC-UA serv­

er’s trust store. In­

lxxviii

Field Type Required Default Description

terchangeable with

user_cert_path.

user_cert_path String Path to the pub­

lic certificate this

client uses for user

authentication. On­

ly DER encoded

files are current­

ly supported. The

certificate should

match with the pri­

vate key specified

by user_private_­

key_path. Inter­

changeable with

client_cert_path.

user_private_key_­

path

String Path to the private

key this client us­

es for user certifi­

cate. Only PEM en­

coded private keys

are supported. In­

terchangeable with

client_private_­

key_path

user_cert_pass­

word

String Password to the

private key this

client uses for user

certificate. Only

PEM encoded pri­

vate keys are sup­

ported.

encryption_cert_­

path

String Path to the pub­

lic certificate this

lxxix

Field Type Required Default Description

client uses for en­

crypted connec­

tion. Only DER en­

coded files are

currently support­

ed. The certificate

should match with

the private key

specified by en­

cryption_private_­

key_path.

encryption_pri­

vate_key_path

String Path to the private

key this client uses

for encrypted con­

nection. Only PEM

encoded private

keys are support­

ed.

encryption_cert_­

password

String Password to the

private key this

client uses for en­

crypted connec­

tion. Only PEM en­

coded private keys

are supported.

application_uri String urn:ge.edge­

.research­

.com:GEPredix:OPCUA­

Client

The application URI

for this client. Must

match the URI in

the client’s encryp­

tion certificate.

pki_root_path String The path where the

client PKI struc­

ture is created if

encryption connec­

lxxx

Field Type Required Default Description

tion is used. Only

applies if encryp­

tion certificate is

used.

security_mode String Specifies the se­

curity policy to use

for encrypted con­

nection. Only ap­

plies if encryption

certificate is used.

session_timeout Integer 1200000 (20 min­

utes)

Indicates how long,

in milliseconds,

the server will re­

tain a connection

without receiving a

message from the

client.

connect_timeout Integer 5000 The length of time,

in milliseconds, a

client will wait for a

reply to a connect

request.

watchdog_interval Integer 5000 The number of mil­

liseconds between

watchdog checks.

watchdog_timeout Integer 5000 The maximum

amount of time,

in milliseconds, a

client will wait for

a response to a

watchdog request.

After the first fail­

ure, the watchdog

timeout doubles;

lxxxi

Field Type Required Default Description

after a second fail­

ure, the connection

ends.

publishing_interval Integer 1000 Controls how often,

in milliseconds, the

client will check for

available data (to

which the client is

subscribed).

Note:

Used only

by blocks

that sup­

port sub­

scription.

sampling_interval Integer 200 Controls how often,

in milliseconds, the

server samples the

value of a tag.

Note:

Valid on­

ly for

OPC-UA

adapters

that sub­

scribe to

tags (oth­

erwise the

option is

ignored).

lifetime_count Integer 1200 Controls the life­

time, in seconds,

lxxxii

Field Type Required Default Description

of the subscription

(as opposed to the

lifetime of the ses­

sion). The lifetime

of the subscription

is set to publishing

interval * lifetime

count. The default

is 1200 (20 min­

utes).

Note:

Used only

by blocks

that sup­

port sub­

scription.

max_batch_size Integer 200 The maximum

number of tags

that can be sub­

scribed to in a sin­

gle network re­

quest. For exam­

ple, an adapter with

1000 tags and a

max_batch_size

of 200 would send

five network re­

quests.

Note:

Used only

by blocks

that sup­

lxxxiii

Field Type Required Default Description

port sub­

scription.

max_nodes_per_­

sub

Integer 800 The maximum

number of sub­

scription tags that

can be associated

with a single sub­

scription. Once this

limit is reached, a

new subscription is

created.

Note:

Valid on­

ly for

OPC-UA

adapters

that sub­

scribe to

tags (oth­

erwise the

option is

ignored).

queue_size Integer 1 The number of da­

ta samples queued

for publication.

Used when the

sampling interval is

less than the pub­

lishing interval. A

value of 0 or 1 re­

sults in only the

most recent value

being published.

lxxxiv

Field Type Required Default Description

Note:

Valid on­

ly for

OPC-UA

adapters

that sub­

scribe to

tags (oth­

erwise the

option is

ignored).

max_operations_­

per_service_call

Integer 0 Polling mode lim­

its the number of

nodeID objects per

message request.

Add this number to

"max_operations_­

per_service_call" in

the options block.

Note:

Valid on­

ly for OPC

adapters

in polling

mode.

OPC-UA Sub Flat

Table 16.

Type

'opcuasubflat'

lxxxv

The OPC-UA Sub Flat adapter block is used to subscribe to a number of OPC-UA Variable nodes in order

to receive any data as it changes, and convert that data to flat JSON format.

The following table details the fields of this block's config object. For details on what any common fields

mean, see Configuration Properties for OPC-UA Protocol Adapter (on page lxxv).

Table 17.

Field Type Required Default

transport_addr String yes

data_map Array yes

log_level String 'off'

log_name String

options Object

report_bad_quality Boolean false

The data_map field is an array that contains objects with two fields: alias and id.

• The alias field gives that node an alias to be used in the flat JSON output data. This alias becomes

the Time Series Tag if the data is converted to Time Series Format using the Flat to Time Series

conversion block.

• The id field determines the Node ID of the node on the OPC-UA server.

report_bad_quality

When set to 'true', the report_bad_quality field is used to send bad quality data about the subscribed tags

to the timeseries when connectivity to the OPC UA server is lost. The value of the tags would be set to

'NULL' and the data is sent exactly once to the timeseries. When connectivity is restored, normal data is

sent again. If this field is set to 'false', then no data would be sent to timeseries when connectivity to the

OPC UA server is lost.

Example Config Block

"opcua": {

 "type": "opcuasubflat",

 "config": {

 "transport_addr": "opc-tcp://<OPCUA_HOST>:<OPCUA_PORT>",

 "log_level": "debug",

lxxxvi

 "report_bad_quality": false,

 "data_map": [

 {

 "alias": "Integration.App.Device1",

 "id": "ns=5;s=Counter1"

 }

]

 }

}

OPC-UA Poll Flat

Table 18.

Type

'opcuapollflat'

OPC-UA Poll flat also requires an additional field: interval.

The OPC-UA Poll Flat adapter block is used to poll a number of OPC-UA Variable nodes to retrieve their

data at a specified polling interval and convert that data to flat JSON or Predix Timeseries format.

The following table details the fields of this block's config object. For details on what any common fields

mean, see Configuration Properties for OPC-UA Protocol Adapter (on page lxxv).

Table 19.

Field Type Required Default

transport_addr String yes

data_map Array yes

interval Integer yes

log_level String 'off'

log_name String

options Object

report_bad_quality Boolean false

source_timestamp Boolean true

lxxxvii

Table 19. (continued)

Field Type Required Default

output_format String 'flat_json'

The data_map field is an array that contains objects with two fields: alias and id.

• The alias field gives that node an alias to be used in the flat JSON output data. This alias becomes

the Time Series Tag if the data is converted to Time Series Format using the Flat to Time Series

conversion block.

• The id field determines the Node ID of the node on the OPC-UA server.

interval

The interval field determines the interval (in milliseconds) at which the block will poll its endpoint for

data. For example, if this is set to 1000, the block will attempt to get data every second.

report_bad_quality

When set to 'true', the report_bad_quality field is used to send bad quality data about the polled tags to

the timeseries when connectivity to the OPC UA server is lost. The value of the tags would be set to 'NULL'

and the data is sent to the timeseries at every polling interval. When connectivity is restored, normal data

is sent again. If this field is set to 'false', then no data would be sent to the timeseries when connectivity to

the OPC UA server is lost.

source_timestamp

When set to 'true', the source_timestamp field uses the timestamp of the data from the OPC UA server.

If it is set to 'false', the timestamp from the Predix EDGE device is used. The caveat here is that

report_bad_quality takes precedence. When report_bad_quality is set to 'true', the source_timestamp field

is internally forced to 'false', regardless of the value set by the user. The value of the source_timestamp

field set by the user is honoured only when report_bad_quality is set to 'false'.

output_format

The output_format field takes a string parameter and can be either flat_json or time_series.

Example Config Block

"opcua_input": {

 "type": "opcuapollflat",

lxxxviii

 "config": {

 "transport_addr": "opc-tcp://<OPCUA_HOST>:<OPCUA_PORT>",

 "log_level": "debug",

 "interval": 1000,

 "report_bad_quality": false,

 "source_timestamp": false,

 "output_format": "flat_json",

 "options": {

 "username": "user",

 "password": "pass",

 "client_cert_path": "/config/client.der",

 "client_private_key_path": "/config/keys/client.key"

 },

 "data_map": [

 {

 "alias": "SampleValue",

 "id": "ns=1;s=SampleValue"

 }

]

 }

}

OPC-UA Sink Flat

Table 20.

Type

'opcuasinkflat'

The OPC-UA Sink Flat adapter block is used to write data to a number of OPC-UA Variable nodes. It

expects input data to be in the flat JSON format.

The following table details the fields of this block's config object. For details on what any common fields

mean, see Configuration Properties for OPC-UA Protocol Adapter (on page lxxv).

lxxxix

Table 21.

Field Type Required Default

transport_addr String yes

data_map Array yes

log_level String 'off'

log_name String

options Object

The data_map field is an object of the form:

{

 "node_id_1": {

 "type": "<type>",

 "aliases": ["alias1.1", "alias1.2"]

 },

 "node_id_2": {

 "type": "<type>",

 "aliases": ["alias2"]

 }

}

The node_id_* field names should correspond to the Node IDs of the OPC-UA nodes and should be in

[OPC-UA XML notation] format.

The value of the type field should be one of the data types supported by flat JSON (listed in Details of

Capabilities (on page lxviii)), except for the datetime type.

The value of the aliases field is an array of keys into the data field of the input flat JSON. This field is how

the block knows which datapoints in the input data are to be sent to which OPC-UA node.

Example Config Block

"opcua_sink": {

 "type": "opcuasinkflat",

 "config": {

 "transport_addr": "opc-tcp://<OPCUA_HOST>:<OPCUA_PORT>",

 "log_level": "debug",

 "data_map": {

xc

 "ns=5;Counter1": {

 "type": "int32",

 "aliases": [

 "Integration.App.Device1.RASP1"

]

 }

 }

 }

}

OPC-UA Events

Table 22.

Type

'opcuaevent'

The OPC-UA Event adapter block is used to subscribe to an OPC-UA event node to receive base event

notifications and convert them into JSON format. The following table details the fields of this block’s

config object. For details on what any common field means, see Configuration Properties of OPC-UA

Protocol Adapter (on page lxxv).

Table 23.

Field Type Required Default

transport_addr String Yes

event_node Array Yes

event_attributes Array Yes

log_level String No 'off'

log_name String No <block_name>

interval [milliseconds] Integer No 1000

options String No

The event_node field is an array with one single entry. The entry contains two fields: alias and id:

xci

• The alias field assigns that node an alias to be used in the flat JSON output data. The alias is

prepended to the event attribute name and becomes the Time Series Tag if the data is converted to

Time Series Format using the Flat to Time Series conversion block.

• The id field specifies the Node ID of the node on the OPC-UA server. The standard node ID for

events defined by OPC is “ns=0;i=2253”.

The OPC-UA defined base event attributes are: "SourceNode", "SourceName", "Time", "EventId",

"EventType", "LocalTime", "Message", "ReceiveTime", "Severity".

Note that the event attributes are case sensitive. Undefined names or duplicates are silently discarded.

The interval defines the retransmission interval for subscription requests from the client after

connection to the OPC-UA server has been established.

Example Config Block

"opcua": {

 "type": "opcuaevent",

 "config": {

 "transport_addr": "opc-tcp://<OPCUA_HOST>:<OPCUA_PORT>",

 "log_level": "debug",

 "event_node": [

 {

 "alias": "Server-Prosys",

 "id": "ns=0;i=2253"

 }

],

 "event_attributes": ["SourceNode", "SourceName", "Time",

 "EventId", "EventType", "LocalTime",

 "Message", "ReceiveTime", "Severity"]

 }

}

The following is an example JSON output event (line formatted for simple display) from alias “Server-

Prosys” and attributes “Message” and “Severity”:

{"data": {

 "Server-Prosys.Message":{"type":"string","val":"Level exceeded"},

 "Server-Prosys.Severity":{"type":"uint16","val":500}

 },

xcii

 "timestamp":1551250457139}

}

Sample Files

docker-compose.yml

version: "3.0"

services:

 opcua:

 image: "protocol-adapter-opcua-amd64:latest"

 environment:

 config: "/config/config-opcua.json"

 healthcheck:

 timeout: 5s

 test: exit 0

 retries: 3

 interval: 5s

 networks:

 - predix-edge-broker_net

 deploy:

 restart_policy:

 condition: on-failure

networks:

 predix-edge-broker_net:

 external: true

config.json

This sample config file will:

• Log in using certificate authentication and simply ignore the username parameter. The password

parameter will be used as the passphrase to the private key at private_key/client.key.

• Use subscriptions to read data from the OPC-UA server.

• Write the data to the MQTT broker on the topic out.

• Read data from the MQTT broker on the topic in.

xciii

{

 "blocks": {

 "opcua_input": {

 "type": "opcuasubflat",

 "config": {

 "transport_addr": "opc-tcp://<OPCUA_HOST>:<OPCUA_PORT>",

 "log_level": "debug",

 "options": {

 "username": "user",

 "password": "pass",

 "client_cert_path": "/config/client.der",

 "client_private_key_path": "/config/keys/client.key"

 },

 "data_map": [

 {

 "alias": "SampleValue",

 "id": "ns=1;s=SampleValue"

 }

]

 }

 },

 "flat_to_timeseries": {

 "type": "flattotimeseries",

 "config": {

 "attributes": {

 "machine_type": "opcua"

 }

 }

 },

 "mqtt_sink": {

 "type": "cdpoutqueue",

 "config": {

 "transport_addr": "mqtt-tcp://<MQTT_HOST>",

 "node_ref": "out",

 "method": "pub",

 "log_level": "debug",

 "log_name": "opcua_mqtt_sink",

xciv

 "directory": "/mqtt_store",

 "max_cache_size_units": "%",

 "max_cache_size": 90

 }

 },

 "mqtt_source": {

 "type": "cdpin",

 "config": {

 "transport_addr": "mqtt-tcp://<MQTT_HOST>:<MQTT_PORT>",

 "node_ref": "in",

 "method": "sub",

 "log_name": "gateway_mqtt_source",

 "log_level": "debug"

 }

 },

 "opcua_output": {

 "type": "opcuasinkflat",

 "config": {

 "transport_addr": "opc-tcp://<OPCUA_SOURCE>:<OPCUA_PORT>",

 "log_level": "debug",

 "options": {

 "username": "user",

 "password": "pass",

 "client_cert_path": "/config/client.der",

 "client_private_key_path": "/config/keys/client.key"

 },

 "data_map": {

 "ns=1;s=SampleValue": {

 "type": "int8",

 "aliases": ["SampleValue"]

 }

 }

 }

 }

 }

 },

 "mappings": {

xcv

 "opcua_input:output": "flat_to_timeseries:input",

 "flat_to_timeseries:output": "mqtt_sink:input",

 "mqtt_source:output": "opcua_output:input"

 }

}

Command Handler Block

The OPC-UA Command Handler adapter block is capable of receiving requests from a topic on the Predix

Edge Broker, sending those requests to an OPC-UA server, and returning the results from those requests

back to a topic on the Predix Edge Broker.

This block’s “type” field is “opcuacommandhandler”, and an example configuration file that includes the

block is shown later in this document.

The following diagrams display the steps of operation for a single request to the OPC-UA Command

Handler block in the OPC-UA Protocol Adapter.

Figure 4. OPC-UA Command Handler Operation Steps

xcvi

Figure 5. OPC-UA Command Handler Operation Steps

First, a request is sent to the Predix Edge Broker on the request topic to which the OPC-UA Command

Handler block is subscribed. In the above diagram, the sender of this request is the “Custom Client Edge

App”. The request is then translated to the OPC-UA-specific request that is sent to the OPC-UA server. The

result is processed and published to the Predix Edge Broker on the corresponding response topic. Any

application subscribed to the response topic will then receive the result of the request. The response topic

is based off of the request topic and is described in more detail below.

