
GE Digital Proficy Historian and Operations Hub: Data Analysis in Context 1

Proficy HMI/SCADA -
CIMPLICITY 2022
Basic Control Engine and
Scripting Reference

Proprietary Notice

The information contained in this publication is believed to be accurate and reliable. However, General Electric Company assumes no
responsibilities for any errors, omissions or inaccuracies. Information contained in the publication is subject to change without notice.

No part of this publication may be reproduced in any form, or stored in a database or retrieval system, or transmitted or distributed in any
form by any means, electronic, mechanical photocopying, recording or otherwise, without the prior written permission of General Electric
Company. Information contained herein is subject to change without notice.

© 2022, General Electric Company. All rights reserved.

Trademark Notices

GE, the GE Monogram, and Predix are either registered trademarks or trademarks of General Electric Company.

Microsoft® is a registered trademark of Microsoft Corporation, in the United States and/or other countries.

All other trademarks are the property of their respective owners.

We want to hear from you. If you have any comments, questions, or suggestions about our documentation, send them to the following email
address:

doc@ge.com

Chapter 1. Script Editors..42

About Script Editors.. 42

About the Program Editor..42

Open the Program Editor...43

Open the Program Editor...43

Option 1. Open a Blank Program Editor...43

Option 2. Open the Program Editor with an Existing Script...44

Program Editor Window Components...46

Program Editor Window Components...46

Program Editor Menu Functions... 47

Program Editor Toolbars and Status Bar...51

Program Editor Shortcut Keys...53

Set String and Stack Space..54

Program Editor: Edit Programs... 55

Program Editor: Edit Programs... 55

1. Program Editor: Navigate within a Script... 56

2. Program Editor: Text Procedures.. 58

3. Program Editor: Point Tools..64

4. Program Editor: Alarm Tools..69

5. Program Editor: Log Status Tool.. 71

6. Program Editor: Add Comments to a Script... 71

7. Program Editor: Enter a Statement across Multiple Lines.. 72

8. Program Editor: Check the Syntax of a Script..73

9. Program Editor: Add Dialog Boxes to a Script...73

Dialog Editor.. 73

Dialog Editor.. 73

1. Use the Dialog Editor..74

2. Create a Custom Dialog Box...79

3. Edit a Custom Dialog Box.. 86

4. Insert/Paste a Dialog Box Template Code into a Script..108

5. Edit an Existing Dialog Box... 111

Contents | iii

6. Test a Dialog Box..117

7. Exit from the Dialog Editor...121

8. Use a Custom Dialog Box in a Script...122

9. Use a Dynamic Dialog Box in a Script...127

Debug Scripts... 130

Debug Scripts... 130

1. Fabricate Event Information.. 131

2. Step through Scripts...132

3. Use Breakpoints... 136

4. Perform Traces in Scripts.. 139

5. Use a Watch Variable..142

Run a Program... 149

Error Messages...150

Error Messages...150

1. Visual Basic Compatible Error Messages... 151

2. Basic Control Engine-Specific Error Messages.. 153

3. Error Message List...155

Chapter 2. CimScriptIDE Editor... 159

About the CimScriptIDE Editor.. 159

1. Open the CimScriptIDE Editor... 159

1. Open the CimScriptIDE Editor... 159

1.1. Create a New C# or VB .NET Script...160

1.2. Open an Existing C# or VB .NET Script... 161

2. CimScriptIDE Editor: Overview... 162

2. CimScriptIDE Editor: Overview... 162

2.1. CimScriptIDE Editor: Menus... 164

2.2. CimScriptIDE Editor: Toolbars and Status Bar... 167

2.3. CimScriptIDE Editor: Class View Pane...168

2.4. CimScriptIDE Editor: Right-Pane.. 169

3. Technical Reference: CimScriptIDE Editor.. 170

3. Technical Reference: CimScriptIDE Editor.. 170

Contents | iv

3.1. CimScriptIDE Debugging in Visual Studio... 171

3.2. Attach Additional .NET Assembly References.. 172

Chapter 3. Basic Control Engine Language Reference... 174

Using the Basic Control Engine Language Reference.. 174

Scripting Language Reference... 174

About the Basic Control Syntax..176

Language Elements by Category... 176

Language Elements By Category.. 176

Arrays... 177

Clipboard.. 178

Comments...178

Comparison Operators..178

Controlling other Programs..178

Controlling Program Flow... 179

Controlling the Operating Environment.. 180

Conversion..180

Data Types..181

Database..181

Date/time...182

DDE.. 182

Contents | v

Error Handling..183

File I/O... 183

File System...184

Financial... 184

Getting information from Basic Control Engine... 185

INI Files..185

Logical/binary Operators..185

Math..186

Miscellaneous... 186

Numeric Operators... 186

Objects.. 187

Parsing.. 187

Predefined Dialogs... 187

Printing... 188

Procedures...188

String Operators... 188

Strings...188

User Dialogs...189

Variables and Constants...190

Contents | vi

Variants...191

Symbols.. 191

Symbols.. 191

' (keyword)..192

- (operator)..192

#Const (directive)...193

#If...Then...#Else (directive)...194

& (operator)..196

() (keyword)..196

* (operator)...197

. (keyword)... 197

/ (operator)..198

\ (operator)..199

^ (operator)... 199

_ (keyword).. 200

+ (operator)...200

< (operator)...201

<= (operator).. 201

<> (operator).. 201

= (operator)...202

= (statement)...202

Contents | vii

> (operator)...202

>= (operator).. 202

A... 203

A... 203

Abs (function).. 204

And (operator).. 204

AnswerBox (function)..205

Any (data type).. 206

AppActivate (statement)...207

AppClose (statement)...208

AppFind, AppFind$ (functions)...208

AppGetActive$ (function)..209

AppGetPosition (statement)... 209

AppGetState (function).. 210

AppHide (statement).. 211

AppList (statement)..211

AppMaximize (statement)..212

AppMinimize (statement)...212

AppMove (statement)...213

AppRestore (statement)..214

Contents | viii

AppSetState (statement)...214

AppShow (statement)...215

AppSize (statement)... 215

AppType (function)..216

ArrayDims (function)...217

Arrays (topic)... 218

ArraySort (statement)...219

Asc, AscB, AscW (functions)..220

AskBox, AskBox$ (functions)...221

AskPassword, AskPassword$ (functions)..222

Atn (function)...223

B..223

B..223

Basic.Architecture$ (property)...224

Basic.Capability (method)..224

Basic.CodePage (property)...225

Basic.Eoln$ (property)... 226

Basic.FreeMemory (property).. 226

Basic.HomeDir$ (property)..226

Basic.Locale$ (property).. 227

Basic.OperatingSystem$ (property)... 227

Basic.OperatingSystemVendor$ (property)... 228

Basic.OperatingSystemVersion$ (property)...228

Contents | ix

Basic.OS (property)..229

Basic.PathSeparator$ (property).. 229

Basic.Processor$ (property)... 230

Basic.ProcessorCount$ (property)..230

Basic.Version$ (Property).. 231

Beep (statement)...231

Begin Dialog (statement)... 231

Boolean (data type).. 233

ByRef (keyword)..234

ByVal (keyword)..234

C..235

C..235

Call (statement).. 236

CDbl (function).. 237

CBool (function).. 237

CCur (function).. 238

CDate, CVDate (functions)..238

ChDir (statement)...239

ChDrive (statement)... 239

CheckBox (statement).. 240

Contents | x

Choose (function)...241

Chr, Chr$, ChrB, ChrB$, ChrW, ChrW$ (functions)..241

CInt (function)..243

CancelButton (statement)... 243

Clipboard$ (function)...244

Clipboard $ (statement)..244

Clipboard.Clear (method)...245

CreateObject (function)..245

Clipboard.GetFormat (method).. 246

Clipboard .GetText (method)... 247

Clipboard .SetText (method)..247

CLng (function)..248

Close (statement)..248

ComboBox (statement).. 249

Command, Command$ (functions)..250

Comparison Operators (topic)..250

Const (statement)..252

Constants (topic).. 253

Cos (function)...257

Contents | xi

CSng (function).. 258

CStr (function)..258

CurDir, CurDir$ (functions).. 259

Currency (data type).. 259

CVar (function).. 259

CVErr (function).. 260

Comments (topic)...260

D... 261

D... 261

Date (data type)..263

Date, Date$ (functions)..263

Date, Date$ (statements).. 264

DateAdd (function).. 264

DateDiff (function)...266

DatePart (function)...267

DateSerial (function).. 268

DateValue (function)..268

Day (function).. 269

DDB (function).. 269

DDEExecute (statement)..270

Contents | xii

DDEInitiate (function)... 271

DDEPoke (statement)...271

DDERequest, DDERequest$ (functions)... 272

DDESend (statement)...273

DDETerminate (statement).. 274

DDETerminateAll (statement)... 274

DDETimeout (statement)... 275

Declare (statement).. 276

DefType (statement)...276

DeleteSetting (statement)... 277

Dialog (function).. 278

Dialog (statement).. 279

Dim (statement)..279

Dir, Dir$ (functions).. 280

DiskDrives (statement)...281

DiskFree (function).. 282

DlgCaption (function).. 282

DlgCaption (statement).. 282

DlgControlId (function)... 283

DlgEnable (function)..284

DlgEnable (statement)..285

Contents | xiii

DlgFocus (function)... 286

DlgFocus (statement)... 287

DlgListBoxArray (function)...287

DlgListBoxArray (statement)...288

DlgProc (function)..289

DlgSetPicture (statement)...291

DlgText (statement)..292

DlgText$ (function)..293

DlgValue (function)... 294

DlgValue (statement)... 295

DlgVisible (function)... 296

DlgVisible (statement)... 296

Do...Loop (statement)...298

DoEvents (function)... 299

DoEvents (statement)... 300

Double (data type)..300

DropListBox (statement)..301

E..302

E..302

Contents | xiv

ebAbort (constant)..305

ebAbortRetryIgnore (constant)...305

ebApplicationModal (constant)..305

ebArchive (constant).. 306

ebBold (constant)... 306

ebBoldItalic (constant)... 306

ebBoolean (constant)..307

ebCancel (constant).. 307

ebCritical (constant)... 307

ebCurrency (constant).. 308

ebDataObject (constant)... 308

ebDate (constant)..308

ebDefaultButton1 (constant).. 309

ebDefaultButton2 (constant).. 309

ebDefaultButton3 (constant).. 309

ebDirectory (constant)..310

ebDos (constant)...310

ebDouble (constant)... 310

ebEmpty (constant).. 311

Contents | xv

ebError (constant)...311

ebExclamation (constant)... 311

ebHidden (constant)... 312

ebIgnore (constant)...312

ebInformation (constant).. 312

ebInteger (constant)..313

ebItalic (constant)...313

ebLong (constant)...314

ebNo (constant).. 314

ebNone (constant).. 314

ebNormal (constant)...315

ebNull (constant).. 315

ebObject (constant).. 315

ebOK (constant)... 316

ebOKCancel (constant).. 316

ebOKOnly (constant)... 316

ebQuestion (constant)...317

ebReadOnly (constant)...317

ebRegular (constant).. 317

Contents | xvi

ebRetry (constant).. 318

ebRetryCancel (constant)... 318

ebSingle (constant)...318

ebString (constant)... 319

ebSystem (constant)... 319

ebSystemModal (constant)... 320

ebVariant (constant)... 320

ebVolume (constant).. 320

ebYes (constant)...320

ebYesNo (constant).. 321

ebYesNoCancel (constant)... 321

Empty (constant).. 321

End (statement).. 322

End Dialog (statement).. 322

Environ, Environ$ (functions)... 322

EOF (function)... 323

Eqv (operator).. 323

Erase (statement).. 324

Erl (function).. 325

Err (function)..326

Contents | xvii

Err (statement)..326

Error, Error$ (functions).. 326

Error (statement).. 327

Error Handling (topic)..327

Err.Clear (method)... 328

Err.Description (property).. 328

Err.HelpContext (property).. 329

Err.HelpFile (property)...330

Err.LastDLLError (property)..331

Err.Number (property)..332

Err.Raise (method)... 332

Err.Source (property)... 333