Request and Response Topics

Request and response topics are of the following format respectively:

• /edgeAgent/predix-edge-opc-ua-browser/<request_id>/request

• /edgeAgent/predix-edge-opc-ua-browser/<request_id>/response

Where <request_id> is a unique identifier for the request that is set by whichever application is sending

the request. The application that sends the request should first subscribe to the response topic with the

same <request_id> in order to ensure it receives the response successfully.

Base Input Request

The following is the format of a JSON input request to the OPC-UA Command Handler block.

{

 "command": "<command type>",

 "params": {

 <command-specific parameters>

 }

}

• Command is a string that determines the type of request the block will execute.

• Params is an object that contains specific arguments for the given command.

xcvii

Example Configuration

The OPC-UA Command Handler block’s type field is opcuacommandhandler. An example of its configuration

is:

{

 "blocks": {

 "opcua-command-handler": {

 "type": "opcuacommandhandler",

 "config": {

 "broker_address": "mqtt-tcp://predix-edge-broker",

 "log_name": "opcua-handler",

 "log_level": "debug"

 }

 }

 },

 "mappings": {}

}

The config object for a block of type opcuacommandhandler contains the following fields.

Field Type Required Default

log_name String No <block name>

log_level String No 'off'

broker_address String No ‘mqtt-tcp://predix-edge-

broker’

The log_name and log_level fields are consistent with other blocks and configure how log messages will

be printed The broker_address field specifies the address of the MQTT broker from which it will receive

requests.

Note:

As no fields of the config object are required, the config field itself is not required. However, the

block and its type field still must be included in the configuration file.

xcviii

OPC-UA Browse Requests

The OPC-UA specification allows you to browse the child nodes of a given starting node on an OPC-

UA server. The OPC-UA Command Handler adapter block allows you to do this using the BrowseServer

command.

Browse Input Request

The following is an example JSON input request.

{

 "command": "BrowseServer",

 "params": {

 "endpoint": "opc-tcp://your-opcua-server"

 "nodeid": "ns=0;i=84",

 "depth": 1

 }

}

• command is a string that determines what type of request the block will execute. In this example,

BrowseServer corresponds to a browse request.

• params is an object that contains the arguments for the command.

• endpoint is a string that determines which server to connect to for the request.

• nodeid is a string that specifies at which OPC-UA node to start the browse.

• depth is an integer that specifies how many levels deep to browse nodes. If the request’s depth field

is 2, the result will contain the starting node, its children, and its children’s children.

Browse Output Response

The following is an example JSON output response.

{

 "nodeClass": "Object",

 "identifier": "i=84",

 "displayName": "Root",

 "children": [

 {

 "nodeClass": "Object",

 "identifier": "i=85",

 "displayName": "Objects",

 "children": []

xcix

 },

 {

 "nodeClass": "Object",

 "identifier": "i=86",

 "displayName": "Types",

 "children": []

 },

 {

 "nodeClass": "Object",

 "identifier": "i=87",

 "displayName": "Views",

 "children": []

 }

]

}

For each node, the result will contain four fields: “

• nodeClass: corresponds to the OPC-UA spec’s NodeClass attribute. This essentially specifies the

type of the node.

• identifier: corresponds to the Node ID

• displayName: provides a name for the node to be displayed in a more readable format.

• children: a list of the child nodes of the current node. This list can be empty either if the node has

no children, or if the depth field in the input request has been reached.

OPC-UA Node Attributes Requests

All nodes in an OPC-UA server contain some list of attributes, and this list varies with the type of node –

i.e., the NodeClass of the node. The OPC-UA Command Handler adapter block allows you to query for the

values of this list of attributes using the GetNodeAttributes command.

Node Attributes Input Request

The following is an example JSON input request.

{

 "command": "GetNodeAttributes",

 "params": {

 "endpoint": "opc-tcp://your-opcua-server"

 "nodeid": "ns=2;s=Counter1",

c

 }

}

• command is a string that determines what type of request the block will execute. In this example,

GetNodeAttributes corresponds to a node attributes request.

• params is an object that contains the arguments for the command.

• endpoint is a string that determines which server to connect to for the request.

• nodeid is a string that specifies from which OPC-UA node to retrieve the attributes.

Node Attributes Output Response

The following is an example JSON output response.

{

 "NodeId": "ns=2;s=Counter1",

 "NodeClass": "Variable",

 "BrowseName": "Counter1",

 "DisplayName": "Counter1",

 "WriteMask": 0,

 "UserWriteMask": 0,

 "Value": 42,

 "DataType": "i=6",

 "ValueRank": -1,

 "AccessLevel": 3,

 "UserAccessLevel": 3,

 "MinimumSamplingInterval": 0,

 "Historizing": false

}

The fields of the response will differ depending on the type of node being queried and the attributes set on

that node. A list of possible attributes an OPC-UA node can have is available here. The names of the fields

in the response will directly correspond to the names of the attributes in that link.

OSI PI Protocol Adapters

Where Do I Get the OSI-Pi Protocol Translator Application?

The OSI-PI Protocol Translator App and sample configuration file are stored in Artifactory.

http://documentation.unified-automation.com/uasdkhp/1.0.0/html/_l2_ua_node_classes.html?_sm_au_=i0HnQnNq4nv3ZkTw

ci

To access Artifactory downloads, you will require a GE SSO (single sign-on) username and approval to

access Artifactory.

Request a GE SSO

Use the following steps to obtain a GE SSO if you do not already have one.

1. Complete the Your GE SSO Account request form. All fields marked with a checkmark are required.

2. Click Submit.

Note:

The only non-alphanumeric characters allowed in your GE SSO are an underscore (_) and a period

(.). Using any other non-alphanumeric characters for your username will result in an invalid

authentication in Artifactory.

Request Artifactory Access

Once you have an SSO, use the following steps to request access to Artifactory.

1. Complete the Edge Artifactory Access Requests form.

2. Click Submit.

OSI-PI Protocol Adapter Downloads

The downloadable files for the OSI-PI Protocol Adapter are available here.

The latest version of the OSI-PI adapter is protocol-adapter-osipi:amd64-latest.

Protocol Benchmarking - OSI-Pi

The numbers in the tables below represent the ideal throughput for the data pump use case (data

traveling from a protocol adapter to the Predix Edge MQTT Broker to the Cloud Gateway to Time Series).

The tests were executed in a controlled environment with one adapter running at a time, under ideal

network conditions with a local time series simulator. The rate was deemed successful if there was

less than a 1 percent loss rate over the course of a multi-hour test. Based on the testing, data loss rates

dramatically increase as tag counts pass these thresholds.

The tested VMs were configured as follows (with a 2GHz vCPU):

https://mypassword.ge.com/b2bregistration/index.html#/signin
https://app.smartsheet.com/b/form/97c1fbee95df475e9849674a58332963
https://dig-grid-artifactory.apps.ge.com/ui/repos/tree/General/predix-edge-ext-mvn/Adapters/osipi-adapter

cii

Table 24. Tested VM Configurations

VM Processors RAM (GB) Disk Space (GB)

VM (small) 1 1 5

VM (medium) 2 4 20

VM (large) 4 8 20

Table 25. OSI-Pi Poll

Environment Period (seconds) Acceptable Tag Rate

1 150VM (small)

10 2000*

1 TBDVM (medium)

10 TBD

1 TBDVM (large)

10 TBD

1 525Predix Edge Gateway 3002

10 2000*

* This value represents the limit to which testing was conducted, rather than a limit that indicates

increased tag counts would result in a 1 percent loss rate.

The number of tags per adapter does not scale with the device’s performance characteristics. It is

recommended to add new adapters to support higher tag counts along with corresponding physical

hardware to support the additional applications.

Overview of Capabilities

Currently supported:

• Read. Supports subscription-style polling.

• Authentication (username/password).

Details of Capabilities

ciii

The PI Web API is a RESTful interface to the PI system. It gives client applications access to their data

over HTTPS.

GE Digital Engineering has verified that the OSI-PI Protocol Adapter will function with PI Data Archive

version 3.4.395.64 or later AND PI AF 2014R2 2.6.x or later. Please note that if you are running PI Data

Archive 3.4.395.64 or later, having the updated PI AF 2014R2 is required.

Read

The PI Web API returns a JSON from the API using the web_id configured in the data_map configuration

field (on page ciii). The JSON is a string of data that is then parsed to get the value and timestamp.

Authentication

The API is over an HTTPS protocol. There is an option to set up username/password authentication

to allow acces to the PI Web API, and there is an option to set up user accounts so certain users have

access only to certain data.

Configuration Details

There are three different OSI-PI configuration types:

• native: Produces output in OSI-PI JSON format

• time_series: Produces output in Predix Time Series JSON format

• flat_json: Produces flat JSON output

All three configuration types have the same fields in their config:

Field Type Required Default

transport_addr String Yes

data_map Array Yes

log_level String No 'off'

interval_ms Int No 1000

username String No

password String No

proxy_url String No $https_proxy

civ

Field Type Required Default

validate_certs Bool No True

output_format String No flat_json

digital_output_type String No uint64

transport_addr

The transport_addr field determines the location of the OPC-UA endpoint the block will communicate

with. this can be any valid web URL.

data_map

The data_map field defines the registers to retrieve data from on the Modbus endpoint and how to convert

that data to flat JSON format. The data_map is an array of objects of the following structure:

Field Type Required

alias String yes

webid String yes

piPointName String yes

The alias field of the data_map determines the name of the requested value that should mean something

to the target application. Examples are “temperature” and “pressure”.

The webid field of the data_map is the id of the data tag you are trying to read in the server.

The piPointName field of the data_map is the human readable name of the data tag you are trying to read in

the server.

Either the webid or the piPointName must be specified in the configuration along with the alias. If both

webid and the piPointName are specified, the piPointName is ignored.

log_level and log_name

For details about the log_level and log_name fields, see the Generic CDP Blocks (on page xvi) section

of the Protocol Adapters (on page ix) documentation page.

cv

interval_ms

The interval_ms field determines the interval (in milliseconds) at which the block will poll its endpoint for

data. The default is 1000.

username

The username field is the username for the PiWebApi endpoint. The default is none.

password

The password field is the username for the PiWebApi endpoint. The default is none.

proxy_url

The proxy_url field determines the proxy address used to connect to the PiWebApi endpoint. The default

is the environment variable $https_proxy.

validate_certs

The validate_certs field determines whether the adapter will validate the certificates of the PiWebApi

endpoint. Use this field if your PiWebApi does not have a valid ceritificate. The default is an empty string.

output_format

The output_format field determines the output format of the data retrieved from the PiWebApi.

• flat_json will return the data in flat JSON format.

• time_series will return the data in Predix Time Series format.

• native will return the data in the native PiWebApi JSON format.

digital_output_type

May be one of:

• bool: A JSON true/false value is used to report 0, or non-zero values.

• string: The name of the value is reported.

• uint64: The ordinal value is left as-is (this is the default).

Sample Files

cvi

docker-compose.yml

version: "3.0"

services:

 opcua:

 image: "protocol-adapter-osipi:amd64-latest"

 environment:

 config: "/config/config-osipi.json"

 healthcheck:

 timeout: 5s

 test: exit 0

 retries: 3

 interval: 5s

 networks:

 - predix-edge-broker_net

 deploy:

 restart_policy:

 condition: on-failure

networks:

 predix-edge-broker_net:

 external: true

config.json

{

 "blocks": {

 "osipi_input": {

 "type": "osipipollingsource",

 "config": {

 "transport_addr": "osipi-https://<OSIPI server address>",

 "log_level": "debug",

 "data_map": [

 {

 "alias": "tag1",

 "webid":

 "F1DPscOFnmu2m0yOXeU7eqsGfQWQEAAAU0pDMURQUFQwM1xPUEMgVUEuT1BDLVVBIFNJTVVMQVRPUi4yLlNJTVVMQVRPUi5ERVZJQ0UxLkJPT0w5OA"

cvii

 },

 {

 "alias": "tag2",

 "piPointName": "\\\\test_osipiserver\\test_tagname_2"

 },

 {

 "alias": "tag3",

 "webid":

 "F1DPscOFnmu2m0yOXeU7eqsGfQWgEAAAU0pDMURQUFQwM1xPUEMgVUEuT1BDLVVBIFNJTVVMQVRPUi4yLlNJTVVMQVRPUi5ERVZJQ0UxLkJPT0w5OQ",

 "piPointName": "\\\\test_osipiserver\\test_tagname_3"

 },

 {

 "alias": "tag4",

 "piPointName": "test_tagname_4"

 },

 {

 "alias": "tag5",

 "webid":

 "F1DPscOFnmu2m0yOXeU7eqsGfQ4gAAAAU0pDMURQUFQwM1xPUEMgVUEuT1BDLVVBIFNJTVVMQVRPUi4yLlNJTVVMQVRPUi5ERVZJQ0UxLkRPVUJMRTE"

 }

],

 "password": "PEASPassword",

 "username": "PEASTeam",

 "proxy_url": "$https_proxy",

 "validate_certs": false,

 "interval_ms": 1000,

 "output_format": "flat_json"

 }

 },

 "flat_to_timeseries": {

 "type": "flattotimeseries",

 "config": {

 "log_level": "debug"

 }

 },

 "mqtt_sink": {

 "type": "cdpout",

cviii

 "config": {

 "transport_addr": "mqtt-tcp://predix-edge-broker",

 "node_ref": "osipi_data",

 "method": "pub",

 "log_level": "debug"

}

 }

 },

 "mappings": {

 "osipi_input:output": "flat_to_timeseries:input",

 "flat_to_timeseries:output": "mqtt_sink:input"

 }

}

cix

Predix Edge Cloud Gateways

About Predix Edge Cloud Gateway

The Cloud Gateway Edge App provides functionality to publish both to Time Series as well as Event Hub

from one container. It also features the ability to publish to multiple Time Series or Event Hub instances

simultaneously, and it provides detailed logging among other features.

The Cloud Gateway is your single solution to get data from the Edge to the Cloud. This low footprint

Edge App can subscribe to multiple topics on a MQTT Broker and forward that data to both Predix Time

Series and Predix Event Hub simultaneously. The client ID field is passed directly to the MQTT client, and

must be unique across all applications connecting to the same broker. For more information, refer to the

Mosquitto MQTT broker documentation.

The following diagram shows a simple use case where data from multiple external data sources is

forwarded to the Predix Edge Broker via Protocol Adapters (on page ix) and then to Time Series and Event

Hub using the single Cloud Gateway.

Where Do I Get It?

cx

The Cloud Gateway Edge App and sample configuration are stored in Artifactory.

To access Artifactory downloads, you will require a GE SSO (single sign-on) username and approval to

access Artifactory.

Request a GE SSO

Use the following steps to obtain a GE SSO if you do not already have one.

1. Complete the Your GE SSO Account request form. All fields marked with a checkmark are required.

2. Click Submit.

Note:

The only non-alphanumeric characters allowed in your GE SSO are an underscore (_) and a period

(.). Using any other non-alphanumeric characters for your username will result in an invalid

authentication in Artifactory.

Request Artifactory Access

Once you have an SSO, use the following steps to request access to Artifactory.

1. Complete the Edge Artifactory Access Requests form.

2. Click Submit.

Cloud Gateway Downloads

The downloadable files for the Cloud Gateway are available here.

Overview of Capabilities

Currently Supported

• Receive data from multiple configured MQTT topics.

• Publish data to:

◦ Predix Time Series service (one or more instances).

◦ Predix Event Hub service (one or more instances).

◦ Both services simultaneously.

• Persist any data that fails to publish in the Time Series Publisher and re-transmit in the

background.

• Store (on disk) and forward all data in the Event Hub Publisher.

https://mypassword.ge.com/b2bregistration/index.html#/signin
https://app.smartsheet.com/b/form/97c1fbee95df475e9849674a58332963
https://dig-grid-artifactory.apps.ge.com/ui/repos/tree/General/predix-edge-ext-mvn/Apps/cloud-gateway

cxi

• Predix UAA Authentication with both the Time Series and Event Hub services.

• Coordination of disk usage between blocks.

• Time Series data validation.

• Detailed logging.

Limitations

• The Cloud Gateway does not transform input data to Predix Time Series format. If the Time Series

Publisher is used, it will discard any input data not formatted correctly for Time Series ingestion.

• Any Event Hub topics the Cloud Gateway is configured to publish to must be created in your Predix

Event Hub instance (on page) in advance. The Event Hub Publisher does not have the

capability to create Event Hub topics on the fly due to potential security risks.

• There is no guarantee of the order in which publish requests will be reflected in their respective

cloud endpoints.

Time Series Publisher Capabilities

The Time Series Publisher block can subscribe to multiple MQTT topics, send data to Predix Time Series,

and it features detailed logging and input data validation.

See The Blocks Section (on page cxv) for an explanation of what a "block" is in the Cloud Gateway.

See Time Series Publisher Block Config (on page cxvi) for an explanation of how to configure the Time

Series Publisher block.

Time Series Publishing

The Cloud Gateway can send data to any Predix Time Series instance that the device has ingestion

permissions for. The Cloud Gateway will automatically authenticate with the Time Series instance it is

configured to communicate with as long as its access token has the appropriate Predix Time Series

scopes (on page).

It is also capable of publishing to multiple Predix Time Series instances simultaneously if it has valid

permissions for each.

The Time Series Publisher block batches data up before it sends to Time Series to minimize the number

of network requests required. You can also configure the maximum interval at which that these batches

will be sent.

unique_75
unique_75
unique_75
unique_80
unique_80
unique_80

cxii

Note:

Any data received from MQTT subscriptions must already match the Predix Time Series data

format shown in the Data Ingestion Request example (on page). If data is not properly

formatted, the Cloud Gateway will throw that data out.

Time Series MQTT Subscriptions

This block is capable of subscribing to multiple MQTT topics rather than just one at a time. The data from

all topics specified in a single Time Series Publisher block will all be forwarded to that block's configured

Predix Time Series endpoint.

Note:

The Time Series Publisher block does NOT currently support wildcard MQTT subscriptions (e.g.,

data/#). Any wildcard subscriptions will not be properly forwarded to Predix Time Series.

This block also supports an optional, configurable quality of service and client ID for its MQTT

subscriptions.

Note:

One big difference between this block and its timeseriessink predecessor in the old Time Series

Cloud Gateway is that this block directly subscribes to MQTT topics. The cdpin block should NOT

be used in this Cloud Gateway to create MQTT subscriptions.

Note:

Any data received from MQTT subscriptions must already match the Predix Time Series data

format shown in the Data Ingestion Request example (on page). If data is not properly

formatted, the Cloud Gateway will throw that data out.

Time Series Data Storage

The Time Series block stores data on disk only if the publish to Predix Time Series fails or data comes in

too quickly to store in memory.

Store on Failure uses in-memory queueing and multi-threaded publishing to increase the throughput of

the application in situations where data is accumulating faster than the max batch interval timer. Data is

unique_81_Connect_42_ExampleDataIngestionRequest
unique_81_Connect_42_ExampleDataIngestionRequest
unique_81_Connect_42_ExampleDataIngestionRequest
unique_81_Connect_42_ExampleDataIngestionRequest
unique_81_Connect_42_ExampleDataIngestionRequest
unique_81_Connect_42_ExampleDataIngestionRequest

cxiii

only stored persistently if the publish request to Time Series fails or if input data is received much more

quickly than it can be sent.

For information on the policy field in the Cloud Gateway configuration file, see Time Series Publisher

Block Config (on page cxvi).

Event Hub Publisher Capabilities

The Event Hub Publisher block can subscribe to multiple MQTT topics, store your data on disk before you

forward it to the cloud, send data to Predix Event Hub, and features detailed logging.

See The Blocks Section (on page cxv) for an explanation of what a block is in the Cloud Gateway.

See Event Hub Publisher Block Config (on page cxx) for an explanation of how to configure the Event

Hub Publisher block.

Event Hub Publishing

The Cloud Gateway can send data to any Predix Event Hub instance that the device has publish

permissions for. The Cloud Gateway will automatically authenticate with the Event Hub instance it is

configured to communicate with as long as its access token has the appropriate scopes. It will also

format publish requests automatically using gRPC, so there is no need to pre-format data before sending

it to the Event Hub Publisher block.

It is also capable of publishing to multiple Predix Event Hub instances simultaneously if it has valid

permissions for each.

The Event Hub Publisher block batches data up before it sends to Predix Event Hub to minimize the

number of network requests required. You can also configure the maximum interval at which that these

batches will be sent.

Event Hub MQTT Subscriptions

This block is capable of subscribing to multiple MQTT topics rather than just one root topic at a time. The

data from all topics specified in a single Event Hub Publisher block will all be forwarded to that block's

configured Predix Event Hub endpoint. The specific topics that data will be published to are specified in

the topic map in the configuration file.

This block also supports an optional, configurable quality of service and client ID for its MQTT

subscriptions.

cxiv

Note:

The Event Hub Publisher block does NOT currently support wildcard MQTT subscriptions (e.g.,

eventhub_data/#). Any wildcard subscriptions will not be properly forwarded to Predix Event Hub.

Note:

The way the Event Hub Publisher block handles MQTT subscriptions and what Event Hub topics

to publish to is significantly different from the way its predecessor, the Event Hub Cloud Gateway,

handled them. Instead of configuring a root MQTT topic to subscribe to in the Cloud Gateway

and forcing the adapters to publish to a subtopic of that root topic to determine what Event

Hub topic to publish to, the new Event Hub Publisher block specifies a mapping between input

MQTT topics and output Event Hub topics in its configuration file. This allows the adapters or any

other data sources to be blissfully unaware of what Event Hub topics their data will eventually be

published to. The cdpin block also should NOT be used in this Cloud Gateway to create MQTT

subscriptions.

Event Hub Store and Forward

The Event Hub Publisher block only has one option for store and forward functionality. As soon as a batch

of input data is filled (to the maximum Event Hub publish request size) or the maximum batch interval

(in the configuration file) has been reached, data will be stored in one of many disk-backed queues. The

data is then popped off of these queues once it has been successfully published to Predix Event Hub. In

the event of power loss, if some data has not been sent yet, it will still be available on disk, and the Cloud

Gateway will pick up where it left off.

How Do I Deploy It?

Refer to the Packaging and Deployment (on page) for instructions on how to deploy an Edge App

(e.g., the pre-packaged Cloud Gateway above).

If you wish to modify the docker-compose.yml file, refer to Sample Files (on page cxxv), or in the

pre-packaged Cloud Gateway tarball as a starting point and repackage the image with your new file as

explained in Packaging and Deployment (on page).

How Do I Configure It?

unique_90
unique_90
unique_90
unique_90
unique_90
unique_90

cxv

The Cloud Gateway requires a single configuration file. A sample configuration file can be found in the

Sample Files (on page cxxv). The name of this configuration file can be changed as long as its name

matches the config environment variable in the docker-compose.yml file.

If you configured one of the Protocol Adapters, the format of the Cloud Gateway's configuration file

should feel familiar, but with a few key changes. This configuration file is a JSON file that contains one

main blocks section with each block's config section within it.

{

 "blocks": {

 ...

 }

}

See The Blocks Section (on page cxv) for an explanation of what a "block" is in the Cloud Gateway.

Note:

The `mappings` section required for the Protocol Adapters is NOT used in the Cloud Gateway's

configuration.

The Blocks Section

The blocks section is used to initialize the blocks that will be used by the Cloud Gateway. Think of each as

a block of functionality. There are two main types of blocks in the Cloud Gateway. One that can send data

to Predix Time Series service, and one that can send data to Predix Event Hub service.

Every block must have a type and config field in the configuration file. The type field defines what type

of block is to be instantiated. The config section defines the configuration fields for that block and will

look different depending on the type of the block. This config section is passed to the block when it is

instantiated.

In the following example, two blocks are defined; one named block1 of type timeseries, and another

named block2 of type eventhub.

{

 "blocks": {

 "block1": {

 "type": "timeseries",

 "config": {

 ...

cxvi

 }

 },

 "block2": {

 "type": "eventhub",

 "config": {

 ...

 }

 },

 ...

 }

}

Time Series Publisher Block Config

The Time Series Publisher block can be instantiated by using the block type timeseries.

See The Blocks Section (on page cxv) for an explanation of what a block is in the Cloud Gateway.

The configuration fields (in the config portion of the block configuration) for the timeseries block are as

follows:

Table 26. Configuration Fields

Field Type Required Default

log_name String no <block name>

log_level String no 'off'

mqtt/transport_addr String no mqtt-tcp://predix-edge-

broker

mqtt/qos Integer no 0

mqtt/client_id String no

mqtt/topics Array of Strings yes

policy String no store_on_failure

store_forward Object yes

store_forward/max_s­

tore_percent

Integer no 10

cxvii

Table 26. Configuration Fields (continued)

Field Type Required Default

store_forward/max_­

batch_interval

Integer no 1000

timeseries/compress Boolean no true

timeseries/transport_ad­

dr

String yes

timeseries/predix_­

zone_id

String yes

timeseries/token_file String/Object no /edge-agent/access_to­

ken

timeseries/proxy_url String no

The following is a sample block config for the timeseries block. This should be placed in the blocks

section of the overall configuration file.

The block below is configured to subscribe to the MQTT topic input_data on the Predix Edge Broker and

ingest all data received from that topic to a Predix Time Series instance with the Predix Zone ID xxx-xxx at

the URL wss://dummy_url.run.aws-usw02-pr.ice.predix.io/v1/stream/messages.

The block's name in this example is time_series_sender, but it can be any string you wish to use.

"time_series_sender": {

 "type": "timeseries",

 "config": {

 "log_name": "time_series_block",

 "log_level": "debug",

 "mqtt": {

 "transport_addr": "mqtt-tcp://predix-edge-broker",

 "qos": 2,

 "client_id": "time_series_mqtt_client0",

 "topics": [

 "input_data"

]

 },

 "store_forward": {

cxviii

 "max_store_percent": 30,

 "max_batch_interval": 2000,

 "policy": "store_on_failure"

 },

 "timeseries": {

 "transport_addr": "wss://dummy_url.run.aws-usw02-pr.ice.predix.io/v1/stream/messages",

 "predix_zone_id": "xxx-xxx",

 "token_file": "/edge-agent/access_token",

 "proxy_url": "$http_proxy"

 }

 }

}

log_level and log_name

For details on the log_level and log_name fields of the Time Series Publisher block's config section, see

Common Block Config Fields (on page cxxiii).

mqtt

For details on fields within the mqtt portion of the Time Series Publisher block's config section, see

Common Block Config Fields (on page cxxiii).

store_forward/max_store_percent and store_forward/max_batch_interval

For details on the store_forward/max_store_percent and store_forward/max_batch_interval fields of the

Time Series Publisher block's config section, see Common Block Config Fields (on page cxxiii).

timeseries/compress

The timeseries/compress tag is an optional boolean (true/false) that defaults to 'true'. When enabled,

the Time Series service will receive JSON payloads compressed (GZIP) by the cloud gateway. The size

limit for the actual JSON payload is 512 KB regardless of the ingestion request format. For compressed

payloads, this means the decompressed payload cannot exceed 512 KB.

timeseries/transport_addr

The transport_addr field within the timeseries section should be set to the URI of whatever Predix Time

Series instance you wish to publish data to.

cxix

timeseries/predix_zone_id

The predix_zone_id field within the timeseries section should be set to the Predix Zone ID of whatever

Predix Time Series instance you wish to publish data to.

timeseries/token_file

The token_file field within the timeseries section should usually be set to the path to the file on your

Predix Edge device that holds your UAA token for authentication with your Predix Time Series instance.

Note:

Use the default value for token_file path unless your application requires you to change it.

To use a separate UAA other than the one utilized by Edge Manager you may provide a JSON object with

the following keys:

• uaa_url - The URL of the host where the UAA service is running. The UAA service provides the

access token that is subsequently used to push to the Timeseries server. The path oauth/token is

appended and the resulting URL is used to request the access token.

• client_id - The client ID associated with an account that has access to the desired Timeseries

zone.

• client_secret - The secret associated with the client_id.

• proxy_url - The proxy required to access the UAA URL.

Key Type Required Default

timeseries/token_­

file/uaa_url

String Only if a separate Time

Series UAA is used

timeseries/token_­

file/client_id

String Only if a separate Time

Series UAA is used

timeseries/token_­

file/client_secret

String Only if a separate Time

Series UAA is used

timeseries/token_­

file/proxy_url

String Only if a separate Time

Series UAA is used

cxx

timeseries/proxy_url

The proxy_url field within the timeseries section should be set to the URL of whatever proxy you want to

use (if any) to connect to whatever Predix Time Series instance you wish to publish data to. This field can

be omitted or set to an empty string if no proxy is desired.

Note:

This can be either the Predix Edge OS environment variable $http_proxy or a URL in the format

<protocol>://<FQDN or IP Address>:<port>. The $http_proxy variable is set via PETC. See

Configuring the Network and Proxy Settings (on page).

Event Hub Publisher Block Config

The Event Hub Publisher block can be instantiated by using the block type eventhub.

See The Blocks Section (on page cxv) for an explanation of what a block is in the Cloud Gateway.

Note:

The Event Hub block's configuration has changed significantly from its earlier iterations.

The configuration fields (in the config portion of the block configuration) for the eventhub block are as

follows:

Table 27. Configuration Fields

Field Type Required Default

log_name String no <block name>

log_level String no 'off'

mqtt/transport_addr String yes

mqtt/qos Integer no 0

mqtt/client_id String no

mqtt/topics Array of Strings yes

store_forward Object yes

store_forward/max_s­

tore_percent

Integer no 10

unique_94
unique_94
unique_94

cxxi

Table 27. Configuration Fields (continued)

Field Type Required Default

store_forward/max_­

batch_interval

Integer no 1000

eventhub/transport_ad­

dr

String yes

eventhub/predix_zone_­

id

String yes

eventhub/token_file String yes

eventhub/topic_map Array of Objects yes

The following is a sample block config for the eventhub block. This should be placed in the blocks section

of the overall configuration file.

The block below is configured to subscribe to the MQTT topic input_data on the Predix Edge Broker

and publish all data received from that topic to the Event Hub topic output_data on a Predix Time Series

instance with the Predix Zone ID xxx-xxx at the URL event-hub-aws-usw02.data-services.predix.io:443.

The block's name in this example is event_hub_sender, but it can be any string you wish to use.

"event_hub_sender": {

 "type": "eventhub",

 "config": {

 "log_name": "eventhub_block",

 "log_level": "debug",

 "mqtt": {

 "transport_addr": "mqtt-tcp://predix-edge-broker",

 "qos": 1,

 "client_id": "event_hub_mqtt_client0",

 "topics": [

 "input_data"

]

 },

 "store_forward": {

 "max_store_percent": 30,

 "max_batch_interval": 2000

 },

cxxii

 "eventhub": {

 "transport_addr": "event-hub-aws-usw02.data-services.predix.io:443",

 "predix_zone_id": "xxx-xxx",

 "token_file": "/edge-agent/access_token",

 "topic_map": [

 {

 "eventhub_topic": "output_data",

 "mqtt_topics": [

 "input_data"

]

 }

]

 }

 }

}

log_level and log_name

For details on the log_level and log_name fields of the Event Hub Publisher block's config section, see

Common Block Config Fields (on page cxxiii).

mqtt

For details on fields within the mqtt portion of the Event Hub Publisher block's config section, see

Common Block Config Fields (on page cxxiii).

store_forward/max_store_percent and store_forward/max_batch_interval

For details on the store_forward/max_store_percent and store_forward/max_batch_interval fields of the

Event Hub Publisher block's config section, see Common Block Config Fields (on page cxxiii).

eventhub/transport_addr

The transport_addr field within the eventhub section should be set to the URI of whatever Predix Event

Hub instance you wish to publish data to.

eventhub/predix_zone_id

The predix_zone_id field within the eventhub section should be set to the Predix Zone ID of whatever

Predix Event Hub instance you wish to publish data to.

cxxiii

eventhub/token_file

The token_file field within the eventhub section should be set to the path to the file on your Predix Edge

device that holds your UAA token for authentication with your Predix Event Hub instance.

eventhub/topic_map

The proxy_url field within the eventhub section specifies how data will be forwarded from input MQTT

topics to output Event Hub topics. This section is an array of objects with the following fields:

Field Type Required

eventhub_topic String yes

mqtt_topics Array of Strings yes

Data received from subscriptions to the topics in the mqtt_topics field of one object will be published to

the Event Hub topic in the eventhub_topic field of that same object.

Note:

If an MQTT topic is not specified anywhere in the topic map, it will NOT be subscribed to even if it

is in the topics list in the mqtt section of the block's config section.

Note:

The Event Hub block does not currently support forwarding data from one MQTT topic to multiple

Predix Event Hub topics.