Exit Do (statement).. 334

Exit For (statement)... 334

Exit Function (statement)... 335

Exit Sub (statement)...335

Exp (function).. 336

Expression Evaluation (topic)..336

F.. 338

F.. 338

False (constant).. 338

FileAttr (function).. 339

FileCopy (statement).. 340

Contents | xviii

FileDateTime (function)...341

FileDirs (statement)..341

FileExists (function)...342

FileLen (function).. 342

FileList (statement).. 343

FileParse$ (function).. 344

Fix (function)..345

For Each...Next (statement)... 346

For...Next (statement)...347

Format, Format$ (functions).. 348

FreeFile (function)..353

Function...End Function (statement)..353

Fv (function)...353

G... 354

G... 354

Get (statement)... 355

GetAllSettings (function)... 356

GetAttr (function)...357

GetObject (function).. 358

GetSetting (function)..359

Global (statement).. 360

Contents | xix

GoSub (statement)..360

Goto (statement)...361

GroupBox (statement).. 361

H... 362

H... 362

HelpButton (statement).. 363

Hex, Hex$ (functions)..363

HLine (statement)...364

Hour (function)...364

HPage (statement).. 365

HScroll (statement).. 365

HWND (object).. 365

HWND.Value (property)..366

I... 367

I... 367

If...Then...Else (statement)... 368

IIf (function)...369

IMEStatus (function)..369

Imp (operator).. 371

Input# (statement).. 372

Input, Input$, InputB, InputB$ (functions)..373

InputBox, InputBox$ (functions)...374

Contents | xx

InStr, InStrB (functions).. 375

Int (function).. 376

Integer (data type).. 377

IPmt (function)... 377

IRR (function).. 378

Is (operator).. 379

IsDate (function).. 380

IsEmpty (function)... 380

IsError (function)..381

IsMissing (function)... 381

IsNull (function)...382

IsNumeric (function).. 382

IsObject (function)... 383

IsWebSpaceSession (function)...383

Item$ (function)..383

ItemCount (function)..384

K... 385

K... 385

Keywords (topic)..385

Kill (statement)...385

L..386

Contents | xxi

L..386

LBound (function)..387

LCase, LCase$ (functions)...387

Left, Left$, LeftB, LeftB$ (functions)...388

Len (function)...389

Let (statement)..390

Like (operator)..391

Line Input# (statement)..392

Line$ (function)..392

LineCount (function)..393

 Line Numbers (topic)..393

ListBox (statement).. 394

Literals (topic).. 395

Loc (function)...395

Lock (statement)...396

Lof (function)... 397

Log (function).. 398

Long (data type)...398

LSet (statement)... 399

Contents | xxii

LTrim, LTrim$ (functions).. 399

M...400

M...400

Main (statement).. 400

MCI (function)... 401

Mid, Mid$, MidB, MidB$ (functions)...402

Mid, Mid$, MidB, MidB$ (statements)...403

Minute (function)... 404

MIRR (function)...404

MkDir (statement).. 405

Mod (operator)... 406

Month (function).. 406

Msg.Close (method)... 407

Msg.Open (method)... 407

Msg.Text (property)... 408

Msg.Thermometer (property)...408

MsgBox (function)... 409

MsgBox (statement)... 411

N... 412

N... 412

Name (statement)... 412

Contents | xxiii

Named Parameters (topic)..413

Net.AddCon (method)..414

Net.Browse$ (method)... 415

Net.CancelCon (method)..415

Net.GetCaps (method)..416

Net.GetCon$ (method)... 417

Net.User$ (property).. 417

New (keyword)...418

Not (operator)...418

Nothing (constant)..419

Now (function)... 419

NPer (function)...420

Npv (function).. 420

Null (constant)..421

O... 422

O... 422

Object (data type)...422

Objects (topic).. 423

Oct, Oct$ (functions)... 426

OKButton (statement).. 426

Contents | xxiv

On Error (statement).. 427

Open (statement).. 428

Option Default (statement)...429

Option Explicit (statement)..429

OpenFilename$ (function)... 429

Operator Precedence (topic)...431

Operator Precision (topic)..431

Option Base (statement)...432

Option Compare (statement)..432

Option CStrings (statement)...433

OptionButton (statement)...434

OptionGroup (statement)..435

Or (operator)...435

P.. 437

P.. 437

Pi (constant)..437

Picture (statement)..438

PictureButton (statement)...439

Pmt (function).. 440

PopupMenu (function)... 441

Contents | xxv

PPmt (function).. 441

Print (statement)... 442

Print# (statement)... 443

Private (statement)..445

Public (statement)...446

PushButton (statement).. 447

Put (statement)..448

Pv (function)...450

Q... 450

QueEmpty (statement)..450

R..451

R..451

Random (function)... 452

Randomize (statement)...452

Rate (function)..453

RCPDownload (statement)...454

RCPDownloadEx (function).. 454

RCPGroupExport (statement).. 455

RCPGroupExportEx (function)..455

RCPGroupImport (statement).. 456

RCPGroupImportEx (function)..456

RCPUpload (statement)..457

RCPUploadEx (function)... 457

ReadIni$ (function).. 458

Contents | xxvi

ReadIniSection (statement).. 458

Redim (statement).. 459

Rem (statement)... 460

Reset (statement).. 460

Resume (statement).. 461

Return (statement).. 461

Right, Right$, RightB, RightB$ (functions)..462

RmDir (statement)..463

Rnd (function).. 463

RSet (statement)... 464

RTrim, RTrim$ (functions)..464

S.. 465

S.. 465

SaveFilename$ (function).. 467

SaveSetting (statement)..468

Screen.DlgBaseUnitsX (property)..468

Screen.DlgBaseUnitsY (property)..469

Screen.Height (property).. 469

Screen.TwipsPerPixelX (property).. 470

Screen.TwipsPerPixelY (property).. 470

Contents | xxvii

Screen.Width (property)...470

Second (function)... 471

Seek (function)... 471

Seek (statement)... 472

Select...Case (statement).. 472

SelectBox (function).. 473

SendKeys (statement)...474

Set (statement)..476

SetAttr (statement)... 477

Sgn (function)...478

Shell (function)...478

Sin (function)..479

Single (data type)... 479

Sleep (statement).. 480

Sln (function)..480

Space, Space$ (functions).. 481

Spc (function)...481

SQLBind (function)..482

SQLClose (function).. 483

Contents | xxviii

SQLError (function)...483

SQLExecQuery (function)... 484

SQLGetSchema (function)... 485

SQLOpen (function)...487

SQLQueryTimeout (statement)..488

SQLRequest (function).. 488

SQLRetrieve (function)..489

SQLRetrieveToFile (function)... 490

Sqr (function)... 491

Stop (statement)..491

Str, Str$ (functions)..492

StrComp (function).. 492

StrConv (function)..493

String (data type)..494

String, String$ (functions)..495

Sub...End Sub (statement)..496

Switch (function)..496

SYD (function)...497

System.Exit (method)...497

System.FreeMemory (property)... 498

Contents | xxix

System.FreeResources (property).. 498

System.MouseTrails (method)... 498

System.Restart (method).. 499

System.TotalMemory (property)..499

System.WindowsDirectory$ (property)... 499

System.WindowsVersion$ (property).. 500

T..500

T..500

Tab (function)...501

Tan (function)...501

Text (statement)..502

TextBox (statement)...503

Time, Time$ (functions).. 504

Time, Time$ (statements).. 504

Timer (function)... 505

TimeSerial (function)... 505

TimeValue (function)...506

Trim, Trim$, LTrim, LTrim$, RTrim, RTrim$ (functions)...506

True (constant)... 507

Contents | xxx

Type (statement)...508

TypeOf (function).. 508

TypeName (function)... 509

U... 510

U... 510

UBound (function)... 510

UCase, UCase$ (functions)..511

Unlock (statement)... 511

User-Defined Types (topic)... 513

V... 514

V... 514

Val (function)... 514

Variant (data type)... 515

VarType (function)...516

Viewport.Clear (method)..517

Viewport.Close (method)... 518

Viewport.Open (method)..518

VLine (statement)...519

VPage (statement).. 520

VScroll (statement).. 520

W...521

W...521

Weekday (function)..521

While...Wend (statement)...522

Contents | xxxi

Width# (statement)...522

WinActivate (statement)...523

WinClose (statement)...524

WinFind (function)...525

WinList (statement)..525

WinMaximize (statement)..526

WinMinimize (statement)...526

WinMove (statement)...527

WinRestore (statement)..528

WinSize (statement)... 528

Word$ (function)..529

WordCount (function).. 530

Write# (statement)..530

WriteIni (statement)... 531

X... 532

X or (operator)... 532

Y... 533

Year (function)... 533

CIMPLICITY Extensions to Basic.. 533

CIMPLICITY Extensions to Basic.. 533

Contents | xxxii

Acquire (function).. 539

Acquire, Release (statements)..540

AlarmGenerate (statement).. 540

AlarmGenerateEx (statement)..542

AlarmUpdate (statement)... 545

AlarmUpdateCA (statement)..546

AlarmUpdateEx (statement)...547

ChangePassword (statement)... 551

CimChangeApprovalData (Object)..551

CimEMAlarmEvent.AlarmID (property, read)..551

CimEMAlarmEvent.FinalState (property, read).. 552

CimEMAlarmEvent.GenTime (property, read)... 552

CimEMAlarmEvent.Message (property, read).. 552

CimEMAlarmEvent (object).. 553

CimEMAlarmEvent.PrevState (property, read)... 553

CimEMAlarmEvent.RefID (property, read).. 553

CimEMAlarmEvent.ReqAction (property, read)... 554

CimEMAlarmEvent.ResourceID (property, read)... 554

CimEMEvent.ActionID (property, read)... 554

CimEMEvent.AlarmEvent (function).. 555

CimEMEvent.EventID (property, read)...555

Contents | xxxiii

CimEMEvent (object).. 555

CimEMEvent.ObjectID (property, read)..555

CimEMEvent.PointEvent... 556

CimEMEvent.TimeStamp (property, read)..556

CimEMEvent.Type (property, read).. 556

CimEMPointEvent.Id... 557

CimEMPointEvent (object)..557

CimEmPointEvent.Quality (property, read).. 558

CimEmPointEvent.QualityAlarmed (property, read)...558

CimEmPointEvent.QualityAlarms_Enabled (property, read)..558

CimEmPointEvent.QualityDisable_Write (property, read)... 559

CimEmPointEvent.QualityLast_Upd_Man (property, read)..559

CimEmPointEvent.QualityManual_Mode (property, read)... 559

CimEmPointEvent.QualityIs_In_Range (property, read).. 559

CimEmPointEvent.QualityStale_Data (property, read)... 560

CimEmPointEvent.QualityIs_Available (property, read).. 560

CimEMPointEvent.State (property, read).. 560

CimEMPointEvent.TimeStamp (property, read)... 561

CimEmPointEvent.UserFlags (property, read}..561

Contents | xxxiv

CimEMPointEvent.Value (property, read).. 561

CimGetEMEvent (function)... 561

CimIsMaster (function).. 562

CimLogin (statement).. 562

CimLogout (statement).. 562

CimProjectData.Attributes (property, read/write)..563

CimProjectData.Filters (property, read/write)... 563

CimProjectData.GetNext (function)...563

CimProjectData.Entity (property, read/write)..564

CimProjectData (object)...574

CimProjectData.Project (property, read/write).. 575

CimProjectData.Reset (method)...576

CimRemoveUnusedPoints (method)..576

DoQINTMath (function).. 576

DoUQINTMath (function)... 577

GetCurTimeHR (function)... 578

GetKey (function).. 578

GetMemoryInfoSymbolSpace (statement)...579

GetMemoryInfoStringSpaceHandles (statement).. 580

GetMemoryInfoStringSpace (statement)... 581

GetMemoryInfoPublicSpace (statement)... 582

GetSystemWindowsDirectory (function)...583

Contents | xxxv

GetTimeComponentsHR (function)... 584

GetTSSessionId (function)... 584

IsTerminalServices (function)..585

LogStatus (property, read/write).. 585

Point.AlarmAck (property, read)... 586

Point.Cancel (method)..586

Point.ChangeApproval (property, write)..586

Point.ChangeApprovalInfo (property, read).. 587

Point.DataType (property, read).. 587

Point.DisplayFormat (property, read).. 588

Point.DownloadPassword (property, read).. 588

Point.Elements (property, read)... 589

Point.EnableAlarm (method)..589

Point.Enabled (property, read)... 589

Point.EuLabel (property, read)...590

Point.Get (statement)..590