Common Block Config Fields

See The Blocks Section (on page cxv) for an explanation of what a block is in the Cloud Gateway.

log_level

The log_level field determines which level of logs to output. If the field is not set to one of the following

values, the block will not log anything. The values below are listed in order from most to least verbose:

• debug

• info

• warn

cxxiv

• err

• critical

log_name

The log_name field defines a name to identify the block's logs. This is typically prepended to the log output

and can be any string you wish to set it to. If unset, it defaults to the block's name.

mqtt/transport_addr

The transport_addr field within the mqtt section should be set to the URI of the MQTT broker you wish to

receive data from.

Note:

This field is not required for the Time Series Publisher block (as it defaults to "mqtt-tcp://predix-

edge-broker"), but it IS currently required for the Event Hub Publisher block.

Note:

Supported URI prefixes for the Time Series Publisher block include mqtt-tcp, mqtt, and tcp.

However, the Event Hub Publisher block supports only mqtt-tcp as the URI prefix for this field.

mqtt/qos

The qos field within the mqtt section can be set to the desired "quality of service" for the block's MQTT

subscriptions.

This field's value can be 0, 1, or 2. These values correspond to "at most once", "at least once", and "exactly

once" message delivery from the MQTT broker to the block.

mqtt/client_id

The cliend_id field within the mqtt section can be set to the desired client ID for the block's MQTT

subscriptions.

This client ID helps the MQTT broker to identify the block. If the Cloud Gateway is restarted, and during

that restart, data is published to topics the block was subscribed to, the broker will be able to deliver that

data to the block after the Cloud Gateway comes back up as long as it uses the same client ID.

cxxv

mqtt/topics

The topics field within the mqtt section should be set to an array of strings denoting the topics that the

block should subscribe to on the MQTT broker specified by the transport_addr field.

store_forward/max_store_percent

The max_store_percent field within the store_forward section should be set to the max percent of disk

space that the block's store and forward functionality is allowed to use.

Note:

This value may be reduced (proportionally to other blocks) at runtime if the total

max_store_percent set by all of the blocks is too large.

store_forward/max_batch_interval

The max_batch_interval field within the store_forward section should be set to the desired maximum

interval (in milliseconds) between batch publish requests.

If input data is not received quickly enough to fill the maximum batch size for the respective block, the

current batch will be completed at this interval (regardless of its size) and stored or sent according to the

type of block and store forward functionality.

Sample Files

docker-compose.yml

The following sample file determines how to deploy the Cloud Gateway Edge App.

Note:

The config environment variable must specify the file path to the configuration file inside the

Docker container that will be deployed. If the file name does not match the configuration file

applied to the Edge App, the Cloud Gateway will be unable to find it.

version: "3"

services:

 cloud-gateway:

 image: "dtr.predix.io/predix-edge/cloud-gateway:amd64-1.1.0"

cxxvi

 environment:

 config: "/config/config-cloud-gateway.json"

 env_file:

 - /etc/environment

 deploy:

 restart_policy:

 condition: on-failure

 delay: 5s

 max_attempts: 5

 window: 30s

 networks:

 - predix-edge-broker_net

networks:

 predix-edge-broker_net:

 external: true

config.json

The following sample configuration file can be used to configure the Cloud Gateway to send data to both

Predix Time Series and Predix Event Hub.

In this example, data received from the Predix Edge Broker on the MQTT topic timeseries_data will be

ingested into the Time Series instance with Zone ID xxx-xxx-xxx. Data received from the MQTT topics

eventhub_data/osipi_data, eventhub_data/opc_ua_data, eventhub_data/modbus_data, and eventhub_data/

egd_data will be published to the Event Hub topic topic in the Event Hub instance with Zone ID yyy-yyy-

yyy.

{

 "blocks": {

 "time_series_sender": {

 "type": "timeseries",

 "config": {

 "log_name": "time_series_sender",

 "log_level": "debug",

 "mqtt": {

 "transport_addr": "mqtt-tcp://predix-edge-broker",

 "qos": 2,

 "client_id": "time_series_sender_mqtt_client",

cxxvii

 "topics": [

 "timeseries_data"

]

 },

 "store_forward": {

 "policy": "store_on_failure",

 "max_store_percent": 15,

 "max_batch_interval": 1000

 },

 "timeseries": {

 "transport_addr":

 "wss://gateway-predix-data-services.run.aws-usw02-pr.ice.predix.io/v1/stream/messages",

 "predix_zone_id": "xxx-xxx-xxx",

 "token_file": "/edge-agent/access_token",

 "proxy_url": "$http_proxy"

 }

 }

 },

 "event_hub_sender": {

 "type": "eventhub",

 "config": {

 "log_name": "event_hub_sender",

 "log_level": "debug",

 "mqtt": {

 "transport_addr": "mqtt-tcp://predix-edge-broker",

 "qos": 1,

 "topics": [

 "eventhub_data/osipi_data",

 "eventhub_data/opc_ua_data",

 "eventhub_data/modbus_data",

 "eventhub_data/egd_data"

]

 },

 "store_forward": {

 "max_store_percent": 60,

 "max_batch_interval": 1000

 },

cxxviii

 "eventhub": {

 "transport_addr" : "event-hub-aws-usw02.data-services.predix.io:443",

 "predix_zone_id" : "yyy-yyy-yyy",

 "token_file": "/edge-agent/access_token",

 "topic_map": [

 {

 "eventhub_topic": "topic",

 "mqtt_topics": [

 "eventhub_data/osipi_data",

 "eventhub_data/opc_ua_data",

 "eventhub_data/modbus_data",

 "eventhub_data/egd_data"

]

 }

]

 }

 }

 }

 }

}

cxxix

Predix Edge Deadband Application

Introduction

The Deadband App provides the ability to manage Edge sites to have the deadband enabled for

the respective tags to filter the amount of data pushed and realize savings for the data and its cost

associated with Predix Time Series.

Protocol Benchmarking

The Predix Edge Deadband App sits between the protocol adapter and the cloud gateway (data travels

from a protocol adapter to the Predix Edge MQTT Broker to the Deadband App to Cloud Gateway to Time

Series). The throughput is highly dependent on the protocol adapter acting as the source. Throughput

details for each adapter are available in the adapter's corresponding section.

The effect of the Deadband app on throughput was calculated by adding the Deadband app and

configuring the tags in such a way that all data is passes by the Deadband app and nothing is filtered.

The tags configured in the Deadband app are the same as the maximum throughput of each adapter

without the Deadband app. In such a case, a maximum of 25% degradation is observed in the throughput.

However, this should be offset by a decrease in the number of tags sent due to deadband application in

any real application.

Where Do I Get It?

The Predix Edge Deadband App and sample configuration are stored in Artifactory.

To access Artifactory downloads, you will require a GE SSO (single sign-on) username and approval to

access Artifactory.

Request a GE SSO

Use the following steps to obtain a GE SSO if you do not already have one.

1. Complete the Your GE SSO Account request form. All fields marked with a checkmark are required.

2. Click Submit.

https://mypassword.ge.com/b2bregistration/index.html#/signin

cxxx

Note:

The only non-alphanumeric characters allowed in your GE SSO are an underscore (_) and a period

(.). Using any other non-alphanumeric characters for your username will result in an invalid

authentication in Artifactory.

Request Artifactory Access

Once you have an SSO, use the following steps to request access to Artifactory.

1. Complete the Edge Artifactory Access Requests form.

2. Click Submit.

Deadband Application Downloads

The downloadable files for the Deadband Application are available here.

Overview of Capabilities

Currently supported capabilities:

• Absolute and Percent value deadband

• Deadband timeout

• Configurable subscribe and publish topics on Predix Edge MQTT broker

Details of Capabilities

The Deadband app is mainly used for filtering data. It subscribes to the value of the listenTopic key and

applies deadband on the data as per the configuration. It then sends the data after the deadband has

been applied to the publishTopic. The deadband configuration is on a per tag basis. The deadband type

can be specified as either absolute or percent. The value can be any numeric value in the case of absolute

deadband and should be less than 100 in the case of percent deadband. The timeout is specified in

milliseconds.

For every tag received, the following deadband logic is applied.

Absolute Deadband

If the absolute difference between the current value of the tag and the last sent value of the tag is greater

than the deadband value, the current value of the tag is sent. The current value and current time are stored

https://app.smartsheet.com/b/form/97c1fbee95df475e9849674a58332963
https://dig-grid-artifactory.apps.ge.com/ui/repos/tree/General/predix-edge-ext-mvn/Apps/predix-edge-deadband-app

cxxxi

as last sent value and last sent time respectively for use in the next comparison cycle. If the absolute

difference is less than the deadband value, the current time is compared against the last sent time and if

the difference is greater than the timeout, the current value of the tag is sent. Otherwise it is filtered.

Percent Deadband

If the absolute difference between the current value of the tag and the last sent value of the tag is greater

than the deadband value percentage of last sent value, the current value of the tag is sent. The current

value and current time are stored as last sent value and last sent time respectively for use in the next

comparison cycle. If the absolute difference is less than the deadband value percentage of last sent value,

the current time is compared against the last sent time and if the difference is greater than the timeout,

the current value of the tag is sent. Otherwise it is filtered.

Configuration Details

The parameters in the configuration file are shown below:

Table 28.

Field Type Required Default

listenTopic String Yes

publishTopic String Yes

tags Object Yes

log_level String No off

clientid String Yes

qos Integer No

listenTopic

The listenTopic field determines the MQTT topic on which this app listens for incoming data.

publishTopic

The publishTopic field determines the MQTT topic on which this app publishes the filtered data.

cxxxii

tags

The tags field defines the variables on which deadband is to be applied. The tags is an object of the

following structure.

Table 29.

Field Type Required

<variable name 1> String Yes

<variable name 2> String No

... String No

The fields <variable name 1>, <variable name 2>, etc. represent individual variable names for which the

values are objects that have the deadband details below.

Table 30.

Field Type Required

type String Yes

value Any numeric Yes

timeoutInMS Integer Yes

• type determines the type of deadband; possible values are absolute and percent

• value is the deadband value to be used

• timeoutInMS is the timeout value (in milliseconds) to be used during deadband calculation

log_level

For details about the log_level and log_name fields, see the Generic CDP Blocks (on page xvi) section of

the Protocol Adapters (on page ix) documentation page.

clientid

The clientid is used to specify the name of the client in the MQTT client options. It can be any unique

string.

qos

The qos field is used to specify the qos (quality of service) to the MQTT client during publishing.

cxxxiii

Sample Files

docker-compose.yml

version: "3.1"

services:

 edge-app:

 image: "predix-edge-deadband-app:amd64-latest"

 environment:

 config: "/config/config-deadband.json"

 networks:

 - predix-edge-broker_net

 deploy:

 restart_policy:

 condition: on-failure

 delay: 5s

 max_attempts: 5

 window: 30s

networks:

 predix-edge-broker_net:

 external: true

config.json

{

 "tags": {

 "variable name 1": {"type": "absolute", "value": 2.5, "timeoutInMS": 100000 },

 "variable name 2": {"type": "percent", "value": 10, "timeoutInMS": 500000 }

 },

 "listenTopic":"timeseries_data",

 "publishTopic":"timeseries_data_deadband",

 "clientid":"predix-edge-deadbanding",

 "qos":1,

 "log_level": "warn"

}

cxxxiv

Custom Applications

Building an Application

Building an Application

Predix Edge Manager enables remote deployment of multi-container applications and configurations

to many devices, while the Predix Edge Technician Console (PETC) can deploy applications and

configurations to a single Predix Edge device. The following explains how to design application

deployments and create custom applications.

Application Architecture

A Predix Edge system consists of five major components:

• Predix Edge OS - The foundational, Yocto-based Linux that has been hardened and purpose-built

for industrial Edge applications.

• Predix Edge Agent – Runs as a native process on the OS, communicates with Edge Manager

and PETC, manages application deployment and the application lifecycle (starting, stopping,

configuring applications). Edge applications do not directly interact with Edge Agent.

• Docker Stack – Runs applications launched via the Edge Agent.

• Predix Edge Technician Console (PETC) – Web UI to manage device enrollment with Edge

Manager, application lifecycle and log retrieval; is integrated with Edge Agent.

• Predix Edge Data Broker – An MQTT service with Publish/Subscribe features provided as an Edge

Application itself. It facilitates communication between single-container or multi-container Edge

Apps.

Figure 6. Application Architecture

cxxxv

Predix Edge creates a common file system context when Edge Manager or PETC are used to deploy

applications. Edge Agent will make the following directories available to the applications running inside

Predix Edge’s Docker Stack subsystem:

• The /config directory is read-only. When you use Edge Manager or PETC to deploy a zipped

configuration file to a given application, Predix Edge Agent deploys and extracts that file into the

selected application’s configuration directory.

• The /data directory is read-write and available to all containers shared within a common

application context.

• The /edge-agent directory is where the secure token is placed for communicating to Predix

services, usually in the Predix cloud.

• The /shared directory is read-only and provides an mqtt_config.json file with app-specific

details for communiciating privately over the Data Broker.

Note:

The /config, /data, /shared and /edge-agent folders are reserved and will be

automatically mounted to a container deployed to Predix Edge via PETC or Edge Manager. These

folders will be mounted over any existing folder(s) in a container image with the same name.

Figure 7. Application Containers

Only containers in the same application can access the same /config or /data volume mount.

The mqtt_config.json file provides the following information:

{

 "requestTopic": "edgeAgent/app_<deployment-id>/request/#",

 "statusTopic": "edgeAgent/app_<deployment-id>/response/status",

 "username": " app_<deployment-id>",

cxxxvi

 "passwordFile": "/var/run/secrets/p_mqtt_secret",

 "host": "predix-edge-broker",

 "port": "1883"

}

These details enable one app’s containers to communicate privately with another over the Data Broker

because they share common connection details.

Application Containers Can Communicate Over a Docker Network

In order for applications to publish or subscribe to messages to the Data Broker, they need to participate

in the same Docker network as the broker container. The name of this network is predix-edge-

broker_net and its usage is described in the next section.

Docker Networks

Predix Edge provides a common predix-edge-broker_net Docker network that all containers can connect

to. Additionally, containers within an application can share separate Docker networks privately. For

example, one can create a business logic container that would privately interact with a Postgres

network on a separate network. That business logic container could also be exposed to predix-edge-

broker_net to pull data from the Predix Edge Broker. This design would provide some measure of network

segmentation.

Hostnames

Containers see other containers as hosts, as if they were separate computers with a unique hostname.

The docker-compose format allows a given app to join the common predix-edge-broker_net

network (or private networks) and will put those containers on the same network. These containers

can then refer to other containers by their hostname. For example, HTTPS APIs are available to other

containers.

You can add this entry to the docker-compose.yml for each container:

hostname: “my-container-hostname”

It is possible to create more elaborate network scenarios where you can expose some Hosts or Ports

externally and some internally.

cxxxvii

Ports

Application architecture should consider ports exposed to other containers or to external systems in the

design.

• Port 443 is already used by PETC to expose itself outside of the device. Applications with HTTPS

URLs should use another port.

• Edge Data Broker exposes port 1883 internally to the predix-edge-broker_net network.

• Configure external ports in the docker-compose.yml service definitions to avoid port conflicts.

• Work with your IT or Network administrator to ensure access to ports or through firewalls is

properly configured for your application.

• All ports are available on all network interfaces except for 443 which is restricted to the LAN

interface on the Predix Edge Gateway.

Docker Compose Structure

This example docker-compose-local.yml file below shows a one-container application that

has mounted the /config and /data directories relative to the current folder on the computer the

application is being launched from.

Note:

As mentioned above, the /data and /config directories are created on behalf of the app when

your app is deployed to Predix Edge. This .local configuration is purely for writing and testing

apps outside of Predix Edge in Linux or on a Mac.

Network settings allow the container to access the Edge Broker to publish or subscribe to MQTT

messages.

Finally, it is exposing the internal port 1880 as 1880 externally.

version:

“3.0”

 #This file combines all the edge services and our services so that it can be deployed as a unit

 services:

 my-container:

 image: "myorg/my-container-name:1.0.0"

 volumes:

 - ./config:/config

 - ./data:/data

cxxxviii

 networks:

 - predix-edge-broker_net

 ports:

 - 1880:1880

 networks:

 predix-edge-broker_net:

 external: true

Packaging an Application

Introduction

Predix Edge facilitates the uploading, versioning and remote deployment of applications to Edge

devices. The following covers packaging requirements for both Predix-provided applications and custom

applications.