Point.GetArray (statement).. 590

Point.GetNext (function)..591

Point.GetNext (statement).. 592

Point.GetQuadIntValue (function)... 592

Contents | xxxvi

Point.GetRawArray (statement)... 593

Point.GetTimeStampHR (statement)..593

Point.GetValue (property, read)...594

Point.HasEuConv (property, read)...594

Point.Id (property, read/write)... 594

Point.InUserView (property, read)...595

Point.Length (property, read)...595

Point (object).. 596

Point.OnAlarm (statement).. 596

Point.OnAlarmAck (statement)..597

Point.OnChange (statement).. 598

Point.OnTimed (statement).. 598

Point.PointTypeId (property, read).. 599

Point.QuadValueAsString (property, read)..599

Point.QuadValueAsString (property, write).. 599

Point.Quality (property, read).. 600

Point.QualityAlarmed (property, read).. 600

Point.QualityAlarms_Enabled (property, read)... 600

Point.QualityDisable_Write (property, read)...600

Point.QualityIs_Available (property, read)..601

Contents | xxxvii

Point.QualityIs_In_Range (property, read)..601

Point.QualityLast_Upd_Man (property, read)... 601

Point.QualityManual_Mode (property, read)...602

Point.QualityStale_Data (property, read)...602

Point.RawValue (property, read/write).. 602

Point.ReadOnly (property, read)..604

Point.Set (statement).. 604

Point.SetArray (statement)... 604

Point.SetElement (statement)... 605

Point.SetpointPriv (property, read).. 606

Point.SetQuadIntValue (function)..606

Point.SetRawArray (statement)..606

Point.SetValue (property, write).. 607

Point.State (property, read).. 608

Point (subject).. 608

Point.TimeStamp (property, read)... 611

Point.TimeStampHR (property, read).. 611

Point.UserFlags (property, read)..612

Point.Value (property, read/write)... 612

PointGet (function)...613

Contents | xxxviii

PointGetMultiple (function)... 614

PointGetNext (function)...615

PointSet (statement)... 617

PointSetMultiple (function)..618

PointSetMultipleEx (function)... 620

SetTimecomponentsHR (function)...622

QINTFromString (function)... 622

StringFromQINT (function)... 623

StringFromUQINT (function).. 623

Trace (statement)..624

TraceEnable/TraceDisable (statement).. 624

UQINTFromString (function).. 625

Chapter 4. Basic Control Engine User Interface..626

About the BCEUI...626

Open the BCEUI Window...626

BCEUI Menus.. 627

BCEUI Menus.. 627

BCEUI File Menu.. 628

BCEUI Events Menu... 628

BCEUI Scripts Menu... 629

BCEUI View Menu..629

BCEUI Help Menu.. 629

BCEUI Window Pop-up Menu..630

Contents | xxxix

BCEUI Toolbar.. 630

BCEUI Shortcut Keys..630

BCEUI Viewer... 631

BCEUI Viewer... 631

1. Select Events in the Browser...632

2. Toggle the Auto Browse..632

3. Connect to a Project.. 633

4. Select Events..633

5. Use the Event List... 633

6. Set the Maximum Number of Completed Actions..634

7. Add Events to the View.. 635

8. Remove Events from the View... 635

9. Trigger Events..635

Control Scripts..636

Control Scripts..636

Pause Scripts.. 636

Resume Scripts...637

Stop Scripts.. 638

Chapter 5. Event Editor..639

About the Event Editor.. 639

Contents | xl

Event Editor Configuration..640

Event Editor Configuration..640

Step 1. Open the Event Editor...640

Step 2. Review Event Editor Features...641

Step 3. Configure an Event..646

Step 4. Create an Action..659

Step 5. Associate Actions with an Event.. 671

Step 6. Work with Existing Events and Actions... 672

Optimize Event Editor Performance..690

Chapter 6. Action Calendar..692

About the Action Calendar.. 692

Planning for the Action Calendar.. 693

What the Action Calendar Does.. 693

When to use Other CIMPLICITY Tools...694

Action Calendar Interface Overview... 694

About the Action Calendar Scheduler... 696

Action Calendar Planning Configuration...697

Production Shifts and Days... 703

Configuration Changes Incorporated into the System...704

Sample Factory Configuration Example..704

Configuring the Action Calendar...709

Action Calendar at a Glance..709

Contents | xli

Action Calendar Data Entry Overview..712

Factory Action Calendar Schedule Example...713

Area Configuration...714

Day Type Legend...715

Event Configuration... 722

Schedules.. 729

Security... 738

Procedure to set the Day Start Time... 739

Command Line Parameters..739

Chapter 1. Script Editors

About Script Editors

The Basic Control Engine combines the power of the CIMPLICITY event handler with different
scripting languages, allowing you to script and program applications and routines from the simple to
the complex.

The Basic Control Engine consists of three main components.

Component Description

Event Editor Provides the tools to defines actions to take in response to events that occur in a
process. An event can be a changing point, alarm state, or even a particular time of
day. One event may invoke multiple actions, or one action may be invoked by many
events.

Script Editors Provide a set of sophisticated development tools that let you create programs.
These programs can then be executed as actions in response to events. Following
are the three script editors provided by CIMPLICITY:

• CIMPLICITY Program Editor: A basic script editor.
• CimScriptIDE Editor: An editor for .Net scripts.
• Proficy Code Editor: An editor for Python scripts.

Basic Control Engine Monitors for events and executes the configured actions. The Basic Control Engine
is based on a multi-threaded design that allows the system to invoke and execute
multiple Visual Basic programs concurrently.

About the Program Editor

The Program Editor provides an integrated development and debug environment.

Open the Program Editor. (page
43)

Program Editor window components.
(page 46)

Program Editor: Edit programs.
(page 55)

Dialog Editor (page 73)

Debug scripts. (page 130)

Run a program. (page 149)

Basic Control Engine and Scripting Reference | 1 - Script Editors | 43

Error messages. (page 150)

Open the Program Editor

Open the Program Editor

Option
1 (page
43)

Open a blank Program Editor.

Option
2 (page
44)

Open the Program Editor with an existing script.

Option 1. Open a Blank Program Editor

1. Select Project>Basic Control Engine>Scripts in the Workbench left pane.

2. Do one of the following.

A Click File>New on the Workbench menu bar.

B Click the New Object button on the Workbench toolbar.

C In the Workbench left pane:

Either Or

Double click Scripts. a. Right-click Scripts.
b. Select New on the Popup menu.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 44

D a. In the Workbench right pane.
a. Right-click any script (.bcl file).
b. Select New on the Popup menu.

E Press Ctrl+N on the keyboard.

A New Script Name dialog box opens.

3. Right-click Scripts.

4. Select New on the Popup menu.

5. Right-click any script (.bcl file).

6. Select New on the Popup menu.

7. Do the following.

A Enter a name in the Script field.

B Check Basic Script.

A blank Program Editor window opens.

Option 2. Open the Program Editor with an Existing Script

Basic Control Engine and Scripting Reference | 1 - Script Editors | 45

1. Select Project>Basic Control Engine>Scripts in the Workbench left pane.

2. Select a script (.bcl file) in the Workbench right pane.

3. Do one of the following.

A Click Edit>Properties on the Workbench menu bar.

B Click the Properties button on the Workbench toolbar.

C In the Workbench left pane:
a. Right-click Scripts.
b. Select Open on the Popup menu.

D In the Workbench right pane:

Either Or

Double click a script. a. Right-click a script.
b. Select Open on the Popup menu.

E Press Alt+Enter on the keyboard.

4. Right-click Scripts.

5. Select Open on the Popup menu.

6. Right-click a script.

7. Select Open on the Popup menu.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 46

Program Editor Window Components

Program Editor Window Components

The Program Editor window can be divided into the following sections:

rect 7, 262, 455, 292 Program Editor Toolbars and Status Bar (page 51)
rect 3, 223, 451, 262 4. Perform Traces in Scripts (page 139)
rect -1, 136, 334, 212 Scripting Language Reference (page 174)
rect 0, 99, 428, 130 5. Use a Watch Variable (page 142)
rect 4, 65, 452, 95 Program Editor Toolbars and Status Bar (page 51)
rect 4, 31, 452, 61 Program Editor Toolbars and Status Bar (page 51)
rect 4, 12, 452, 33 Program Editor Menu Functions (page 47)
rect 333, 131, 475, 210 Program Editor Shortcut Keys (page 53)

1
(page
47)

Menu bar

2
(page
51)

Toolbars

3
(page
142)

Watch area

4
(page
174)

Script area

Basic Control Engine and Scripting Reference | 1 - Script Editors | 47

5
(page
139)

Trace area

6
(page
53)

Status bar

7
(page
53)

Shortcut keys

Tip: The areas can be resized by dragging the separators.

Program Editor Menu Functions

You can use the menu options to open, close, print, and compile files, to edit a file, to run a file, to
debug a file, to access tools, to view status and toolbars, to arrange windows, and access help.

• File menu
• Edit menu
• Run menu
• Debug menu
• Tools menu
• View menu
• Window menu
• Help menu

File Menu

New Creates a new document for the Program Editor.

Open Opens an existing document for the Program editor.

Close Closes the script.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 48

Save Saves the active document.

Save All Saves all the open files in the Program Editor.

Save As Save the script with a different name.

Print Prints the active document

Print Preview Displays the active document as it will be printed

Recent Files Displays the list of most recently accessed files.

Compile Compiles the active document.

Create Program Creates a new document for the Program Editor.

Exit Exits the Program Editor.

Edit Menu

Undo Undoes the last action.

Cut Cuts the selection and puts it on the Clipboard.

Copy Copies the selection and puts it on the Clipboard

Paste Inserts Clipboard contents.

Delete Deletes the selection.

Find Finds user-identified text in the document.

Find Next Finds next occurrence of user-identified text in the document.

Replace Replaces user-identified text with new text.

Goto Line Opens a Goto Line dialog box. The insertion point goes to the line number that is entered in the Line
Number field.

Insert
Dialog

Inserts a dialog box.

Edit Dialog Edits an inserted dialog box.

Font Selects a font.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 49

Options Sets string and stack space.

View Menu

Toolbars Displays the list of available toolbars. You can toggle the display of each toolbar.

Status Bar Toggles the display of the Status Bar at the bottom of program windows.

Run Menu

Start Run the program

Break Break executing program

End End the running or paused program

Debug Menu

Add Watch Displays the Add Watch dialog box, in which you can specify the name of a script variable

Delete
Watch

Deletes the watch from the selected variable

Quick
Watch

Do a quick check of a variable value, without adding the variable to the Watch list.

Modify Modifies the value of a variable.

Step Executes the next line of the script. If the line calls a procedure, the called procedure is run in its entirety.

Step Into Executes the next line of the script. If the line calls a procedure, the next line to execute will be the first
line of the called procedure.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 50

Call Stack Displays the stack of current calls.