Applications

Predix Edge Applications

Predix Edge Applications consist of a single tar file containing one or more Docker images (saved as tar

files) and a docker-compose.yml.

One App or Many Apps?

Each Predix Edge application can have one or multiple containers. Each application may communicate

with other applications via the Predix Edge Data Broker, as long as the containers are on the same Docker

network as the one set in docker-compose.yml.

Why might you separate an application into multiple Predix Edge applications?

You might use pre-defined Predix Edge applications as components of your larger application.

Alternatively, the needs of your release cycle, performance considerations, or scheduling considerations

might require that you divide your application into several applications.

Use cases that require distinct containers to share a common /data folder should bundle their containers

into one application. For example, one container might pull data off of the Data Broker, run some analysis,

and store analyzed data in the /data directory. Another container might provide a web server that enables

users to browse the data and download those files locally or view them inside a web browser.

cxxxix

Application Packaging

Application tar files should be uploaded to Predix Edge Manager and stored. Once in Edge Manager,

they can be deployed to many remotely managed Predix Edge devices. Application tar files may also be

uploaded to a single device using the Predix Edge Technician Console (PETC).

The Edge Manager UI allows you to upload application tar files. Also, an API is available for DevOps. The

Predix Edge Reference App provides a tutorial and script that shows how to call this API.

Best practices include using a consistent naming pattern and adding the version to the application file

name.

Docker (docker-compose.yml files)

The Predix Edge Reference App provides some advice about the development lifecycle and the use of

several different docker-compose files.

• docker-compose-local.yml - Use when testing locally on your VM, Windows, or OSX.

• docker-compose-edge-broker.yml - Use a separate .yml file for the Predix Edge Data Broker

because Predix Edge OS is shipped with the broker already running inside, so it won't need to be

packaged.

• docker-compose.yml - This is the default name and is required when packaging the Predix Edge

application.

Application Size Limitations

Edge Manager (on page) and PETC (on page) enforce application size limitations. Before

starting the development process, ensure your tar files sizes, container sizes and config sizes do not

exceed these limits.

Application Signing

Before they can be deployed to a Predix Edge production OS, applications must first be signed. For more

information, see Application Signing.

Application Signing

Application Signing
To release an edge app in the production environment, you must first have the application package

cryptographically signed.

https://www.predix.io/resources/tutorials/journey.html#2593
https://www.predix.io/resources/tutorials/journey.html#2593
unique_107
unique_107
unique_107
unique_108
unique_108
unique_108
am_Application_Signing.ditamap#INzY1OTg4ZDYtOTViZi00Nzc2LWJkODItMzVkYWUzN2ZmYzA4

cxl

By default, production Edge enabled devices will reject any application that has not been signed by GE

Digital. Updated applications must be re-signed prior to release.

GE Digital will sign any application that meets internal validation criteria designed to protect Predix Edge

devices.

Note:

Apps used with Edge developer builds do not need to be signed.

Obtain a GE Signature For Your Application

To have your application signed, please e-mail edge-app-signing@ge.com with the following information:

• Application name.

• Application version.

• Author name.

• Development Point of Contact E-Mail Address.

• Development Point of Contact Telephone Number.

• Attachment: Application tarball (or a link to download the application tarball).

If sending an application to GE Digital for cryptographic signing is not possible, see Self-Sign Your

Application (on page cxl).

Validation and application signing is performed in Vancouver, BC, from 9 a.m. to 5 p.m. (Pacific Standard

Time). Requests will be processed within one business day.

Responses will contain either a link to download the signed copy of your application, or a list of changes

required to meet GE Digital’s internal validation criteria.

If you receive a link to download the signed copy of your application, no further action is required. The

tarball provided at the link can be distributed to customers and deployed on production Predix Edge

devices.

Self-Sign Your Application
If it is not possible for you to send your application to GE Digital for cryptographic signing, you can obtain

your own keys to self-sign the application.

Note:

Self-signing production applications is not recommended for the following reasons:

cxli

• All third-party signed keys are allowed when allow-third-party-apps is enabled. No

mechanism exists to limit signed application verification to any particular third-party key.

This allows Company A applications signed with a Company A key to pass verification in

Company B’s environment, if Company B enables allow-third-party-apps.

• Third-party applications are not subject to the same security verification and rigor that

current GE Digital-signed Edge applications undergo when submitted to the current GE

Digital application signing process.

To obtain your own signing keys, download the signing utility from https://github.build.ge.com/

EdgeSecurity/edge-app-tools and run it as follows:

git clone https://github.build.ge.com/EdgeSecurity/edge-app-tools.git

cd edge-app-tools

chmod a+x ./signing-util

signing_util gen_key -n my_dev_key

This will create two files:

• my_dev_key

• my_dev_key.pub

It is imperative that my_dev_key be kept secret and not be shared outside your organization. The file

my_dev_key.pub should be sent to edge-app-signing@ge.com. The signing utility can be used to

generate the requisite information to be sent via e-mail:

signing_util key_info -n my_dev_key

To request a signature for this key, please e-mail the following information to edge-app-signing@ge.com

Key Owner: PLEASE INSERT YOUR NAME AND EMAIL ADDRESS HERE

Key Name: my_dev_key

Key Hash:

 165a6e50b0c733aa9314fa154fe5f06f95342aad95c284ce7ccc90123f32a310218fb6d3349d347be5bc6a045e61cd735d2cbedbc858b75d175078

1a84b7bc38

-----BEGIN PUBLIC KEY-----

MHYwEAYHKoZIzj0CAQYFK4EEACIDYgAE5evAX2M4xplIhv0jKtnP8miqC3qxGzYC

WxO1BpEA/PDfhxrexbVE6en2+u5jfUTIUfx46b0qTCeBqd6XhyTFEzPH64ti3AfG

https://github.build.ge.com/EdgeSecurity/edge-app-tools
https://github.build.ge.com/EdgeSecurity/edge-app-tools

cxlii

F/RgBI0qMLAuX8tJcEjki4PF1rzkyesW

-----END PUBLIC KEY-----

Requests to edge-app-signing@ge.com will be processed between 9 a.m. and 5 p.m. (Pacific Standard

Time) and may take up to five business days to complete.

In response to your request, you will receive an e-mail with an attachment called my_dev_key.pub.sig.

This signature file is required for signing applications and must be saved in the same location as

my_dev_key.pub.

Now that you have obtained your own keys, you can sign your application.

1. Write your application's docker-compose.yml file.

2. Use validation utility: edge-app-compose -i docker-compose.yml

3. Review the results and fix any validation errors.

4. Sign it via: signing-util sign_app -p my_app.tgz -x my_app_signed.tgz -s /home/j/my_key -t

5. Distribute my_app_signed.tgz to your customers.

6. Inform your customers that they must set ‘allow-third-party-apps’ to ‘on’ via edge-manager in order

to deploy their application.

By default, self-signed applications will not work on Predix Edge OS deployments. Customers must

configure their Predix Edge device(s) to accept third-party signatures.

Running an Application

Applications can be launched using either Predix Edge Manager or Predix Edge Technician Console

(PETC). These programs interact with Predix Edge Agent, which launches the application to the local

Docker Stack system running on the Predix Edge device. Predix Edge Agent launches applications using

Docker Stack. A docker-compose.yml file defines the number and behavior of containers in the

application. It is recommended developers test their docker-compose files to confirm they execute as

expected using Docker Stack running locally on a development machine (either Mac or the Predix Dev

VM).

To start an application in a Dev environment using Docker Stack:

docker stack deploy -c docker-compose-local.yml my-app-name

To stop an application:

docker stack rm my-app-name

cxliii

When you test locally, your local docker-compose.yml file should include volume mounts for /config

and /data. The docker-compose.yml file that is ultimately deployed to Predix Edge can either

comment these out, or remove them altogether. It is recommended to have two docker-compose.yml

files as follows:

• docker-compose.yml – Predix Edge requires this spelling when uploading an application tar.

• docker-compose-local.yml – Use this file when running locally for testing.

Deploying to PETC

Note that the application will launch after the Deploy step. You may need to stop the application and

Apply the config, then start the application.

Running applications is a three-step process.

1. Upload the application.

2. Deploy the application.

3. Apply the configuration.

Deploying to Edge Manager

Note that applications will launch after the Deploy step. You may need to stop the application and Apply

the config, then start the application.

1. Upload the application and config to the repository.

2. Deploy the application to a group of devices.

3. Apply the configuration.

Troubleshooting

While there are numerous problems that can occur with running multi-container applications, most are

easily solvable. The following tips may be helpful when building and running Predix Edge applications.

Local:

• Run Locally – In the initial stages of development most problems are with the new code you write.

Run locally and check the log files using the docker logs or docker service logs commands.

• Check Running Status – When running locally ‘docker stack ps <app-name>’ shows the status

of each container. ‘docker stack ps <app-name> --no-trunc’ may also provide additional useful

information.

• Check Log Files – ‘docker ps’ followed by ‘docker logs <id-here>’.

cxliv

• Env Vars – Check that the docker-compose-local.yml has the required environment variables

edefined.

• Volume Mounts - Check that the docker-compose-local.yml has the /config, /data or /

edge-agent volume mounts.

• Docker Network – Check that the network is set up like the examples provided, with predix-

edge-broker_net.

• Proxy – Ensure the environment variables are set and that the container knows about them. Add

this to the docker-compose-local.yml.

Note:

This differs when running in Predix Edge OS.

http_proxy: ${http_proxy}

https_proxy: ${https_proxy}

HTTP_PROXY: ${HTTP_PROXY}

HTTPS_PROXY: ${HTTP_PROXY}

no_proxy: ${no_proxy}

Common to all deployments:

• Flopping Container – The Docker Stack keeps stopping and restarting a new instance of the

container. Usually this is because the source code is unable to start. Check or try the following:

◦ Dockerfile – the Dockerfile might be referencing an invalid folder.

◦ Configs in /config – Ensure the code can find the configs in the /config volume mount.

◦ Data in /data – Ensure the volatile code is writing to /data. It is possible that it is writing

to a different read-only file system folder, which might cause unexpected behavior the

second or third time it is launched.

• Have a look around. Execute these commands to use ssh to get inside the container. Look for

permissions problems, launching the app problems, access to /config and /data.

◦ docker ps

◦ docker exec -it <id-of-container> /bin/sh

• Launch the app yourself – update the docker-compose.yml with an entrypoint override, then

execute the commands above to get inside the container and launch the app manually.

◦ entrypoint: ["sh", "-c", "sleep 500000"]

PETC and Edge Manager:

cxlv

• Check Running Status – In the UI visit the Applications/Application page. Check the status for each

container, it should be Running.

• Apply Configs – A common mistake is to Deploy the app but not the Configs. Most container logic

will fail if missing its configuration.

• Env Vars – Check that docker-compose.yml, bundled with the app tar, has the env vars needed.

• Volume mounts – Upload will fail if docker-compose.yml has volume mounts.

• Docker Network – Check that the network is set up like the examples provided, with predix-

edge-broker_net.

• Hostname vs. IP – In docker-compose.yml give your container a Hostname since the IP will

vary when running in an Edge OS VM or physical instance.

• Proxy – Ensure the container is aware of proxy environment variables. In PETC this is set on each

device, usually before enrollment.

◦ Add the following to a service that has logic looking for proxy env vars (e.g.,

HTTPS_PROXY). PETC puts them in /etc/environment and docker-compose.yml

needs to have an entry that loads it.

▪ env_file: -/etc/environment

◦ b. Some code does not reference env vars for proxy info, ensure the config is set up.

PETC:

Check logs. In the UI:

• Navigate to the Applications page.

• Choose Service Name.

• Choose Additional Options.

• Set Message Priority to Debug.

• The log viewer only shows the first 20 rows in the date range, so you might need to narrow the

range.

• Confirm the time range is accurate.

• Click the Update Preview button.

• Download the logs locally to view more details.

Edge Manager:

Upload the logs using a command:

1. Navigate to Device Manager > Devices.

2. Select the device.

3. Select Commands.

cxlvi

4. Click the Execute Command button.

5. Select Get Journal Log. Click Next.

6. Fill out the form. Click Execute.

7. Wait up to 30 seconds for the command to execute.

8. Click the Download link to view the file.

Accessing Devices

Making I/O Devices Available to Applications

I/O devices on Predix Edge OS are accessed through device files in the /dev folder. There are two types

of devices: block devices and character devices. Only character devices are currently supported. A device

file is exposed to the applications by creating a device configuration file. System builders typically create

these configuration files.

1. The system builder needs to create the configuration file /opt/edge-agent/device-

mapping.json.

2. Edit the file to list the devices to be made available to applications. For each device, add an entry to

the device mapping list that specifies:

◦ file: The device file on the Predix Edge OS that corresponds to the device that will be

exposed to the applications.

◦ type: The device type. As of Predix Edge 2.3.0, SERIAL is the only supported device type.

◦ id: A unique, user-defined device identifier that will be used to map the application to the

device.

◦ description: A user-defined descriptor for the device.

Sample device mappings file:

{

 "devices": [

 {

 "file": "/dev/ttyS0",

 "type": "SERIAL",

 "id": "device1",

 "description": "Weight Scale"

 },

 {

 "file": "/dev/ttyS1",

 "type": "SERIAL",

cxlvii

 "id": "device2",

 "description": "Bar Code Reader"

 },

 {

 "file": "/dev/ttyS2",

 "type": "SERIAL",

 "id": "device3",

 "description": "Position Encoder"

 }

]

}

3. Edit the file /opt/edge-agent/agent-data.json to add the key device_mapping with the value

/opt/edge-agent/device-mapping.json, as in:

"device_mapping": "/opt/edge-agent/device_mapping.json"

Requesting Access to an I/O Device on the Host

Follow this procedure to provide an application with access to an I/O device on the host.

1. Edit the application's manifest.json file.

2. Add one instance of the devices key for each device you want to map to the application. The

devices listed must be present in the /opt/edge-agent/device-mapping.json file.

3. For each device specify the:

◦ id: This identifier must match the one specified for the device in the /opt/edge-agent/

device-mapping.json file.

◦ service: The application service into which the device will be mounted.

◦ file: The name of the device file in the service's container. The application will use this file

to access the device (using functions such as open, close, ioctl, etc.).

◦ type: The device type. As of Predix Edge 2.3.0, SERIAL is the only supported device type.

◦ description: A user-defined descriptor for the device.

Sample application manifest:

{

 "manifest": {

 "name": "serial-port-readout",

 "capabilities": [

 {

cxlviii

 "name": "serial-port-readout",

 "version": "1.0.0",

 "handler": "unused"

 }

],

 "devices": [

 {

 "id": "device3",

 "service": "main",

 "file": "/dev/ttyApp",

 "type": "SERIAL",

 "description": "Input From Infinite Improbability Drive"

 }

]

 }

}

The application uses the device id to create the mapping between the device and the application. If a

device id specified in mappings.json does not exist in the /opt/edge-agent/device-mapping.json

file, or if the device is already mapped to another application (regardless of whether that application is

running or not), the mapping will fail and the application will not deploy.

An application may not have access to the device files immediately after it starts. It may take up to one

minute before the application is granted access. An application should loop for a while and try again if

open() on the device file fails. (I.e. if the open("/dev/ttyApp", O_RDONLY) system call fails.)

When an application using a device is removed, the device is returned to the pool of available devices.

Application Custom Commands

Expose a Capability Via the Application

A capability is something that can be exposed by an application to indicate to the broader system (PETC,

Edge Manager, etc.) that it can perform certain actions or that it will behave in certain ways. A capability

currently includes an identifier and a version. The existence of a capability may mean that the application

supports specific commands, specific packages, and will report status in a given format. An example of

this is an application that supports the Predix.Edge.AnalyticsEngine (v 1.0.0) capability. The existence of

this capability will enable the analytics UI in Edge Manager and allow Edge Manager to deploy analytic

templates and data maps to the application, start, stop, and delete analytic templates that are running the

cxlix

application, and will expect the application to produce status about the deployed analytics that will drive

the UI in Edge Manager.

Note:

Capabilities within Predix.Edge.* are restricted to capabilities that are known to the Predix Edge

ecosystem.

An application manifest file named manifest.json contains:

• A list of capabilities, each containing:

◦ Name string.

◦ Version string.

◦ Optional handler.

The format of an application manifest is:

{

 "manifest": {

 "capabilities": [

 {

 "name": "some_capability_name",

 "version": "some_version",

 "handler": "some_handler"

 },

 {

 "name": "another_capability_name",

 "version": "another_version"

 },

 ...

],

 ...

 }

}

MQTT Configuration

cl

A configuration file is available to applications that will specify various settings for interacting with the

mqtt broker around command execution. This file is located in /shared/mqtt_config.json and has

the following format:

{

 "requestTopic": "edgeAgent/app_{app_name}/request/{request_topic}”,

 "statusTopic": "edgeAgent/app_{app_name}/response/status",

 "host": "predix-edge-broker”,

 "port": "1883”,

 "username": "app_{app_name}",

 "passwordFile": "{passwordFile}"

}

Securely Connecting to the Command Topic

The requestTopic is used for receiving requests for commands from the system; the statusTopic is

used for returning status from the application to the rest of the ecosystem. The Predix Edge software

stack will provide the application with the request topic as defined in the MQTT configuration section,

along with the username and passwordFile location. The username and password contained within

the passwordFile file must be used when connecting to the broker in order to communicate over the

request topic. Inside the container, the passwordFile contains the plaintext version of the password.

This file is secured by a docker secret on the host.

Note:

The command topic is application-specific and not accessible from other applications.

The application's docker compose file must be of a version equal to, or greater than, 3.1. If the docker

compose file is of version 3.0 or earlier, the password file used to securely connect to the broker will not

be present in the application.

Implementing Commands

Commands are communicated to the application via the secure command channel and an application

should subscribe to a wildcard under the applications command topic (<command_topic>/*). The

commands and command responses are json-based.

The initial command message will be published to <command_topic>/<taskID> where

command_topic is passed into the application and the taskID is a unique identifier for the current

command or operation created at dispatch time by the edge stack. The application is expected to publish

cli

its response to the responseTopic, which is included in the command information passed into the

application for the given task. Command response will be in the following format:

{

 "status": "SUCCESS or FAILURE or NOTSUPPORTED",

 "status_message": "status message",

 "status_detailed_message": "detailed status message",

 "output": "UTF-8 encoded output from the command"

}

Each field is UTF-8 encoding.

Note:

Output is not sent to Edge Manager for deployments (DeployAnalyticTemplate and

DeployDataMap).

The status_detailed_message will appear in the execution logs column in EdgeManager in the Command

History page.

Note:

Responses should be published with the retained flag. After reading the response, Edge Agent will

issue two blank messages to clear out the completed command and response.

Exposing Status Information

Status is a way for an application to provide information to the broader ecosystem (Edge Manager, PETC,

etc.) that is automatically queried rather than triggered via user interaction. This is commonly used to

relay information to the cloud for state such as which applications exist and are running, which analytics

are running or stopped, or information about connectivity (Wi-Fi signal strength, cell signal strength, etc.).

For certain capabilities there is a prescribed format the status requires in order to be consumable by

Predix Edge, but custom capabilities can have their own status format that can be retrieved from Edge

Manager or via the PETC.

The application provides status back to the Edge Ecosystem via a status topic provided in the

mqtt_config.json file as the statusTopic. Status message payload expected for the AnalyticEngine

is a json object that is a representation of the old protobuf-based status in the status section and the

capabilityId of Predix.Edge.AnalyticsEngine and a version of 1.0.0.

clii

[

 {

 "handler": "handler name",

 "capabilityId": " Predix.Edge.AnalyticEngine",

 "capabilityVersion": "1.0.0",

 "status": "…"

 } ...

]

Note:

Status should be published with the retained flag. Edge Agent will not remove the status message

after reading it.

Note:

The status message is retrieved and sent to EdgeManager at each synch interval, it is not

automatically sent when a new message arrives into the topic, nor is a status message

guaranteed to be delivered if the synch interval is not triggered while the status message is the

most recent.

Analytics Framework

Introduction

The analytics framework enables application developers to integrate analytic engines into Predix Edge.

This includes the ability to lifecycle manage analytic templates and instances running in remote edge

devices from Predix Edge Manager.

Application developers need to expose the analytics engine capability (Predix.Edge.AnalyticEngine), which

requires implementation of the following content.

• Commands:

◦ startAnalyticsTemplate(templateId)

◦ stopAnalyticstemplate(templateId)

◦ deleteAnalyticsTemplate(templateId)

◦ Deploy

cliii

▪ Analytic template

▪ Analytic datamap (component_descriptor) [optional]

▪ Status

▪ Provide status/state messages as described above (on page cli).

Implementing Commands

Refer to Implementing Commands (on page cl).

The following are sample commands for each of the required AnalyticEngine commands.

Start Analytic

{

 "command": "startAnalyticsTemplate",

 "handler":"Analytics",

 "responseTopic":"edgeAgent/<AppID>/response/<task_id>",

 "params": {

 "templateId": "1001"

 }

}

Stop Analytic

{

 "command": "stopAnalyticsTemplate",

 "handler":"Analytics",

 "responseTopic":"edgeAgent/<AppID>/response/<task_id>",

 "params": {

 "templateId": "1001"

 }

}

Delete Analytic

{

 "command": "deleteAnalyticsTemplate",

 "handler":"Analytics",

 "responseTopic":"edgeAgent/<AppID>/response/<task_id>",

 "params": {

 "templateId": "1001"

cliv

 }

}

Deploy Analytic Template

{

 "type": "analytics_template",

 "package": "/shared/downloads/filename",

 "responseTopic":"edgeAgent/<AppID>/response/<task_id>",

 "handler":"foghornML|forhornCEP|CSense",

 "params": {

 "name": "test-wx-analytics",

 "description": "",

 "id": "13454",

 "version": "1.0.0",

 "parentId": ""

 }

}

Deploy Analytic Data Map

{

 "type": "analytics_data_map",

 "package": "/shared/downloads/filename",

 "responseTopic":"edgeAgent/<AppID>/response/<task_id>",

 "handler":"foghornML|forhornCEP|CSense",

 "params": {

 "name": "test-wx-analytics-data-map",

 "description": "",

 "id": "13455",

 "version": "1.0.0",

 "parentId": "13454"

 }

}

Sending Status

Refer to Exposing Status Information (on page cli).

Status for the analytic engine contains:

clv

{

 "component_status_list":

 "status":[

 {

 "id": "{template_id_from_deployment}",

 "state":

 "EDGE_ANALYTICS_COMPONENT_STATE_UNKNOWN|EDGE_ANALYTICS_COMPONENT_STATE_ACTIVE|EDGE_ANALYTICS_COMPONENT_STATE_INACTIV

E",

 "state_message": "<string>"

 },

 //..

],

 "timestamp": "<timestamp>",

 "attributes": {

 "<string>": {

 "value": "<string>",

 "data_type": "[STRING|BINARY|BOOLEAN|FLOAT|DOUBLE|INT|LONG|TIMESTAMP]"

 },

 //…

 }

}

The status message format for the Predix.Edge.AnalyticEngine (1.0.0) capability must follow the schema

defined below.

{

 "$schema": "http://json-schema.org/draft-07/schema#",

 "type": "object",

 "required": [

 "component_status_list",

 "timestamp",

 "attributes"

],

 "properties": {

 "component_status_list":

clvi

 {

 "$ref": "#/definitions/component_status_list"

 },

 "timestamp":

 {

 "$ref": "#/definitions/timestamp"

 },

 "attributes":

 {

 "$ref": "#/definitions/attributes"

 }

 },

 "definitions": {

 "component_status_list": {

 "$id": "#/definitions/component_status_list",

 "type": "object",

 "required": [

 "status"

],

 "properties": {

 "status": {

 "type":"array",

 "items":{

 "$ref":"#/definitions/status_element"

 }

 }

 }

 },

 "status_element": {

 "type": "object",

 "required": [

 "id",

 "state",

 "state_message"

],

 "properties": {

 "id": {

clvii

 "type": "string",

 "pattern": "^[0-9]+$"

 },

 "state": {

 "type": "string",

 "enum":["EDGE_ANALYTICS_COMPONENT_STATE_ACTIVE", "EDGE_ANALYTICS_COMPONENT_STATE_INACTIVE",

 "EDGE_ANALYTICS_COMPONENT_STATE_UNKNOWN"]

 },

 "state_message": {

 "type": "string",

 "examples": [

 "Running"

],

 "pattern": "^.+$"

 }

 }

 },

 "timestamp": {

 "$id": "#/definitions/timestamp",

 "type": "string",

 "examples": [

 "2018-12-11T17:58:53.171Z"

],

 "pattern": "^.+$"

 },

 "attributes": {

 "$id": "#/definitions/attributes",

 "type": "object",

 "^(.+)/([^/]+)$": {

 "$ref":"#/definitions/attributes_element"

 }

 },

 "attributes_element":{

 "$id": "#/definitions/attributes_element",

 "type":"object",

 "required": [

 "value"

clviii

],

 "properties": {

 "value": {

 "type": "string"

 },

 "dataType": {

 "type": "string",

 "enum":["DATATYPE_STRING", "DATATYPE_BINARY",

 "DATATYPE_BOOLEAN","DATATYPE_FLOAT","DATATYPE_DOUBLE", "DATATYPE_INT","DATATYPE_LONG","DATATYPE_TIMESTAMP"]

 }

 }

 }

 }

}

Creating the Application Manifest

The application manifest is a file used to provide metadata to Predix Edge about the application. To

enable the analytics framework the application manifest must expose that the application exposes the

AnalyticEngine (Predix.Edge.AnalyticEngine) capability.

The sample manifest below includes a sample where the AnalyticEngine capability is exposed. In

a production manifest there will also be a files section, which is automatically added by GE when

performing application signing and is not the responsibility of the application developer.

{

 "manifest": {

 "capabilities": [

 {

 "name": "Predix.Edge.AnalyticEngine",

 "version": "1.0.0"

 },

 ...

],

 }

}

Analytic Engine Capabilities

clix

The Analytic Engine capability enables the management of analytic instance lifecycles as well as runtime

state.

Capability ID: predix.edge.analyticengine

Version: 1.0.0

Commands

startAnalyticsTemplate

Starts the analytic template associated with templateId.

Table 31. startAnalyticsTemplate Parameters

Parameter Type Description

templateId String representing an inte­

ger

An identifier representing the

analytic to be acted upon

stopAnalyticsTemplate

Stops the analytic template associated with templateId.

Table 32. stopAnalyticsTemplate Parameters

Parameter Type Description

templateId String representing an inte­

ger

An identifier representing the

analytic to be acted upon

deleteAnalyticsTemplate

Removes the analytic template associated with templateId, the analytic should no longer be

reported in the status.

Table 33. deleteAnalyticsTemplate Parameters

Parameter Type Description

templateId String representing an inte­

ger

An identifier representing the

analytic to be acted upon

Packages

analytics_template

clx

An analytic template that can be used to instantiate an analytic or that can be used in

conjunction with a data map to instantiate an analytic.

Table 34. analytics_template Parameters

Parameter Type Description

name String Name of the analytic tem­

plate

description String Description of the analytic

template

id String representing an inte­

ger

ID of the analytic template

version Straing representing a ver­

sion (e.g., 1.0.0)

Version of the analytic tem­

plate

analytics_data_map

An analytic data map that can be used to instantiate an analytic based on a previously

deployed analytic template.

Table 35. analytics_data_map Parameters

Parameter Type Description

name String Name of the analytic tem­

plate

description String Description of the analytic

template

id String representing an inte­

ger

ID of the analytic template

version Straing representing a ver­

sion (e.g., 1.0.0)

Version of the analytic tem­

plate

parentId ring representing an integer ID of the template this data

map is associated with

Status

Status message JSON schema:

clxi

{

 "$schema": "http://json-schema.org/draft-07/schema#",

 "type": "object",

 "required": [

 "component_status_list",

 "timestamp",

 "attributes"

],

 "properties": {

 "component_status_list":

 {

 "$ref": "#/definitions/component_status_list"

 },

 "timestamp":

 {

 "$ref": "#/definitions/timestamp"

 },

 "attributes":

 {

 "$ref": "#/definitions/attributes"

 }

 },

 "definitions": {

 "component_status_list": {

 "$id": "#/definitions/component_status_list",

 "type": "object",

 "required": [

 "status"

],

 "properties": {

 "status": {

 "type":"array",

 "items":{

 "$ref":"#/definitions/status_element"

 }

 }

clxii

 }

 },

 "status_element": {

 "type": "object",

 "required": [

 "id",

 "state",

 "state_message"

],

 "properties": {

 "id": {

 "type": "string",

 "pattern": "^[0-9]+$"

 },

 "state": {

 "type": "string",

 "enum":["EDGE_ANALYTICS_COMPONENT_STATE_ACTIVE", "EDGE_ANALYTICS_COMPONENT_STATE_INACTIVE",

 "EDGE_ANALYTICS_COMPONENT_STATE_UNKNOWN"]

 },

 "state_message": {

 "type": "string",

 "examples": [

 "Running"

],

 "pattern": "^.+$"

 }

 }

 },

 "timestamp": {

 "$id": "#/definitions/timestamp",

 "type": "string",

 "examples": [

 "2018-12-11T17:58:53.171Z"

],

 "pattern": "^.+$"

 },

 "attributes": {

clxiii

 "$id": "#/definitions/attributes",

 "type": "object",

 "^(.+)/([^/]+)$": {

 "$ref":"#/definitions/attributes_element"

 }

 },

 "attributes_element":{

 "$id": "#/definitions/attributes_element",

 "type":"object",

 "required": [

 "value"

],

 "properties": {

 "value": {

 "type": "string"

 },

 "dataType": {

 "type": "string",

 "enum":["DATATYPE_STRING", "DATATYPE_BINARY",

 "DATATYPE_BOOLEAN","DATATYPE_FLOAT","DATATYPE_DOUBLE", "DATATYPE_INT","DATATYPE_LONG","DATATYPE_TIMESTAMP"]

 }

 }

 }

 }

}

clxiv

Logging

Predix Edge Logs

When debugging an application or troubleshooting a device you will likely need to obtain the log files from

the Predix Edge device. Logs can be obtained from either Edge Manager (on page clxiv) or from the

command line (on page clxv) of the device. Obtaining logs from the command line is only available if

you are using the Development version of the Predix Edge device that has ssh enabled.

Retrieving Predix Edge Device Logs
You can use Edge Manager to retrieve log files from the edge device when debugging an application or

troubleshooting a device.

If you are using the development version of Edge, with ssh enabled, you can also obtain logs from the

command line of the device.

1. In the left navigation pane, select Device Manager > Devices.

2. Select the device for which to retrieve logs, then select Device Operations > Execute Command.

3. In the Execute Command dialog window select Predix Edge as the platform, then select the Get

Journal Log tile, and click Next.

4. In the Execute Command dialog window, set filters (using boolean values "true" and "false) for the

type, quantity, and formatting of the logs to retrieve, and click Execute.

Edge Manager requests the logs from the device.

Optionally, to filter the logs for a specific application running on the device, you must first obtain

the Container Name from the app. To do this:

a. On the Edge Apps tab for the device, select the Application ID and copy the name of the

container.

Note:

The container name may have a .1 appended at the end of the name. Do not include

that in the copied text.

clxv

b. In the Execute Command dialog box, paste the value you copied in the previous step into the

Show Logs from Specified Application Service field.

5. In the confirmation dialog window, click Close.

6. In the Device Manager page, click the link for the device, then click the Commands tab.

The Commands History displays the command history for the device and the status of each

command. Once the Status displays "Success" you can click the download link in the Output

column to download the log file.

Retrieve Logs From the Command Line

1. Use ssh to connect to the IP address of your device. The credentials are root/root.

$ ssh root@x.x.x.x

$ password: root

2. Use the docker ps command to view the Docker containers running on the device.

$ docker ps

3. From the list of running containers, copy the container name.

4. Use the journalctl command with a CONTAINER_NAME filter to retrieve the logs.

$ journalctl CONTAINER_NAME=your-container-name

5. If you would like to follow a real time list of your logs as they are generated, add a -f parameter.

$ journalctl CONTAINER_NAME=your-container-name -f

clxvi

Predix Edge Applications and Services Release
Notes

OPC-UA Protocol Adapter Release Notes 24.07.0

Enhancements

This release contains the following enhancements.

OPC-UA Data Quality Status

When OPC-UA data quality status is processed, bad or uncertain data will be forwarded as a

null value with the quality flag set to "0" to Time Series.