Trace/Clear
Trace

Enables/disables output to the Trace window

Toggle
Breakpoint

Toggles a breakpoint in the script

Clear all
Breakpoints

Clears all breakpoints from the script

Set Next
statement

Sets the next statement to be executed in a paused program to the currently selected line.

Set
Command
Line

Set the command line for the script. This can be retrieved via the basic Command$ parameter. The
Basic Control Engine will pass the Event & Action which caused the script to be run. See BCE Manual

Set Event
Information

Reset
Public
Variables

Re-set's the contents of public and private variables to an empty state.

Tools Menu

Points Displays a submenu that lets you browse for points, edit a point, and create a new point. You can also use
this menu item to include Setpoints, Get Points, and create local variables in the program.

Alarms Displays a submenu that lets you generate or update alarms in the program.

Log
Status

Displays a dialog box that lets you generate messages for the Status Log.

Dynamic Toggles Dynamic Configuration of points, alarm, etc.

Window Menu

New Window Opens a new window.

Cascade Arranges the windows so that they overlap.

Tile Horizontally Tiles the windows horizontally.

Tile Vertically Tiles the windows vertically.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 51

Arrange Icons Arranges the program icons in the Program Editor window.

Current Programs Displays the list of current programs.

Help Menu

Index Displays the main Help window for the Program Editor.

Using Help Displays the main Help window for Microsoft Windows.

About... Displays program information, version number, and copyright for the Program Editor

Program Editor Toolbars and Status Bar

The Program Editor contains the following toolbars.

Toolbar Window

Standard Main

Tool Main

Application Script

Status bar Main

Standard Toolbar

1 New Create a new document.

2 Open Open an existing document

3 Save Save the active document

4 Save All Save all the open files

5 Cut Cut the selection and put it on the Clipboard

6 Copy Copy the selection and put it on the Clipboard

7 Paste Insert Clipboard contents

8 Cascade Windows Arrange windows so they overlap

9 Tile Horizontally Arrange windows as non-overlapping tiles

10 Tile Vertically Arrange windows as non-overlapping tiles

11 Print Print the active document

Basic Control Engine and Scripting Reference | 1 - Script Editors | 52

12 About Display program information, version number, and copyright

13 Dynamic Toggle Dynamic Configuration

Tools Toolbar

1 Browse Point Browse for Points

2 Edit Point Edit Point ID

3 New Point Create a new Point

4 Get Point Get Point Value

5 Set Point Set a Point

6 Dim Point Dimension a Point Object

7 Gen Alarm Generate an Alarm

8 Update Alarm Update an Alarm

9 Log Status Log a status message

Application Toolbar

1 Start Start or continue execution

2 Break Interrupt execution

3 End End execution

4 Compile Compile the document

5 Toggle Breakpoint Set or clear a breakpoint

6 QuickWatch QuickWatch a variable

7 Add Watch Add a watch to a variable

8 Call Stack Display call stack

9 Step Into Step into the current line

10 Step Step over the current line

11 Modify Modify the value of a variable

12 Toggle Trace Enable/Disable Tracing

13 Clear Trace Clear the contents of the trace window

Basic Control Engine and Scripting Reference | 1 - Script Editors | 53

14 Command Line Set the command line for the script

Status bar

1 Ln Line in the script that the insertion point is on

2 Col Column in the script that the insertion point is in

3 Pause Script run/pause/stop status

4 Compiled Displays if the script does not need to be compiled.

5 READ Displays if the script is read-only.

Program Editor Shortcut Keys

The Program Editor provides several shortcut keys.

Shortcut
key

Description

Ctrl+N Creates a new document.

Ctrl+O Opens an existing document.

Alt+F+C Closes the active script.

Alt+F+A Opens a Save as dialog box.

Ctrl+S Saves the active document.

Alt+F+V Opens a print preview window for the active script.

Ctrl+P Prints the active document.

Ctrl+Z Undoes the last edit action.

Ctrl+X Cuts the selection and puts it on the Clipboard.

Ctrl+C Copies the selection and puts i ton the Clipboard.

Ctrl+V Inserts the contents of the Clipboard.

Delete Deletes the selection.

Ctrl+F Opens the Find dialog box.

F3 Finds the next occurrence of the string in the Find dialog box.

Alt+E+R Opens the Replace dialog box.

Ctrl+G Opens the Go To Line dialog box.

Alt+E+I Opens the Dialog Editor.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 54

Alt+E+O Opens the Font dialog box.

Alt+E+S Opens the Options dialog box.

Shift+F9 Opens the Add Watch dialog box.

Alt+D+D Delete Watch.

Alt+D+M Modify Watch.

Alt+D+R Trace.

Alt+D+L Clear Trace.

F8 Steps to the next line in the script.

Shift+F8 Steps to the next line in the script. If the section is a procedure call, the next line is the first line in the
procedure.

F9 Toggles a breakpoint for the debugger.

Alt+D+C Clears all breakpoints.

Alt+D+N Sets the next statement.

Alt+D+O Sets the command line.

Alt+D+V Sets event information.

Alt+D+B Resets public variables.

F5 Starts running a script.

Alt+T+P Opens the Points extended menu.

Alt+T+A Opens the Alarms extended menu.

Alt+T+L Opens the Log Status dialog box.

Set String and Stack Space

The Basic Control Engine has two regions of memory.

Memory Region Description

String space Holds all string variables, arrays, and public data.

Default String Space size 1 MB (1024 KB)

Stack space Holds all local variables and intermediate values.

Default Stack Space size 4 KB

You can change the size of either of these spaces.

The changes apply to all Basic Control Engine scripts that run as executables within the Program
Editor or from the Event Manager.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 55

1. Select Edit>Options on the Program Editor menu bar.

2. The Options dialog opens.

3. Enter the following.

Field Description

String space Number of kilobytes of String Space i

Stack space Number of kilobytes of Stack Space

4. Click OK.

A message opens as follows.

You must stop and restart CIMPLICITY for the changes to take effect.

5. Click OK.

Note:

• You can substantially reduce your stack usage by explicitly defining the types of variables
(in other words, don't use variants).

• Recursive routines have an impact on Stack Space.
• If you use arrays or arrays of User Defined Types, allocation occurs in the String Space

that may alleviate some stack usage.

Program Editor: Edit Programs

Program Editor: Edit Programs

Although, in some respects, editing code with the Program Editor is like editing regular text with a
word-processing program, the Program Editor also has certain capabilities specifically designed to
help you edit your code.

This section describes how to move around within your script, select and edit text, add comments
to your script, break long statements across multiple lines, search for and replace selected text, and

Basic Control Engine and Scripting Reference | 1 - Script Editors | 56

perform a syntax check of your script. The section ends with a brief discussion of editing dialog box
templates.

1
(page
56)

Program Editor: Navigate within a script.

2
(page
58)

Program Editor: Text procedures.

3
(page
64)

Program Editor: Point tools.

4
(page
69)

Program Editor: Alarm tools.

5
(page
71)

Program Editor: Log status tool.

6
(page
71)

Program Editor: Add comments to a script

7
(page
72)

Program Editor: Enter a statement across multiple lines.

8
(page
73)

Program Editor: Check the syntax of a script.

9
(page
73)

Program Editor: Add dialog boxes to a script.

1. Program Editor: Navigate within a Script

When you move the insertion point with a keyboard shortcut, (page 53) the Program Editor
scrolls the new location of the insertion point into view if it is not already displayed.

You can also reposition the insertion point with the mouse and the Goto Line command.

• Move the insertion point with the mouse.
• Move the Insertion point to a specified line.

Note: The Program Editor allows you to place the insertion point anywhere within your script,
including in "empty spaces." (Empty spaces are areas within the script that do not contain text, such
as a tabs expanded space or the area beyond the last character on a line.)

Basic Control Engine and Scripting Reference | 1 - Script Editors | 57

Move the Insertion Point with the Mouse

1. Use the scroll bars at the right and bottom of the display to scroll the target area of the script
into view if it is not already visible.

2. Place the cursor where you want to position the insertion point.

3. Click the left mouse button.

Result: The insertion point is repositioned.

Note:

• This approach is especially fast if the area of the screen to which you want to move the
insertion point is currently visible.

• When you scroll the display with the mouse, the insertion point remains in its original
position until you reposition it with a mouse click. If you attempt to perform an editing
operation when the insertion point is not in view, Program Editor automatically scrolls the
insertion point into view before performing the operation.

Move the Insertion Point to a Specified Line

4. Press F4.

Program Editor displays the Goto Line dialog box.

5. Enter the number of the line in your script to which you want to move the insertion point.

6. Click the OK button or press Enter.

The insertion point is positioned at the start of the line you specified. If that line was not already
displayed, the Program Editor scrolls it into view.

Note:

• This approach is especially fast if the area of the screen to which you want to move the insertion
point is not currently visible but you know the number of the target line.

• The insertion point cannot be moved so far below the end of a script as to scroll the script
entirely off the display. When the last line of your script becomes the first line on your screen,

Basic Control Engine and Scripting Reference | 1 - Script Editors | 58

the script will stop scrolling, and you will be unable to move the insertion point below the
bottom of that screen.

2. Program Editor: Text Procedures

2. Program Editor: Text Procedures

2.1
(page
58)

Insert text.

2.2
(page
59)

Select/delete text.

2.3
(page
61)

Cut/copy/paste text.

2.4
(page
62)

Undo editing operations.

2.5
(page
62)

Search/replace text.

2.1. Insert Text

Position the insertion point at the desired location in the script and start typing.

guide: Guidelines

• Text does not wrap. If you continue typing on a given line, eventually you will reach a point at
which you can enter no more text on that line.

• Press Enter to control the line breaks when you want to insert a new line in your script.

The effect of pressing Enter depends on where the insertion point is located at the time:

Insertion point location When Enter is pressed

At or beyond the end of a line A new line is inserted after the current line.

At the start of a line A new line is inserted before the current line.

Within a line The current line is broken into two lines at that location.

• Press Tab to insert a tab character

Basic Control Engine and Scripting Reference | 1 - Script Editors | 59

The tab character is inserted at the location of the insertion point, which causes text after the tab to be
moved to the next tab position.

If you insert new text within a tab's expanded space, the text that originally appeared on that line
is moved to the next tab position each time the new text that you are entering reaches the start of
another tab position.

Tip: Because you can position the insertion point in empty spaces, you can also insert text in
empty spaces. This is useful for inserting a comment (page 71) in the space beyond the end of a
line in the script.

When you insert characters beyond the end of a line, the space between the insertion point and the
last character on the line is back filled with tab characters.

2.2. Select/Delete Text

• Select text.
• Delete text.

Select text

You can use either the mouse or the keyboard to select text and other characters in your script.

Important: Regardless of which method you use, you can select either a portion of one line or a
series of whole lines, but you cannot select a portion of one line plus one or more whole lines.

When you select multiple lines and start or end your selection partially through a line, the Program
Editor automatically extends the selection to include the entire starting and ending lines.

Options for selecting text include:

• Text with the mouse.
• Text with the keyboard.
• Line with the keyboard.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 60

Text with the Mouse

1. Place the insertion point where you want your selection to begin

2. Do one of the following.
• While pressing the left-mouse button

a. Drag the mouse until you reach the end of your selection.
b. Release the mouse button.
• Using the left-mouse button.

a. Place the mouse pointer in the left margin beside the first line you want to select.
b. The pointer becomes a reverse arrow, which points toward the line of text.
c. Click the left mouse button to select a single line.
d. Press the left mouse button and drag up or down to select multiple lines.
• While pressing Shift

a. Place the mouse pointer where you want your selection to end
b. Click the left mouse button.

Result: The selected text is highlighted on your display.

Text With the Keyboard

3. Place the insertion point where you want your selection to begin.

4. While pressing Shift, use one of the navigating keyboard shortcuts to extend the selection to the
desired ending point.

Result: The selected text is highlighted on your display.

Note: When you intend to select an entire single line of text in your script, it is important to
remember to extend your selection far enough to include the hidden end-of-line character, which
is the character that inserts a new line in your script.

Line With the Keyboard

5. Place the insertion point at the beginning of the line you want to select.

6. Press Shift + Down arrow.

The entire line, including the end-of-line character, is selected.

7. Repeat 2 to extend your selection to include additional whole lines of text.

8. Place the insertion point in that line.

9. Press Ctrl+Y.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 61

10. Place the insertion point after the last character on the current line.

11. Press Delete once to delete the hidden end-of-line character.

12. Place the insertion point at the start of a line.

13. Press Backspace.

2.3. Cut/Copy/Paste Text

Place material from your script on the Clipboard by either cutting it or copying it.

• Cut a selection.
• Copy a selection.
• Paste text.

Cut a selection

1. Select (page 59) the text to cut.

2. Do one of the following.
• Press Ctrl+X.
• Click the Cut (page 51) button on the Program Editor toolbar.
• Click Edit>Cut on the Program Editor menu bar.

Result: The selection is cut from the script and placed on the Clipboard.

Copy a selection

3. Select (page 59) the text to copy.

4. Do one of the following.
• Press Ctrl+C.
• Click the Copy (page 51) button on the Program Editor toolbar.
• Click Edit>Copy on the Program Editor menu bar.

Result: The selection remains in the script, and a copy of it is placed on the Clipboard.

Paste text

5. Position the insertion point where the copied or cut text should be placed.

6. Do one of the following.
• Press Ctrl+V.
• Click the Paste (page 51) button on the Program Editor toolbar.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 62

• Click Edit>Paste on the Program Editor menu bar.

The contents of the Clipboard are pasted at the insertion point location.

Note: If text is selected when you paste Clipboard text, the Clipboard text is inserted before the
selected text.

2.4. Undo Editing Operations

Any of the following editing operations that produce a change in the script can be undone.

• Insertion of a series of characters
• Insertion of a block of text from the Clipboard
• Deletion of a series of characters
• Deletion or cutting of a block of text

Important: You can undo the last 100 operations.

Do either of the following to undo an editing operation.

• Press Ctrl+Z
• Click Edit>Undo on the Program Editor menu bar.

Result: The script is restored to the way it looked before you performed the editing operation.

Note: Operations that do not produce any change in the script and cannot be undone include:

• Moving the insertion point
• Selecting text
• Copying material to the Clipboard.

2.5. Search/Replace Text

Program Editor makes it easy to search for specified text in your script and automatically replace
instances of specified text.

• Find text in your script.
• Replace text in your script.

Find text in a script

1. Move the insertion point to where the search will start.

Tip: To start at the beginning of the script, press Ctrl+Home.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 63

2. Do either of the following.
• Press Ctrl+F.
• Click Edit>Find on the Program Editor menu bar.

A Find dialog box opens.

3. Do the following.

Feature Description

Find what Enter the text to find.

Match
case

Check to limit the results to the case entered in the Find what field.

Find Next Click to start the search and continue the search when a match is found. Tip: You can also press
Enter.

Results

• The Find dialog box remains open
• The Program Editor either highlights the first instance of the specified text or reports that

the text cannot be found.

4. If the specified text has been found, click Find Next or press Enter to search for the next
instance.

Tip: If the Find dialog box blocks your view of an instance of the specified text, you can do
either of the following.

• Move the dialog box out of your way and continue with your search.
• Click Cancel.

The Find dialog box closes, but maintains the established search criteria.

Press F3 to find successive occurrences of the specified text without re-opening the Find dialog
box.

Note: If you press F3 when there is no entry in the Find what field the Program Editor opens
the Find dialog box.

Automatically replace text in a script

Basic Control Engine and Scripting Reference | 1 - Script Editors | 64

5. Move the insertion point to where you the replacement operation should start.

Tip: To start at the beginning of the script, press Ctrl+Home.

6. Do either of the following.
• Press Alt+E+R on the keyboard.
• Click Edit>Replace on the Program Editor menu bar.

The Replace dialog box opens.

7. Do the following.

Feature Description

Find
what

Enter the text to find.

Replace
with

Enter the replacement text.

Match
case

Check to limit the results to the case entered in the Find what field.

Find
Next

Click to start the search and continue the search when a match is found. Tip: You can also press
Enter.

Replace Click to replace a found instance of the text. Result: When the text is replaced either of the following
happens.

• The cursor highlights the next found instance
• A message reports that there are no more instances of the Find what text.

Replace
All

(Optional) Click to automatically replace all found instances of the Find what text with the replacement
text. Result: All instances are replaced with no requests for confirmation.

Cancel Click to cancel the Find/Replace operation.

3. Program Editor: Point Tools

The Program Editor provides tools to facilitate working with points in a script, as follows.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 65

rect 260, 133, 351, 151 (page 68)
rect 260, 113, 351, 135 (page 68)
rect 260, 93, 351, 115 (page 67)
rect 260, 77, 351, 95 (page 67)
rect 260, 56, 351, 79 (page 66)
rect 260, 39, 351, 58 (page 65)

1
(page
65)

Browse

2
(page
66)

Edit

3
(page
67)

New

4
(page
67)

Set

5
(page
68)

Get

6
(page
68)

Dim

1 Browse

1. Place the insertion point in the script where the selected point will be inserted.

2. Click Tools>Points>Browse on the Program Editor menu bar.

The Select a Point Browser opens.

3. Select the point to be inserted.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 66

4. Click OK.

Result: The point ID is inserted in double quotes at the insertion point.

2 Edit

5. Select a point ID in the script.

6. Click Tools>Points>Edit on the Program Editor menu bar.

The Point Properties dialog box opens for the selected point.

7. Make required edits to the point.

8. Close the Point Properties dialog box.

Result: The selected point configuration is edited if the project is:

• Running and Dynamic Configuration is enabled
• Not running after a configuration update has been performed.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 67

3 New

9. Place the insertion point in the script where the new point will be inserted.

10. Click Tools>Points>New on the Program Editor menu bar.

A New Point dialog box opens.

11. Create and configure a new point (in the Point Properties dialog box).

12. Close the point's Point Properties dialog box.

Result: The new point ID is inserted in the script at the insertion point.

4 Set

13. Place the insertion point in the script where the PointSet (page 617) statement will be
inserted.

14. Click Tools>Points>Set on the Program Editor menu bar.

A Set Point dialog box opens.

15. Fill in the fields as follows.

Field Description

Point ID Point ID that will be inserted in the PointSet (page
617) statement.

Value Value assigned to the point in the PointSet (page
617) statement.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 68

16. Click OK.

Result: A PointSet statement is inserted at the insertion point in the script

Example

PointSet "TANK905" ,25

5 Get

17. Place the insertion point in the script where the PointGet (page 613) function will be
inserted.

18. Click Tools>Points>Get on the Program Editor menu bar.

A Get Point dialog box opens.

19. Fill in the fields as follows.

Field Description

Point ID Point ID that will be inserted in the PointGet (page
613) function.

Returns Value received by the point in the PointGet (page
613) function.

20. Click OK.

Result: A PointGet function is inserted at the insertion point in the script.

Example

P = PointGet ("TANKLEVEL")

6 Dim

21. Place the insertion point in the script where a Dim (page 279) statement will be inserted.

22. Click Tools>Points>Dim on the Program Editor menu bar.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 69

A Dimension Point Object dialog box opens.

23. Fill in the fields as follows.

Field Description

Point Variable Point variable ID

New Check to declare a new instance of the point variable.

24. Click OK.

A Dim statement for a point or new point variable is inserted at the insertion point in the script.

Example

Dim MyPoint1 As New Point

4. Program Editor: Alarm Tools

The Program Editor provides tools to facilitate working with alarms in a script, as follows.

rect 264, 59, 380, 78 (page 69)
rect 266, 79, 382, 98 (page 70)

1 Generate

The Generate tool in the Program Editor is available for $CIMBASIC alarms.

1. Place the insertion point in the script where the selected alarm will be inserted.
2. Click Tools>Alarms>Generate on the Program Editor menu bar.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 70

A Generate Alarm dialog box opens.

1. Fill in the fields for a $CIMBASIC alarm in the Generate Alarm dialog box.

Note: The fields in the Generate Alarm dialog box correspond to the AlarmGenerate (page
540) (method) syntax.

1. Click OK.

Result: The Program Editor inserts the specified AlarmGenerate (page 540) (method) code at the
location of the insertion point in the script.

2 Update

The Update tool in the Program Editor is available for any CIMPLICITY alarm.

1. Place the insertion point in the script where the selected alarm will be inserted.
2. Click Tools>Alarms>Update on the Program Editor menu bar.

An Update Alarm dialog box opens.

1. Fill in the fields in the Update Alarm dialog box.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 71

Note: The fields in the Update Alarm dialog box correspond to the AlarmUpdate (page 545)
(method) syntax.

1. Click OK.

Result: The Program Editor inserts the specified AlarmUpdate (page 545) (method) code at the
location of the insertion point in the script.

5. Program Editor: Log Status Tool

1. Click Tools>Log Status on the Program Editor menu bar.

A Log Status dialog box opens.

2. Fill in the fields to specify log status criteria.

The fields correspond to the LogStatus (page 585) (property, read/write) syntax.

6. Program Editor: Add Comments to a Script

You can add comments to your script to remind yourself or others of how your code works.
Comments are ignored when your script is executed.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 72

The apostrophe symbol (') is used to indicate that the text from the apostrophe to the end of the line
is a comment.

Add a:

• Full line comment
• End of line comment.

Full line comment

1. Type an apostrophe (') at the start of the line.

2. Type a comment following the apostrophe.

Result: When the script is run, the presence of the apostrophe at the start of the line will cause
the entire line to be ignored.

End of line comment

3. Position the insertion point in the empty space beyond the end of the line of code.

4. Type an apostrophe (').

5. Type a comment following the apostrophe.

When the script is run, the code on the first portion of the line will be executed, but the presence of
the apostrophe at the start of the comment will cause the remainder of the line to be ignored.

Note: Although you can place a comment at the end of a line containing executable code,
you cannot place executable code at the end of a line containing a comment; the presence of the
apostrophe at the start of the comment will cause the balance of the line (including the code) to be
ignored.

7. Program Editor: Enter a Statement across Multiple Lines

1. Type the statement on multiple lines, exactly the way you want it to appear.

2. Place the insertion point at the end of the first line in the series.

3. Press the spacebar once to insert a single space.

4. Type an underscore (_).

Basic Control Engine and Scripting Reference | 1 - Script Editors | 73

Note: The underscore is the line-continuation character, which indicates that the statement
continues on the following line.

5. Repeat 2 - 4 to place a line-continuation character at the end of each line in the series, except the
last.

8. Program Editor: Check the Syntax of a Script

1. Do one of the following.
• Click Compile (page 52) on the Application toolbar.
• Click File>Compile on the Program Editor menu bar.

The Program Editor does one of the following.

• Reports that no errors have been found
• Displays an error message that specifies the first line in your script where an error has been

found and briefly describes the nature of that error.

2. Click the OK button or press Enter on the keyboard.

If Program Editor has found a syntax error, the line containing the error is highlighted on your
display.

3. Correct the syntax error.

4. Repeat the procedure until you have found and corrected all syntax errors.

9. Program Editor: Add Dialog Boxes to a Script

Basic Control Engine syntax provides several options for adding dialog boxes to a script.

The Program Editor enables you to do either of the following.

Write a script beginning with Begin Dialog to add a dialog box to a script.

Use the Dialog Editor.

Dialog Editor

Dialog Editor

Basic Control Engine and Scripting Reference | 1 - Script Editors | 74

You can use a custom dialog box to display information to a user while providing an opportunity
for the user to respond. The Dialog Editor is a tool that enables you to create and modify custom
dialog boxes for use in your scripts. Although the statements used to display a custom dialog box and
respond to the choices made by a user of the dialog box may seem complicated, the Dialog Editor
makes it easy to generate these statements.