Polling Mode

Polling mode may now limit the number of nodeID objects per message request. Add this

number to "max_operations_per_service_call" in the options block. (The default is "0", which

means no limit and the total count of nodeID objects will be put into a single read polling

request.)

NodeID Specification

NodeID specification in opaque or binary mode is now supported. For example:

• ns=2; g=<UUID>; or

• nss=2; g=<Base64 string>

Alpine Base Image

Updated the Alpine base to v3.20 from 3.14 to fix security and stability issues through

component upgrades.

General Improvements

Various internal stability and performance fixes.

Bug Fixes

The following bug fixes were implemented in this release.

Subscription Mode Halting

Fixed a condition where subscription mode could halt when repeated nodeID subscription

requests failed.

clxvii

OPC-UA Protocol Adapter Release Notes 22.12.0

Enhancements

This release contains the following enhancements.

Alpine Base Image

The Alpine base image has been updated to multi-arch 3.14; no other functional adapter

changes were made.

OPC-UA Protocol Adapter Release Notes 21.10.0

Enhancements

This release contains the following enhancements.

New Configuration Options

The following configuration options have been added for the OPC-UA blocks:

• session_timeout

• connect_timeout

• watchdog_interval

• watchdog_timeout

• publishing_interval (used only by blocks that support subscription)

• sampling_interval (valid only for OPC-UA adapters that subscribe to tags; otherwise

the option is ignored)

• lifetime_count (used only by blocks that support subscription)

• max_batch_size (used only by blocks that support subscription)

• max_nodes_per_sub (valid only for OPC-UA adapters that subscribe to tags;

otherwise the option is ignored)

• queue_size (valid only for OPC-UA adapters that subscribe to tags; otherwise the

option is ignored)

For more information, see Configuration Properties for OPC-UA Protocol Adapter (on page

lxxv).

General Improvements

A number of other changes have been made to improve the adapter's synchronization and

stability.

clxviii

OPC-UA Protocol Adapter Release Notes 20.2.0

Enhancements

This release contains the following enhancements:

Report Bad Quality

The report_bad_quality feature is now supported in the 'Poll Flat' and 'Sub Flat' blocks. This

feature ensures that NULL values are sent out when connectivity to the server is lost.

Source Timestamp

The source_timestamp feature is now supported in the 'Poll Flat' block. This feature allows

the OPC-UA server timestamp to be used for the tags, as opposed to the Predix Edge device

timestamp.

Bug Fixes

This release contains the following bug fixes:

Exception Handling

Resolved an issue where exceptions (such as non-finite floating point values) in the 'EGD

Sink Flat', 'Json Splitter', 'JsonTimeseries', 'Simulink Json' and 'Flat to Timeseries' blocks

would cause adapters to crash.

Bad Type in OPC-UA Data

Fixed an issue where bad type in OPC-UA data (when using the 'OPC-UA Poll Flat' block with

an output format of 'flat_json') caused subsequent values to be null in flat_json. Now, only

the value of the specific tag will be set to 'NULL'.

Data Quality

Fixed an issue where the quality of OPC-UA data was set to '3' (Good) even though the value

was 'NULL'. Now, the quality will correctly be set to '0' (Bad).

Support for Null Timeseries Datapoints

Added support for null timeseries datapoints in OPC-UA and Flat-to-Timeseries.

Best-effort Data Reporting

Implemented best-effort data reporting so that bad data will not cause good data to be

discarded when messages contain a mix of both good and bad data.

OSI-PI Protocol Adapter Release Notes 22.12.0

clxix

Enhancements

This release contains the following enhancements.

Alpine Base Image

The Alpine base image has been updated to multi-arch 3.14; no other functional adapter

changes were made.

OSI-PI Protocol Adapter Release Notes 21.11.0

Enhancements

This release contains the following enhancements:

Application Size

The size of the application has been reduced to 16MB (from 51MB).

Bug Fixes

This release contains the following bug fixes:

Digital Signal Support

The Digital Signal Support parameter digital_output_type can now be expressed as one of:

• bool

• string

• uint64 (default)

Webid/Pi Name

Both webid and piPointName are supported in the config json file.

OSI-PI Protocol Adapter Release Notes 21.5.0

Enhancements

This release contains the following enhancements:

Fetching Server Parameters

The adapter now fetches required server parameters as needed. This resolves an issue

where a failed fetch that was not retried resulted in malformed read requests.

clxx

Tags

Resolved an issue where an OSI-PI tag with bad quality was reported as 'uncertain', rather

than 'bad'.

General Improvements

A number of other changes have been made to improve the adapter's synchronization and

stability.

OSI-PI Protocol Adapter Release Notes 20.2.0

Enhancements

This release contains the following enhancements:

Container Image

The container image distribution has been upgraded from Alpine 3.5 to Alpine 3.10.

Tags

Tags can now be specified using point name in addition to webid.

EGD Protocol Adapter Release Notes 23.09.0

Enhancements

The following enhancements were implemented in this release.

Alpine Base Image

The Alpine base image has been updated to 3.14.

General Improvements

A number of internal changes were made to improve stability and performance.

Known Issues and Limitations

This release contains the following known issues and limitations.

Description Tracking ID

EGD multicast data cannot be read by the adapter.

This issue will be resolved in a future release.

EDGE2CLOUD-7278

clxxi

Bug Fixes

The following bug fixes were implemented in this release.

Timestamp Assignment

Fixed an issue where the datapoint timestamp was incorrect when setting time_source to

'host'. The datapoint timestamp matched the time of egress rather than the time of ingress.

EGD Protocol Adapter Release Notes 22.12.0

Bug Fixes

The following bug fixes were implemented in this release.

Non-finite Float and Double Measurements

Non-finite float and double measurements (e.g., Inf, -Inf, Nan, etc.) are now dropped from the

adapter output.

Invalid Headers

Resolved an issue that would cause crashes when parsing invalid EGD headers.

"0" Signature PDUs

Incoming PDUs with a signature of "0" are no longer treated as an error.

Log Noise

Reduced log noise at the info level by moving many common messages to the debug level.

EGD Protocol Adapter Release Notes 22.08.0

New Features

Data Sample Throttle

You can now set the maximum number (default is one) of consecutive data samples in a

batch interval (units are milliseconds; default is 30000) to be collected.

Timestamp_from in Egress Block

A new parameter, timestamp_from, has been added to the egress block. The parameter can

be specified as either of the following:

clxxii

• "timestamp_from": "host" - replaces timestamp with a timestamp from the Predix

Edge device.

• "timestamp_from": "source" (default) - preserves the timestamp from the EGD data

broadcast message and uses it in the data tag message sent upstream.

Deadband App Compatibility

If the Deadband app 20.4.1 or earlier is used to process the data flow, the EGD adapter must

be configured with max_num_datapoints = 1. The EGD adapter can now provide multiple

data samples and timestamps for a batch interval, but the Deadband app expects only a

single data point and will pass through all data points unfiltered when there are multiple

data points for a tag.

Data Output

EGD data can be output as either a flat JSON file or in Time Series format.

Time Series Attribute

Support has been added for the Time Series Attribute.

Optional Config Block Sets New Features

A new, optional config "egress" block sets the following new features:

"egress": {

"output_format": "time_series",

"batch_interval": 30000,

"max_num_datapoints": 1,

"attributes":

{ "device": "egd-producer-simulator" }

}

Bug Fixes

Memory Leak

There is no longer a memory leak in edgflat mode.

Configuration Server Improvements

The adapter now supports EGD signature 0 semantics.

Interprocess Communications

clxxiii

CPU usage is greatly reduced now that incoming data is batched into large TimeSeries

messages.

Data from IPv4 Subnet Addresses

EGD data can now be read from an IPv4 subnet broadcast address.

EGD Dynamic Binding Protocol Adapter Release Notes
21.03.0

New Features

Support for Multiple Producers

The EGD dynamic binding protocol adapter has been extended to support multiple

producers, each identified by their producer id and their associated configuration server.

Users will need to update their configuration files, as the format has changed in a way that is

not backwards compatible. See EGD Dynamic Binding Protocol Adapter (on page xli).

MQTT Protocol Adapter Release Notes 23.01.0

Enhancements

This release contains the following enhancements.

Alpine Base Image

The Alpine base image has been updated to multi-arch 3.14; no other functional adapter

changes were made.

Cloud Gateway Release Notes 23.01.0

Enhancements

This release contains the following enhancements.

Alpine Base Image

The Alpine base image has been updated to multi-arch 3.14; no other functional adapter

changes were made.

Modbus Protocol Adapter Release Notes 24.03.0

clxxiv

Enhancements

This release contains the following enhancements.

Modbus Block

Modbus block is no longer supported.

Alpine Base Image

The Alpine base image has been updated to multi-arch 3.19; no other functional adapter

changes were made.

General Performance

Implemented internal adapter stability fixes.

Deadband Application Release Notes 22.12.0

Bug Fixes

The following bug fix was implemented in Deadband Application 22.12.0.

Configuration File Tags

When evaluating tags in the Deadband configuration file, the data quality field is now

considered and accepted only when a "3" is present. Previous versions did not check the

data quality field.

Malformed Input

The handling and logging of malformed input has been improved with this release.

Deadband Application Release Notes 22.09.0

New Feature

Data Point Processing

Multiple data points for a given tag can now be filtered according to the config json settings,

making the Deadband Application 22.09.0 compatible with the new EGD Protocol Adapter

22.08.0 data throttle (batcher) feature. Previous versions of the Deadband Application would

ignore multiple data points for a given tag and pass the data values through unfiltered.

Deadband Application Release Notes 20.4.1

clxxv

The 20.4.1 version of the Deadband application behaves and functions the same as the 20.4.0 version.

The only change is the following bug fix:

App Signing

This release contains an app signing fix for Edge Manager deployment.

Deadband Application Release Notes 20.4.0

New Feature

This is a new feature release for Predix Edge Applications and Services.

The Deadband App provides the ability to manage Edge sites to have the deadband enabled for

the respective tags to filter the amount of data pushed and realize savings for the data and its cost

associated with Predix Time Series. See Deadband Application (on page cxxix).

Cloud Gateway Release Notes 21.07.0

Enhancements

This release contains the following enhancements:

Time Series Token File

There is a new timeseries/proxy_url option, which sets a separate proxy server for the

UAA. This change allows for the accommodation of architectures where the time series

destination is on a separate network from Edge Manager. For additional information and

configuration details, see Time Series Publisher Block Config (on page cxvi).

General Improvements

Improvements have been made to the Cloud Gateway's performance and stability.

Cloud Gateway Release Notes 20.12.0

Enhancements

This release contains the following enhancements:

Compressed Format Accepted for Data Ingestion

A new configuration option has been added to the Time Series Publisher Block. The

timeseries/compress tag is an optional boolean (true/false) that defaults to 'true'. When

clxxvi

enabled, the Time Series service will receive JSON payloads compressed (GZIP) by the

cloud gateway.

See Time Series Publisher Block Config (on page cxvi).

Time Series Token File

The time series token_file configuration option now allows you to use a separate UAA other

than the one utilized by Edge Manager. For additional information and configuration details,

see Time Series Publisher Block Config (on page cxvi).

Cloud Gateway Release Notes 20.3.0

Enhancements

This release contains the following enhancements:

Performance Improvements

Many code paths that added latency have been removed. For configuration files that use

500 to 1000 tags:

• CPU usage has been reduced up to 30 times

• Memory consumption has been reduced by five times

Ubuntu Support

This version of the cloud gateway has been validated with Edge Agent on Ubuntu 18.04,

which is currently in limited availability. For more information on Edge Agent on Ubuntu

please contact predix-edge-inquiries@ge.com.

Store Always Capability Removed

In situations where a configuration is set to store always, this setting will be ignored and

store-on-failure will be used instead.

Predix Edge Applications and Services Release Notes 12-19

Bug Fixes

This release contains the following bug fix.

Cloud Gateway Data Transmission

clxxvii

Resolved an issue that would see the cloud gateway stop sending data to the cloud when it

encountered bad network conditions, necessitating a restart.

Known Issues

This release has the following known issues:

Duplicate Client IDs when Connecting to MQTT

Applications with no clientid configured may encounter an issue with duplicate client IDs

when connecting to the MQTT broker resulting in the applications not working as expected.

To avoid this issue, configure the clientid field either in the PEAS applications or in custom

applications when connecting to the broker.

Excessive Logging Depletes Memory

Applications that generate excessive logs can create conditions where Docker (dockerd)

consumes a large amount of memory. If memory usage is of concern, configure

applications to produce fewer logs.

EGD Failure During Power Cycle

The EGD application may fail to start or deploy if a previous attempt to start/deploy was

interrupted by a power cycle. The workaround for this issue is to reboot the device before

attempting to start/deploy the application.

OPC UA and Timeseries Output Format

Users of opcuapollflat blocks should not use the flat_to_timeseries block to generate

timeseries output as this will result in the loss of tag-based timestamps because the

flat_to_timeseries format uses the first timestamp it encounters for the entire tag list and

discards the rest.

Instead, the output_format field should be set to time_series.

Cloud Gateway Performance

When the cloud connection is re-established and there is a large store buffer, cloud gateway

performance will be slow for a couple of minutes.

Raw Modbus Data

Raw modbus data passed from an adapter into a raw modbus sink will fail with an error

similar to:

• Couldn't parse {"data":{"tagName":{"val":19}},"timestamp":1562096019014}:

std::exception

clxxviii

Raspberry Pi

Cloud Gateway on Raspberry Pi is known to fail after running for an extended period of time,

due to insufficient memory on the Raspberry Pi device.

Note:

The Raspberry Pi image remains unchanged from the 2.1.0 release.

Predix Edge Applications and Services Release Notes 2.4.0

Enhancements

This release has the following enhancements.

Cloud Gateway 1.4.0

• Upgraded the container image distribution from Alpine 3.5 to Alpine 3.10

• Significant performance improvements

• Reduced verbosity of logs

Bug Fixes

This release contains the following bug fixes:

Cloud Gateway 1.4.0

• Fixed performance degradation over time when using store-on-failure

• Fixed issues that could cause stability problems

• Fixed issues relating to shutdown

Known Issues

This release has the following known issues:

Duplicate Client IDs when Connecting to MQTT

Applications with no clientid configured may encounter an issue with duplicate client IDs

when connecting to the MQTT broker resulting in the applications not working as expected.

To avoid this issue, configure the cliendid field either in the PEAS applications or in custom

applications when connecting to the broker.

Excessive Logging Depletes Memory

clxxix

Applications that generate excessive logs can create conditions where Docker (dockerd)

consumes a large amount of memory. If memory usage is of concern, configure

applications to produce fewer logs.

EGD Failure During Power Cycle

The EGD application may fail to start or deploy if a previous attempt to start/deploy was

interrupted by a power cycle. The workaround for this issue is to reboot the device before

attempting to start/deploy the application.

OPC UA and Timeseries Output Format

Users of opcuapollflat blocks should not use the flat_to_timeseries block to generate

timeseries output as this will result in the loss of tag-based timestamps because the

flat_to_timeseries format uses the first timestamp it encounters for the entire tag list and

discards the rest.

Instead, the output_format field should be set to time_series.

Cloud Gateway Performance

When the cloud connection is re-established and there is a large store buffer, cloud gateway

performance will be slow for a couple of minutes.

Raw Modbus Data

Raw modbus data passed from an adapter into a raw modbus sink will fail with an error

similar to:

• Couldn't parse {"data":{"tagName":{"val":19}},"timestamp":1562096019014}:

std::exception

Raspberry Pi

Cloud Gateway on Raspberry Pi is known to fail after running for an extended period of time,

due to insufficient memory on the Raspberry Pi device.

Note:

The Raspberry Pi image remains unchanged from the 2.1.0 release.

Predix Edge Applications and Services Release Notes 2.3.2

clxxx

Bug Fixes

This release contains the following bug fixes:

OPC-UA Adapter Polling

1. Resolved an issue where OPC-UA adapter polling would stop processing data in a block

once a tag with bad data quality was encountered. This issue exists in Predix Edge releases

2.3 and 2.3.1.

Cloud Gateway

Resolved several resource leaks and stability issues within the Cloud Gateway.

Known Issues

This release has the following known issues:

Raspberry Pi

Cloud Gateway on Raspberry Pi is known to fail after running for an extended period of time,

due to insufficient memory on the Raspberry Pi device.

Note:

The Raspberry Pi image remains unchanged from the 2.1.0 release.

Cloud Gateway Performance

When the cloud connection is re-established and there is a large store buffer, cloud gateway

performance will be slow for a couple of minutes.