This chapter contains the following topics:

1
(page
74)

Use the Dialog Editor.

2
(page
79)

Create a custom dialog box.

3
(page
86)

Edit a custom dialog box.

4
(page
108)

Insert/paste a dialog box template code into a script.

5
(page
111)

Edit an existing dialog box.

6
(page
117)

Test a dialog box.

7
(page
121)

Exit from the Dialog Editor.

8
(page
122)

Use a custom dialog box in a script.

9
(page
127)

Use a dynamic dialog box in a script.

1. Use the Dialog Editor

1. Use the Dialog Editor

1.1
(page
75)

Dialog Editor application window.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 75

1.2
(page
75)

Dialog Editor toolbar

1.3
(page
76)

Dialog Editor menus

1.4
(page
78)

Keyboard shortcuts for the Dialog Editor.

1.1. Dialog Editor Application Window

Dialog boxes created with Dialog Editor normally appear in an 8 point Helvetica font, both in Dialog
Editor's application window and when the corresponding code is run.

The application window contains the following elements.

Feature Description

1 Toolbar Collection of tools that you can use to provide instructions to the Dialog Editor, as discussed in the
following subsection

2 Dialog
box

Visual layout of the dialog box that you are currently creating or editing.

3 Status
bar

Provides key information about the operation you are currently performing, including the name of the
currently selected control or dialog box, together with its position on the display and its dimensions;
the name of a control you are about to add to the dialog box with the mouse pointer, together with the
pointer's position on the display; the function of the currently selected menu command; and the activation
of Dialog Editor's testing or capturing functions.

1.2. Dialog Editor Toolbar

Buttons on the Dialog Editor's toolbar are as follows.

Tool Function

1 Run Runs the dialog box for testing purposes.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 76

2 Information Displays the Information dialog box for the selected dialog box or control.

3 Cut Cuts a selection; places the contents on the Clipboard.

4 Copy Copies a selection; places the contents on the Clipboard.

5 Paste Pastes Clipboard contents.

6 Undo Undoes the last action.

7 Select Lets you select, move, and resize items and control the insertion point.

8 OK Button Adds an OK button to the dialog box.

9 Cancel Button Adds a Cancel button to the dialog box.

10 Help Button Adds a Help button to the dialog box.

11 Push Button Adds a push button to the dialog box.

12 Option Button Adds an option button to the dialog box.

13 Check Box Adds a check box to the dialog box.

14 Group Box Adds a group box to the dialog box.

15 Text Adds a text control to the dialog box.

16 Text Box Adds a text box to the dialog box.

17 List Box Adds a list box to the dialog box.

18 Combo Box Adds a combo box to the dialog box.

19 Drop List Box Adds a drop list box to the dialog box.

20 Picture Adds a picture to the dialog box.

21 Picture Button Adds a picture button to the dialog box.

1.3. Dialog Editor Menus

• File menu
• Edit menu
• Controls menu
• Help menu

File Menu

Basic Control Engine and Scripting Reference | 1 - Script Editors | 77

Selection Function

New Creates a new dialog box.

Open... Opens the Open Dialog File dialog box, which you can use to open an existing dialog box template.

Update Updates the template. Does one of the following in the open Program Editor script.

• Inserts the template code, if it is not in the script.
• Updates existing template code in the script.

Save As... Opens a Save As Dialog File dialog box, which you can use to save the current dialog box template in a
file under the same or new name.

Test
Dialog

Toggles between:

• Run mode in which the dialog box emulates a dialog box during runtime for testing purposes
• Edit mode in which changes can be made to the dialog box.

Capture
Dialog

Captures the standard Windows controls from a standard Windows dialog box in another Windows
application.

Exit &
Return

Closes the Dialog Editor and returns you to the host application.

Edit Menu

Selection Function

Undo Undo up to 10 preceding operations. The Undo command continually indicates the next operation you can
undo by selecting it and grays out when there are no more operations that can be undone.

Cut Cuts the selected dialog box or control from the Dialog Editor window and places it on the Clipboard.

Copy Copies the selected dialog box or item, without removing it from the Dialog Editor window, and places it on
the Clipboard.

Paste Inserts cut or copied dialog box or items into the Dialog Editor.

Clear Deletes the selected dialog box or control from Dialog Editor's application window without placing it on the
Clipboard.

Duplicate Creates a duplicate copy of the selected item.

Size to
Text

Adjusts the borders of certain items to fit the text displayed on them.

Info... Displays an Information dialog box for the selected dialog box or item.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 78

Grid... Displays the Grid dialog box.

Controls Menu

Selection Function

OK button Adds a default OK button to the dialog box.

Cancel button Adds a default Cancel button to the dialog box.

Push button Adds a push, or command, button to the dialog box.

Option button Adds an option button to the dialog box.

Check box Adds a check box to the dialog box.

Group box Adds a group box to the dialog box.

Text Adds a text control to the dialog box.

Text box Adds a text box to the dialog box.

List box Adds a list box to the dialog box.

Combo box Adds a combo box to the dialog box.

Drop list box Adds a drop list box to the dialog box.

Picture Adds a picture to the dialog box.

Picture button Adds a picture button to the dialog box.

Help Menu

Selection Function

Help Topics Opens documentation for the Dialog Editor.

1.4. Keyboard Shortcuts for the Dialog Editor

Basic Control Engine and Scripting Reference | 1 - Script Editors | 79

The following keyboard shortcuts can be used for some of the operations you will perform most
frequently in Dialog Editor.

Key(s) Function

Alt
+F4

Closes Dialog Editor's application window.

Ctrl+C Copies the selected dialog box or control, without removing it from Dialog Editor's application window, and
places it on the Clipboard.

Ctrl+D Creates a duplicate copy of the selected control.

Ctrl
+G

Displays the Grid dialog box.

Ctrl+I Displays the Information dialog box for the selected dialog box or control.

Ctrl+V Inserts the contents of the Clipboard into Dialog Editor. If the Clipboard contains script statements describing
one or more controls, then Dialog Editor adds those controls to the current dialog box. If the Clipboard contains
the script template for an entire dialog box, then Dialog Editor creates a new dialog box from the statements in
the template.

Ctrl+X Removes the selected dialog box or control from Dialog Editor's application window and places it on the
Clipboard.

Ctrl+Z Undoes the preceding operation.

Del Removes the selected dialog box or control from Dialog Editor's application window without placing it on the
Clipboard.

F1 Displays Help for the currently active window.

F2 Runs the dialog box for testing purposes.

F3 Sizes certain controls to fit the text they contain.

Shift
+F1

Toggles the Help pointer.

2. Create a Custom Dialog Box

2. Create a Custom Dialog Box

2.1
(page
80)

Review available controls.

2.2
(page
82)

Add controls to a dialog box.

2.3
(page
84)

Use the grid to position controls within a dialog box

Basic Control Engine and Scripting Reference | 1 - Script Editors | 80

2.4
(page
85)

Save the custom dialog box.

2.1. Review Available Controls

• Available controls
• Control guidelines

Available Controls

The Dialog Editor supports the following types of standard Windows controls, all of which are
illustrated in the above dialog box:

Feature Description

Check
box

Box that users can check or clear to indicate their preference regarding the alternative specified on the check
box label.

Combo
box

Text field with a displayed, scroll list beneath it. Users can either select an item from the list or enter the name
of the desired item in the text field. The currently selected item is displayed in the text field. If the item was
selected from the scrolling list, it is highlighted there as well.

Drop
list box

Field that displays the currently selected item, followed by a downward-pointing arrow, which users can click
to temporarily display a scrolling list of items. Once a user selects an item in the list, the list disappears and
the newly selected item displays in the field.

Group
box

Rectangular design element used to enclose a group of related controls. An optional group box label is
available to display a title for the controls in the box..

List box Displayed scroll list from which users can select one item. The currently selected item is highlighted on the
list.

Picture Displays a Windows bitmap or metafile.

Picture
button

Push/Command, button that displays a Windows bitmap or metafile.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 81

Push
button

Command button. Note: Push buttons include:

• OK buttons.
• Cancel buttons.
• Picture buttons.

Option
button

One of a group of two or more linked buttons that allows users select only one from a group of mutually
exclusive choices. Clicking an unselected button in the group selects that button and automatically de-selects
the previously selected button in that group.

Text Read-only field that contains text the users' information.

Text
box

Field into which users can enter text (potentially, as much as 32K).

• By default, the Text box holds a single line of non-wrapping text.
• The field can multiple lines of wrapping text.

Control Guidelines

• General guidelines
• Tabbing order.
• Option button grouping.
• Accelerator keys.

General guidelines

• A single dialog box can contain no more than 255 controls
• A dialog box will not operate properly unless it contains either an OK button, a Cancel button,

a push button, or a picture button.

An OK button and a Cancel button are provided by default on a new dialog box.

• Group boxes, text controls, and pictures are passive elements in a dialog box, inasmuch as they
are used purely for decorative or informative purposes. Users cannot act upon these controls,
and when they tab through the dialog box, the focus skips over these controls.

• A Windows bitmap or metafile can be obtained from a file or from a specified library.

Tabbing order

Users can select dialog box controls by tabbing.

The order in which you create the controls is what determines the tabbing order, not the position of
the controls in the dialog box.

The closer you can come to creating controls in the order in which you want them to receive the
tabbing focus, the fewer tabbing-order adjustments you will have to make later on.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 82

Option button grouping

If you want a series of option buttons to work together as a mutually exclusive group, you must
create all the buttons in that group one right after the other, in an unbroken sequence.

If you create a different type of control before you have finished creating all the option buttons in
your group, you will split the buttons into two or more separate groups.

Example

You plan to create an option button group with five buttons.

You create in the following order.

1. Three of the buttons

2. A list box.

3. Two buttons

When you test the dialog box, the five buttons will not work together as a mutually exclusive
group.

Instead the:

• First three buttons will form one mutually exclusive group.
• Last two buttons will form another mutually exclusive group.

Accelerator keys

You can provide easy access to

• A text box, list box, combo box, or drop list box by assigning an accelerator key to an
associated text control.

• The controls in a group box by assigning an accelerator key to the group box label.

To do this, you must create the text control or group box first, followed immediately by the
controls that you want to associate with it. If the controls are not created in the correct order,
they will not be associated in your dialog box template and any accelerator key you assign to the
text control or group box label will not work properly.

2.2. Add Controls to a Dialog Box

Note: You can only insert a control within the borders of the dialog box you are creating. You
cannot insert a control on the dialog box's title bar or outside its borders.

1. Do one of the following.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 83

A Click Controls><control object> on the Dialog Editor menu bar.

B Click the button (page 75) on the Dialog Editor toolbar that corresponds to the type of control you
want to add.

2. Place the cursor in the dialog box where you want the upper left corner of the control to be
positioned.

• As soon as you place the cursor in the dialog box it changes to a crossbar accompanied by
a small image of the selected object.

• The Dialog Editor status bar displays the crossbar's coordinates.

3. Click the mouse button.

Results

• The selected control is placed in the dialog box. The upper left corner of the control
corresponds to the position of the pointer's crossbar at the moment you clicked the mouse
button.

• The object's upper left corner coordinates, width and height display on the Dialog Editor
status bar.

Note: The status bar displays this information anytime the mouse passes over a control or the
control is selected.

• A frame that surrounds the object identifies it as selected.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 84

Tip: Press Ctrl+D on the keyboard to add another control that is the same type as the
control that was just added.

2.3. Use the Grid to Position Controls within a Dialog Box

Note: Dialog units represent increments of the font (8 point Helvetica) in which the Dialog
Editor creates dialog boxes.

Unit Represents an increment equal to:

X 1/4 of the font.

Y 1/8 of the font

1. Do one of the following.
• Click Edit>Grid on the Dialog Editor menu bar.
• Press Ctrl+G on the keyboard.

A Grid dialog box opens.

2. Specify the following.

Option Description

Show grid Displays or hides a grid on the dialog box.

Check Displays the grid.

Clear Hides the grid.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 85

Horizontal (X) Space between horizontal grid marks. The higher the number the further apart the grid marks.

Vertical (Y) Space between vertical grid marks. The higher the number the further apart the grid marks.

Important: The X and Y settings entered in the Grid dialog box remain in effect regardless
of whether you choose to display the grid.

3. Click the OK button or press Enter on the keyboard.

The Dialog Editor displays or hides the grid with the settings you specified.

With the grid displayed, you can line up the crossbar on the mouse pointer with the dots on the grid
to position controls precisely and align them with respect to other controls.

2.4. Save the Custom Dialog Box

1. Click File>Save As on the Dialog Editor menu bar.

A Save As dialog box opens.

2. Enter a name in the File name field.

3. Click Save.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 86

The dialog box is saved as a .dlg file. The .dlg file can be moved, opened, modified, saved with a
different name at any time.

3. Edit a Custom Dialog Box

3. Edit a Custom Dialog Box

In the preceding section, you learned how to create controls and determine where they initially
appear within your dialog box. In this section, you'll learn how to make various types of changes to
both the dialog box and the controls in it. The following topics are included:

3.1
(page
86)

Open a dialog box template.

3.2
(page
88)

Select items.

3.3
(page
89)

Specify tabbing order.

3.4
(page
90)

Use the Information dialog box.

3.5
(page
101)

Change the Position of an Item

3.6
(page
103)

Change the size of an item.

3.7
(page
104)

Change titles and labels.

3.8
(page
105)

Assign accelerator keys.

3.9
(page
107)

Duplicate and delete controls.

3.1. Open a Dialog Box Template

1. Do one of the following.
• Click File>Open on the Dialog Editor menu bar.
• Press Ctrl+O on the keyboard.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 87

A message opens asking if you want to save the template for the current dialog box.

Do one of the following.

• Click Yes.

The current dialog box template code is inserted (page 108) into the Program Editor script.

• Click No.

The Open Dialog File dialog box opens after either selection.

2. Select the file containing the dialog box template that you want to edit.

3. Click Open.

The Dialog Editor creates a dialog box from the statements in the template and displays it in the
application window.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 88

Note: If there are any errors in the statements that describe the dialog box, the Dialog
Translation Errors dialog box will open when you attempt to load the file into Dialog Editor. This
dialog box shows the lines of code containing the errors and provides a brief description of the nature
of each error.

3.2. Select Items

• Select the dialog box.
• Select a control.

Select the Dialog Box

1. Click the Select (page 76) button on the Dialog Editor toolbar.

2. Do one of the following.
• Click the cursor on the title bar of the dialog box or on an empty area within the borders of

the dialog box
• Press the Tab key repeatedly until the focus moves to the dialog box.

Result: The selected dialog box is framed by a border.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 89

Control

3. Click the Select (page 76) button on the Dialog Editor toolbar.

4. Do one of the following.
• Click the cursor on the control to be selected.
• Press the Tab key repeatedly until the focus moves to the control.

The selected control is framed by a border.

3.3 Specify Tabbing Order

• Default tabbing order.
• Edit tabbing order.

Default Tabbing Order

The Dialog Editor creates the tabbing order based on the order in which you create the controls, not
the position of the controls in the dialog box.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 90

The closer you can come to creating controls in the order in which you want them to receive the
tabbing focus, the fewer tabbing-order adjustments you will have to make later on.

Edit Tabbing Order

When a control is pasted into the dialog box, the Dialog Editor places the descriptions of at the end
of the dialog box template.

Therefore, you can use a simple cut-and-paste technique to adjust the tabbing order.

1. Determine what item should be the starting point in the dialog box.

Note: Because the OK button and Cancel button display on a new dialog box by default, the OK
button is the starting point and the Cancel button is the first tab.

2. Cut (page 76) and paste (page 76) the controls to establish the desired tabbing order.

Note: If the controls were place in the dialog box in the correct order you can simply cut/paste
the OK and Cancel buttons so they are tabbed to last.

3. Test (page 118) the tabbing order to make sure it is correct. Items that users cannot interact
with, e.g. group boxes, are not included in the tabbing order.

3.4. Use Information Dialog Boxes

3.4. Use Information Dialog Boxes

Information dialog box enable you to check and adjust various attributes of dialog boxes and dialog
box items.

3.4.1
(page
90)

Dialog box information

3.4.2
(page
92)

Control information

3.4.1. Dialog Box Information

• Open the Dialog Box Information dialog box.
• Dialog Box Information dialog box options.

Open the Dialog Box Information dialog box.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 91

1. Select (page 88) the dialog box.

2. Do one of the following.
• Click the Information (page 76) button on the Dialog Editor toolbar.
• Click Edit>Info on the Dialog Editor menu bar.
• Double-click an empty space in the dialog box.

The Dialog Box Information dialog box opens when you use any method.

Dialog Box Information dialog box options

Options for the dialog box are as follows.

Attribute Description

Position (Optional) Dialog box position (dialog units (page 84)) in the window/screen in which it opens

Coordinate Units from the:

X Left side of the window/screen.

Y Top of the window/screen.

Size Dialog box size includes the number of dialog units (page 84) in the:

Width Dialog box width

Height Dialog box height.

Style (Optional) Check to display the following.

Close box Close box button

Title Dialog box title bar. Note: Title is enabled if Close box is cleared. If Close box is checked so
the Close box button displays, the title bar must display.

Text$ (Optional) Text displayed on the title bar of the dialog box.

Variable
Name

Check to identify the Text$ entry as a variable. Note: if Text$ is a variable, spaces cannot
be used in the entry.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 92

Name Name used for the dialog box template in script code

.Function (Optional) Name of a script function in your dialog box

Picture
Library

(Optional) Picture library (.dll file) from which one or more pictures in the dialog box are obtained

Variable
Name

Check to identify the Picture Library as a variable name.

Browse Opens a Select a Picture Library browser to help find the .dll file.

3.4.2. Control Information

3.4.2. Control Information

1. Select (page 89) an item in the dialog box.

2. Do one of the following.
• Click the Information (page 76) button on the Dialog Editor toolbar.
• Click Edit>Info on the Dialog Editor menu bar.
• Double-click the control.

The <Item> Information dialog box opens when you use any method.

3. Configure the <Item> Information dialog box.

3.4.2.1
(page
93)

Check Box Information

3.4.2.2
(page
94)

Combo Box Information

3.4.2.3
(page
94)

Drop List Box Information

3.4.2.4
(page
95)

Group Box Information

3.4.2.5
(page
95)

List Box Information

3.4.2.6
(page
96)

Picture Information

3.4.2.7
(page
97)

Picture Button Information

Basic Control Engine and Scripting Reference | 1 - Script Editors | 93

3.4.2.8
(page
98)

Push Button Information

3.4.2.9
(page
99)

Option button Information

3.4.2.10
(page
99)

Text Information

3.4.2.11
(page
100)

Text Box Information

4. Do one of the following.
• Click OK to save the configuration.
• Click Cancel to discard the changes and close the Information dialog box.

3.4.2.1. Check Box Information

Options in the Check Box Information dialog box are as follows.

Option Description

Position Position of the check box in the dialog box from the:

X Left of the dialog box.

Y Top of the dialog box.

Size Size of the checkbox, including the label, in dialog units (page 84).

Width Width of the checkbox and label

Height Height of the checkbox and label.

Variable
Name

Check to identify the Text$ entry as a variable.

Text$ (Optional) Text that displays as the checkbox label. Note: if Text$ is a variable, spaces cannot be used
in the entry.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 94

.Identifier (Optional) Name used for the checkbox in a script's code.

3.4.2.2. Combo Box Information

Options in the Combo Box Information dialog box are as follows.

Option Description

Position Position of the combo box in the dialog box from the:

X Left of the dialog box.

Y Top of the dialog box.

Size Size of the combo box in dialog units (page 84).

Width Width of the combo box.

Height Height of the combo box.

Array$ Name of the array variable in a script's code.

.Identifier (Optional) Name used for the combo box in a script's code.

3.4.2.3. Drop List Box Information

Options in the List Box Information dialog box are as follows.

Option Description

Basic Control Engine and Scripting Reference | 1 - Script Editors | 95

Position Position of the drop list box in the dialog box from the:

X Left of the dialog box.

Y Top of the dialog box.

Size Size of the drop list box in dialog units (page 84).

Width Width of the list box.

Height Height of the list box.

Array$ Name of the array variable in a script's code.

.Identifier (Optional) Name used for the drop list box in a script's code.

3.4.2.4. Group Box Information

Options in the Group Box Information dialog box are as follows.

Option Description

Position Position of the group box in the dialog box from the:

X Left of the dialog box.

Y Top of the dialog box.

Size Size of the group box in dialog units (page 84).

Width Width of the list box.

Height Height of the list box.

Variable
Name

Check to identify the Text$ entry as a variable.

Text$ (Optional) Text that displays as the group box label. Note: if Text$ is a variable, spaces cannot be used
in the entry.

.Identifier (Optional) Name used for the group box in a script's code.

3.4.2.5. List Box Information

Basic Control Engine and Scripting Reference | 1 - Script Editors | 96

Options in the List Box Information dialog box are as follows.

Option Description

Position Position of the list box in the dialog box from the:

X Left of the dialog box.

Y Top of the dialog box.

Size Size of the list box in dialog units (page 84).

Width Width of the list box.

Height Height of the list box.

Array$ Name of the array variable in a script's code.

.Identifier (Optional) Name used for the list box in a script's code.

3.4.2.6. Picture Information

Options in the Picture Information dialog box are as follows.

Option Description

Position Position of the picture in the dialog box from the:

X Left of the dialog box.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 97

Y Top of the dialog box.

Size Size of the picture in dialog units (page 84).

Width Width of the picture.

Height Height of the picture.

Variable Name Check to identify the Name$ entry as a variable.

Picture source Picture source selections are:

File A .bmp or .wmf file.

Library Included in a library .dll file.

Name$ Either an absolute or variable name can be entered.

Absolute Path and name of the picture button file.

Variable Name with no spaces or wild card characters.

• An underscore (_) can be included in the name.
• The picture will be identified as missing in the dialog box template.

.Identifier (Optional) Name used for the picture in a script's code.

3.4.2.7. Picture Button Information

Options in the Picture Button Information dialog box are as follows.

Option Description

Position Position of the picture button in the dialog box from the:

X Left of the dialog box.

Y Top of the dialog box.

Size Size of the picture button in dialog units (page 84).

Width Width of the picture button.

Height Height of the picture button.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 98

Picture source Picture button source selections are:

File A .bmp or .wmf file.

Library Included in a library .dll file.

Variable Name Check to identify the Name$ entry as a variable.

Name$ Either an absolute or variable name can be entered.

Absolute Path and name of the picture button file.

Variable Name with no spaces or wild card characters.

• An underscore (_) can be included in the name.
• The picture will be identified as missing in the dialog box template.

.Identifier (Optional) Name used for the picture in a script's code.

3.4.2.8. Push Button Information

Options in the Push Button Information dialog box are as follows.

Option Description

Position Position of the Push Button box in the dialog box from the:

X Left of the dialog box.

Y Top of the dialog box.

Size Size of the push button in dialog units (page 84).

Width Width of the push button.

Height Height of the push button

Variable
Name

Check to identify the Text$ entry as a variable.

Text$ (Optional) Text that displays as the push button label. Note: if Text$ is a variable, spaces cannot be
used in the entry.

.Identifier (Optional) Name used for the push button in a script's code.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 99

3.4.2.9. Option Button Information

Options in the Option Button Information dialog box are as follows.

Option Description

Position Position of the option button in the dialog box from the:

X Left of the dialog box.

Y Top of the dialog box.

Size Size of the option button, including the label, in dialog units (page 84).

Width Width of the option button and label

Height Height of the option button and label.

Variable
Name

Check to identify the Text$ entry as a variable.