Raw Modbus Data

Raw modbus data passed from an adapter into a raw modbus sink will fail with an error

similar to:

• Couldn't parse {"data":{"tagName":{"val":19}},"timestamp":1562096019014}:

std::exception

Predix Edge Applications and Services Release Notes 2.3.0

New Features

This release contains the following new features:

Edge File Agent and Cloud File Gaeway

clxxxi

The ability to remotely manage file send/receive capability between Predix Edge and Cloud

is now available. The APM File Gateway stores/retrieves files from your Tenant's Blobstore

and places a message on Event Hub. The Edge File Agent allows any Edge application

to send/receive files in the Edge applications/data folder. ETL or other data movement

applications will leverage this capability to keep customer data sources in sync, receive

events or transfer log files.

OPC-UA Protocol Adapter

The following capabilities have been added to the OPC-UA Protocol Adapter:

• A new block has been introduced for OPC-UA events subscriptions:

◦ Subscribe to OPC-UA events, and change the parameters of the subscription,

or unsubscribe.

◦ Allow for configurable event attributes.

OSI-PI Protocol Adapter

The following capabilities have been added to the OSI-PI Protocol Adapter:

• Increased ability to handle polling from ~200 to ~2000 tags.

• Added extra configuration options:

◦ proxy_url (string) – The proxy_url field determines the proxy address used

to connect to the PiWebApi endpoint. It defaults to environment variable

$https_proxy.

◦ validate_certs (bool) – The validate_certs field determines whether the

adapter will validate the certificates of the PiWebApi endpoint. Use this field if

your PiWebApi does not have a valid certificate. It defaults to an empty string.

◦ interval_ms (int) – The interval_ms field determines the interval (in

milliseconds) at which the block will poll its endpoint for data. The default is

1000.

◦ output_format (string) – The output_format field determines the output format

of the data retrieved from the PiWebApi:

▪ flat_json will return the data in flat JSON format.

▪ time_series will return the data in Predix Time Series format.

▪ native will return the data in the native PiWebApi JSON format.

Resolved Issues

The following known issues have been resolved:

clxxxii

Transmitting Frequently Changing Data

Previously, when using OSI-PI to transmit data at a rate higher than 100 tags per second for

an extended period of time, the stability of the application was not guaranteed. This issue is

now fixed.

IGS Configuration Updates During IGS Connection Failure

Fixed an issue where data would be retrieved indefinitely based on the previous

configuration until a valid configuration with reachable IGS server IP and PORTS were

applied during IGS OPC-DA configuration updates.

OPC-UA Browsing

When the OPC-UA server was configured with child nodes that referred to ancestor nodes,

the OPC-UA Browser did not account for this corner use case. If the functionality was used

against a server with nodes configured in this manner, it resulted in an infinite loop. This

issue has been resolved.

Known Issues

This release has the following known issue:

Raspberry Pi

Cloud Gateway on Raspberry Pi is known to fail after running for an extended period of time,

due to insufficient memory on the Raspberry Pi device.

Predix Edge Applications and Services Release Notes 2.2.0

New Features

This release contains the following new features:

EGD Dynamic Binding

The EGD Protocol Adapter has been enhanced to support Dynamic Binding. It can now

automatically determine changes in the configuration of the EGD controller and adapt in real

time, adjusting all data tag subscriptions.

IGS Adapter

A new IGS Protocol Adapter is now available. This adapter allows Predix Edge to connect

to Kepware’s Industrial Gateway Server (IGS). IGS is a third-party product that runs on

a Windows Server and can connect to 200+ industrial protocols. IGS then converts the

protocol data to OPC-UA to be consumed by other applications. In this initial release, the IGS

clxxxiii

Adapter can be configured to subscribe to OPC-DA data sources via IGS. The adapter works

in tandem with the Predix Edge OPC-UA Protocol Adapter to subscribe to the OPC-DA results

and publish them on the Predix Edge Data Broker.

MQTT Protocol Adapter Authentication

The MQTT adapter can now be configured to authenticate to the external MQTT source

using a username and password.

OPC-UA Protocol Adapter

The following capabilities have been added to the OPC-UA Protocol Adapter:

• Data tag node browsing, including hierarchy – An application can browse the OPC-

UA server and discover all of its available nodes programmatically. Node browsing

provides the ability to browse the tree of objects to a configurable depth.

• Read data tags metadata – An application can programmatically interrogate a given

node in the tree and return the list of node attributes.

Resolved Issues

The following known issue has been resolved:

MQTT Protocol Adapter on Raspberry Pi

When the MQTT protocol adapter on Raspberry Pi loses its connection/signal with the

Broker, the adapter can now come back online/establish a connection by itself without a

restart.

Known Issues

This release has the following known issues:

Transmitting Frequently Changing Data

When using OSI-PI to transmit frequently changing data to the Cloud or to an internal

application, Edge Engineering guarantees the OPC-UA protocol adapter will transmit up to

100 tags per second. If you are transmitting data at a rate higher than 100 tags per second

for an extended period of time, the stability of the application is not guaranteed.

IGS Configuration Updates During IGS Connection Failure

During IGS OPC-DA configuration updates, if IGS is unreachable due to a connection failure

or invalid IP/PORT configuration, the IGS adapter will enter into a retry stage in an attempt

to reach the unreachable IGS and eventually timeout based on the retry interval specified in

clxxxiv

the configuration file. However, data will still be retrieved indefinitely based on the previous

configuration until a valid configuration with reachable IGS server IP and PORTS are applied.

Raspberry Pi

Cloud Gateway on Raspberry Pi is known to fail after running for an extended priod of time,

due to insufficient memory on the Raspberry Pi device.

OPC-UA Browsing

Technically, it is possible for an OPC-UA server to be configured with child nodes that refer

to ancestor nodes. The OPC-UA Browser does not account for this corner use case. If the

functionality is used against a server with nodes configured in this manner, it may result in

an infinite loop.

Predix Edge Applications and Services Release Notes 2.1.0
These are the new features and known and resolved issues for Predix Edge Applications and Services,

version 2.1.0.

New Features

This release contains the following new features:

ARM-based Predix Edge Applications

ARM versions of all protocol adapters and cloud gateway components are now available.

These will enable Raspberry Pi devices to run these components, providing an accessible,

low cost and developer friendly device platform.

Cloud Gateway Enhancements

A new simplified and unified Cloud Gateway component has been implemented with store

and forward data buffering capability to transmit data to both Predix Cloud Event Hub and

Predix Cloud Time Series.

New Historian Applications

The following new Historian applications have been added:

• Historian Web-admin Console – dashboard for Historian Data Archiver.

• Historian S2S Collector – Data Streamer between Historian servers.

Known Issues

This release has the following known issues:

clxxxv

Raspberry Pi

• Cloud Gateway on Raspberry Pi is known to fail after running for an extended priod of

time, due to insufficient memory on the Raspberry Pi device.

• When the MQTT protocol adapter on Raspberry Pi loses its connection/signal with

the Broker, the adapter will not come back online/establish a connection by itself

and will be in a locked state. Should this occur, restart the MQTT protocol adapter

container.

Transmitting Frequently Changing Data

• When using OSI-PI to transmit frequently changing data to the Cloud or to an internal

application, Edge Engineering guarantees the OPC-UA protocol adapter will transmit

up to 100 tags per second. If you are transmitting data at a rate higher than 100

tags per second for an extended period of time, the stability of the application is not

guaranteed.

	Cover Page
	Contents
	Predix Edge Apps and Services Overview
	About Predix Edge Applications
	Architecture
	Things to Know About Edge Applications
	Additional Information

	Setup Predix Edge Applications
	Predix Edge Applications
	Installing an Application
	Configuring an Application

	Predix Edge Protocol Adapters
	Protocol Adapters Overview
	Predix Edge Protocol Adapters Overview
	Protocol-Specific Information
	Download the Adapters
	Deployment
	Configuration
	The Blocks Section

	Mapping the Blocks
	Flat JSON to Time Series Conversion Block
	attributes
	log_level and log_name
	Examples

	Splitter Routing Block
	output_count
	log_level and log_name
	Example

	Generic CDP Blocks
	transport_addr
	node_ref
	method
	interval
	log_level
	log_name
	options
	directory
	max_cache_size
	max_cache_size_units
	CDP In
	CDP Out
	CDP Out Queue

	EGD Protocol Adapters
	EGD Protocol Adapters Overview
	Protocol Adapters - EGD
	Where Do I Get the EGD Protocol Translator Application?
	Protocol Benchmarking - EGD

	EGD Read/Write Protocol Adapter
	Overview of Capabilities
	Deployment and Configuration Resources
	EGD
	EGD Flat
	EGD Sink Flat
	Example configuration to send commands from MQTT to EGD
	Sample Files

	EGD Dynamic Binding Protocol Adapter
	EGD Dynamic Binding Protocol Adapter
	EGD Configuration
	Overview of Capabilities
	Data Format
	Configuration Resources

	MQTT Protocol Adapter
	Protocol Adapters - MQTT
	Where Do I Get the MQTT Protocol Translator Application?
	Overview of Capabilities
	Subscribe to a Topic
	Publish to a Topic
	Authentication
	Username/Password
	Configuration Properties for MQTT Protocol Adapter
	Sample Files

	Modbus Protocol Adapter
	Where Do I Get the Modbus Protocol Translator Application?
	Protocol Benchmarking - Modbus
	Overview of Capabilities
	Read
	Write
	TCP Communication
	RTU (Serial) Communication
	Configuration Properties for Modbus Protocol Adapter
	Modbus Flat
	Modbus Sink Flat
	Sample Files

	OPC UA Protocol Adapter
	Protocol Adapters - OPC-UA
	Where Do I Get the OPC-UA Protocol Adapter Application?
	Protocol Benchmarking - OPC-UA
	Overview of Capabilities
	Details of Capabilities
	Read
	Polling (OPC-UA Poll Flat)
	Subscription (OPC-UA Sub Flat)

	Write
	Events
	Communication Encryption
	Create an Encryption Certificate on a Unix-type System
	Create an Encryption Certificate on a Windows System
	application_uri
	security_mode
	pki_root_path

	Authentication
	Username/Password
	Certificates
	Alarm Acknowledgement
	Configuration Properties for OPC-UA Protocol Adapter
	transport_addr
	data_map
	log_level and log_name
	trace_level
	options

	OPC-UA Sub Flat
	report_bad_quality
	Example Config Block

	OPC-UA Poll Flat
	interval
	report_bad_quality
	source_timestamp
	output_format
	Example Config Block

	OPC-UA Sink Flat
	Example Config Block

	OPC-UA Events
	Example Config Block

	Sample Files
	docker-compose.yml
	config.json

	Command Handler Block
	OPC-UA Browse Requests
	OPC-UA Node Attributes Requests

	OSI PI Protocol Adapters
	Where Do I Get the OSI-Pi Protocol Translator Application?
	Protocol Benchmarking - OSI-Pi
	Overview of Capabilities
	Details of Capabilities
	Read
	Authentication
	Configuration Details
	transport_addr
	data_map
	log_level and log_name
	interval_ms
	username
	password
	proxy_url
	validate_certs
	output_format
	digital_output_type

	Sample Files
	docker-compose.yml
	config.json

	Predix Edge Cloud Gateways
	About Predix Edge Cloud Gateway
	Where Do I Get It?
	Overview of Capabilities
	Currently Supported
	Limitations

	Time Series Publisher Capabilities
	Time Series Publishing
	Time Series MQTT Subscriptions
	Time Series Data Storage

	Event Hub Publisher Capabilities
	Event Hub Publishing
	Event Hub MQTT Subscriptions
	Event Hub Store and Forward

	How Do I Deploy It?
	How Do I Configure It?
	The Blocks Section
	Time Series Publisher Block Config
	log_level and log_name
	mqtt
	store_forward/max_store_percent and store_forward/max_batch_interval
	timeseries/compress
	timeseries/transport_addr
	timeseries/predix_zone_id
	timeseries/token_file
	timeseries/proxy_url

	Event Hub Publisher Block Config
	log_level and log_name
	mqtt
	store_forward/max_store_percent and store_forward/max_batch_interval
	eventhub/transport_addr
	eventhub/predix_zone_id
	eventhub/token_file
	eventhub/topic_map

	Common Block Config Fields
	log_level
	log_name
	mqtt/transport_addr
	mqtt/qos
	mqtt/client_id
	mqtt/topics
	store_forward/max_store_percent
	store_forward/max_batch_interval

	Sample Files
	docker-compose.yml
	config.json

	Predix Edge Deadband Application
	Introduction
	Protocol Benchmarking
	Where Do I Get It?
	Overview of Capabilities
	Details of Capabilities
	Absolute Deadband
	Percent Deadband

	Configuration Details
	listenTopic
	publishTopic
	tags
	log_level
	clientid
	qos

	Sample Files
	docker-compose.yml
	config.json

	Custom Applications
	Building an Application
	Building an Application
	Application Architecture
	Application Containers Can Communicate Over a Docker Network

	Docker Networks
	Hostnames
	Ports
	Docker Compose Structure

	Packaging an Application
	Introduction
	Applications
	Predix Edge Applications
	One App or Many Apps?
	Application Packaging
	Docker (docker-compose.yml files)
	Application Size Limitations
	Application Signing

	Application Signing
	Application Signing
	Obtain a GE Signature For Your Application
	Self-Sign Your Application

	Running an Application
	Deploying to PETC
	Deploying to Edge Manager
	Troubleshooting

	Accessing Devices
	Making I/O Devices Available to Applications
	Requesting Access to an I/O Device on the Host

	Application Custom Commands
	Expose a Capability Via the Application
	MQTT Configuration
	Securely Connecting to the Command Topic
	Implementing Commands
	Exposing Status Information

	Analytics Framework
	Introduction
	Implementing Commands
	Sending Status
	Creating the Application Manifest

	Analytic Engine Capabilities

	Logging
	Predix Edge Logs
	Retrieving Predix Edge Device Logs
	Retrieve Logs From the Command Line

	Predix Edge Applications and Services Release Notes
	OPC-UA Protocol Adapter Release Notes 24.07.0
	Enhancements
	Bug Fixes

	OPC-UA Protocol Adapter Release Notes 22.12.0
	Enhancements

	OPC-UA Protocol Adapter Release Notes 21.10.0
	Enhancements

	OPC-UA Protocol Adapter Release Notes 20.2.0
	Enhancements
	Bug Fixes

	OSI-PI Protocol Adapter Release Notes 22.12.0
	Enhancements

	OSI-PI Protocol Adapter Release Notes 21.11.0
	Enhancements
	Bug Fixes

	OSI-PI Protocol Adapter Release Notes 21.5.0
	Enhancements

	OSI-PI Protocol Adapter Release Notes 20.2.0
	Enhancements

	EGD Protocol Adapter Release Notes 23.09.0
	Enhancements
	Known Issues and Limitations
	Bug Fixes

	EGD Protocol Adapter Release Notes 22.12.0
	Bug Fixes

	EGD Protocol Adapter Release Notes 22.08.0
	New Features
	Bug Fixes

	EGD Dynamic Binding Protocol Adapter Release Notes 21.03.0
	New Features

	MQTT Protocol Adapter Release Notes 23.01.0
	Enhancements

	Cloud Gateway Release Notes 23.01.0
	Enhancements

	Modbus Protocol Adapter Release Notes 24.03.0
	Enhancements

	Deadband Application Release Notes 22.12.0
	Bug Fixes

	Deadband Application Release Notes 22.09.0
	New Feature

	Deadband Application Release Notes 20.4.1
	Deadband Application Release Notes 20.4.0
	New Feature

	Cloud Gateway Release Notes 21.07.0
	Enhancements

	Cloud Gateway Release Notes 20.12.0
	Enhancements

	Cloud Gateway Release Notes 20.3.0
	Enhancements

	Predix Edge Applications and Services Release Notes 12-19
	Bug Fixes
	Known Issues

	Predix Edge Applications and Services Release Notes 2.4.0
	Enhancements
	Bug Fixes
	Known Issues

	Predix Edge Applications and Services Release Notes 2.3.2
	Bug Fixes
	Known Issues

	Predix Edge Applications and Services Release Notes 2.3.0
	New Features
	Resolved Issues
	Known Issues

	Predix Edge Applications and Services Release Notes 2.2.0
	New Features
	Resolved Issues
	Known Issues

	Predix Edge Applications and Services Release Notes 2.1.0
	New Features
	Known Issues