Text$ (Optional) Text that displays as the checkbox label. Note: if Text$ is a variable, spaces cannot be used
in the entry.

.Option
Group

Name referring to a group of option buttons in a script's code.

.Identifier (Optional) Name used for the checkbox in a script's code.

3.4.2.10. Text Information

Options in the Text Information dialog box are as follows.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 100

Option Description

Position Position of the text in the dialog box from the:

X Left of the dialog box.

Y Top of the dialog box.

Size Size of the text in dialog units (page 84).

Width Width of the text.

Height Height of the text.

Variable
Name

Check to identify the Text$ entry as a variable.

Text$ Text that displays up to 255 characters Note: if Text$ is a variable, spaces cannot be used in the
entry.

Identifier (Optional) Name used for the text in a script's code.

Font Opens a Font dialog box to select the text font type, style and size.

3.4.2.11. Text Box Information

Options in the Text Box Information dialog box are as follows.

Option Description

Position Position of the text box in the dialog box from the:

Basic Control Engine and Scripting Reference | 1 - Script Editors | 101

X Left of the dialog box.

Y Top of the dialog box.

Size Size of the text in dialog units (page 84).

Width Width of the text box.

Height Height of the text box.

Multiline Do one of the following.

Check Enable text wrapping.

Clear Disable text wrapping.

Password Do one of the following.

Check Require a password for a user to make a text entry if the text box is read/write.

Clear Allow text entries without a password if the text box is read/write.

Read-only Do one of the following.

Check The text box is read-only.

Clear The text box is read/write.

Text$ Text that displays up to 255 characters Note: if Text$ is a variable, spaces cannot be used in the entry.

Identifier (Optional) Name used for the text in a script's code.

Font Opens a Font dialog box to select the text font type, style and size.

3.5. Change the Position of an Item

The Dialog Editor provides several ways to reposition dialog boxes and items.

• Mouse.
• Arrow keys.
• Dialog Box Information dialog box.
• Item with the Information dialog box.

Mouse

1. Click the Select (page 76) button on the Dialog Editor toolbar.

2. Place the cursor on an empty area in the dialog box or on a control.

3. Hold the left-mouse button down and drag the dialog box or control to the desired location.

Note: The increments by which you can move a control with the mouse are governed by the
grid setting (page 84).

Basic Control Engine and Scripting Reference | 1 - Script Editors | 102

Example

The grid has the following settings

• X = 4
• Y = 6

The control can move in the following increments:

• Horizontal = 4 X units
• Vertical = 6 Y units.

This feature is useful if you are trying to align controls in your dialog box. If you want to move
controls in smaller or larger increments.

Arrow Keys

4. Select the dialog box or control that will be moved.

5. Do one of the following.
• Press an Arrow key once to move the item by 1 X or 1 Y unit in the desired direction.
• Hold the arrow key down to move the item steadily (in increments of 1 unite) along in the

desired direction.

Note: When you reposition an item with the arrow keys, a faint, partial afterimage of the
item may remain visible in the item's original position. These afterimages are rare and will
disappear once you test your dialog box.

Dialog Box with the Dialog Box Information Dialog Box

6. Open (page 90) the Dialog Box Information dialog box.

7. Change the X and Y coordinates in the Position group box.

8. Click the OK button or press Enter on the keyboard.

If you specified X and Y coordinates, the dialog box moves to that position. If you left the X
coordinate blank, the dialog box will be centered horizontally static to the parent window of the
dialog box when the dialog box is run. If you left the Y coordinate blank, the dialog box will be
centered vertically static to the parent window of the dialog box when the dialog box is run.

Item with the Information Dialog Box

9. Open (page 90) the Information dialog box for the control that you want to move.

10. Change the X and Y coordinates in the Position group box.

11. Click the OK button or press Enter on the keyboard.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 103

Note: When you move a dialog box or control with the arrow keys or with the Information
dialog box, the item's movement is not restricted to the increments specified in the grid
setting. When you attempt to test a dialog box containing hidden controls (i.e., controls
positioned entirely outside the current borders of your dialog box), the Dialog Editor displays a
message advising you that there are controls outside the dialog box's borders and asks requests
confirmation to proceed with the test. If you proceed, the hidden controls will be disabled for
testing purposes.

3.6. Change the Size of an Item

Dialog boxes and controls can be resized either by directly manipulating them with the mouse or by
using the Information dialog box. Certain controls can also be resized automatically to fit the text
displayed on them.

• Resize an item with the mouse.
• Resize an item with the Information dialog box.
• Resize selected controls automatically.

Resize an Item with the Mouse

1. Click the Select (page 76) button on the Dialog Editor toolbar.

2. Place the cursor over a border or corner of the dialog box or a control..

3. Hold the the left-mouse button down and drag the border or corner until the dialog box or
control reaches the desired size.

Resize an Item with the Information Dialog Box

4. Open (page 90) the Information dialog box for the dialog box or a selected control.

5. Change the Width and Height settings in the Size group box.

6. Click OK or press Enter on the keyboard.

Resize Selected Items Automatically

The following controls can be resized automatically.

• Option button
• Text control
• Push button
• Check box
• Text box

Basic Control Engine and Scripting Reference | 1 - Script Editors | 104

7. Click the Select (page 76) button on the Dialog Editor toolbar.

8. Select the control to be resized.

9. Press F2 on the keyboard..

The borders of the control will expand or contract to fit the text displayed on it.

Note:

Picture controls and picture button controls must be resized manually.

• Windows metafiles always expand or contract proportionally to fit within the picture control or
picture button control containing them.

• Windows bitmaps are of a fixed size.

If you place a bitmap in a control that is:

• Smaller than the bitmap, the bitmap is clipped off on the right and bottom.
• Larger than the bitmap, the bitmap is centered within the borders of the control.

3.7. Change Titles and Labels

• Default titles and labels.
• Change a title of label.

Default titles and labels

• The default titles for a dialog box is Untitled.
• Default labels for the following controls and items are generic, as follows.

Item Default Title or Label

Dialog box Untitled

Check boxes Check Box

Group boxes Group Box

Option buttons Option Button

Push buttons Push Button

Text Text

Note:

Basic Control Engine and Scripting Reference | 1 - Script Editors | 105

• The OK and Cancel buttons also have labels that cannot be changed.
• The following controls do not have their own labels. You can position a text control above or

beside these controls to serve as a de facto label
• Combo boxes
• Drop list boxes
• List boxes
• Pictures
• Picture buttons.
• Text boxes

Change a title or label

1. Open (page 90) the Information dialog box for the dialog box title you want to change or for
the control label you want to change.

2. Enter the new title or label in the Text$ field.

Note: Dialog box titles and control labels are optional; you can leave the Text$ field blank.

3. Check the Variable Name checkbox if the information in the Text$ field should be interpreted
as a variable name rather than a literal string.

4. Click the OK button or press Enter on the keyboard.

The Information dialog box closes; the new title or label displays in the title bar or on the control.

3.8. Assign Accelerator Keys

• Accelerator key definition.
• Create an accelerator key.
• Guidelines for accelerator keys.

Accelerator key definition

Accelerator keys:

• Enable users to access dialog box controls by pressing Alt + <specified letter>.
• Are essentially a single letter from a control's label.

Users can employ accelerator keys to:

• Choose a push button or an option button.
• Toggle a check box on or off and move the insertion point into one of the following.
• Text box

Basic Control Engine and Scripting Reference | 1 - Script Editors | 106

• Group box
• Currently selected item in one of the following.
• List box.
• Combo box.
• Drop list box..

Create an accelerator key

1. Open the Information dialog box for the control that will have an assigned an accelerator key.

2. Select the Text$ field.

3. Type an ampersand (&) before the letter designated as the accelerator key.

4. Click the OK button or press Enter on the keyboard.

The designated letter is now underlined on the control's label; users will be able to access the control
by pressing Alt +<underlined letter>.

Guidelines for accelerator keys

• Accelerator keys can be assigned directly to the following controls that have their own label
• Check boxes
• Group boxes
• Option buttons
• Push buttons

Basic Control Engine and Scripting Reference | 1 - Script Editors | 107

• The OK and Cancel buttons cannot have accelerator keys

Note: OK and Cancel labels cannot be edited.

• A de facto accelerator key can be created for certain controls that do not have their own labels
by assigning an accelerator key to an associated text control.

• Combo boxes
• Drop list boxes
• List boxes
• Text boxes
• Accelerator key assignments must be unique within a particular dialog box. If you attempt to

assign the same accelerator key to more than one control, a message displays reporting that the
letter has already been assigned.

Note: In order for such a de facto accelerator key to work properly, the text control or group box
label to which you assign the accelerator key must be associated with the control(s) to which you
want to provide user access that is, in the dialog box template, the description of the text control or
group box must immediately precede the description of the control(s) that you want associated with
it. The simplest way to establish such an association is to create the text control or group box first,
followed immediately by the associated control(s)

3.9. Duplicate and Delete Controls

• Duplicate a Control.
• Delete a Single Control.
• Delete all the Controls in a dialog box.

Duplicate a Control

1. Select the control to duplicate.

2. Do one of the following.
• Click Edit>Duplicate on the Dialog Editor menu bar.
• Press Ctrl+D on the keyboard.

A duplicate copy of the selected control displays in your dialog box.

3. Repeat 2 as many times as necessary to create the desired number of duplicate controls.

Result: The selected control is duplicated each time duplication is repeated.

Delete a Single Control

4. Select the control to delete.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 108

5. Press Delete on the keyboard.

Result: The selected control is deleted from the dialog box.

Delete all the Controls in a Dialog Box

6. Select the dialog box.

7. Press Delete on the keyboard.

If the dialog box contains more than one control a message displays asking:

Do you want to delete all controls from the dialog box?

8. Click the Yes button or press Enter on the keyboard.

All the controls are deleted, but the dialog box's title bar and close box (if displayed) remain
unchanged.

4. Insert/Paste a Dialog Box Template Code into a Script

• Insert template code a Program Editor script
• Paste template code into a Program Editor script.

Insert Template Code into a Program Editor Script

1. Place the cursor in a Program Editor script where the dialog box code will be inserted.

2. Click Edit>Insert Picture on the Program Editor menu bar.

The Dialog Editor opens displaying a new dialog box.

3. Do one of the following.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 109

• Configure the new dialog box.
• Click File>Open on the Dialog Editor menu bar to open an existing dialog box.

4. Do one of the following.

Click On the

File>New Menu bar

File>Open Menu bar

File>Update Menu bar

File>Exit and Return Menu bar

Close button Title bar

Press On the

Ctrl+N Keyboard

Ctrl+O Keyboard

A message box opens asking if you want to save the dialog box template.

5. Click Yes.

Result: The dialog box template code is inserted into the Program Editor script at the specified
location.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 110

Paste Template Code into the Program Editor Script

6. Click Edit>Insert Picture on the Program Editor menu bar.

The Dialog Editor opens displaying a new dialog box.

7. Do one of the following.
• Configure the new dialog box.
• Click File>Open on the Dialog Editor menu bar to open an existing dialog box.

8. Select (page 88) the dialog box.

9. Do one of the following.
• Click Edit>Copy on the Dialog Editor menu bar.
• Press Ctrl+C on the keyboard.

10. Select the Program Editor.

11. Place the cursor where the code should be inserted.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 111

12. Do one of the following.
• Click Edit>Paste on the Program Editor menu bar.
• Press Ctrl+P on the keyboard.

The Dialog script is pasted at the insertion point in the Program Editor script.

5. Edit an Existing Dialog Box

5. Edit an Existing Dialog Box

Basic Control Engine and Scripting Reference | 1 - Script Editors | 112

There are three ways to edit an existing dialog box: (1) You can copy the template of the dialog box
you want to edit from a script to the Clipboard and paste it into Dialog Editor. (2) You can use the
capture feature to "grab" an existing dialog box from another application and insert a copy of it into
Dialog Editor. (3) You can open a dialog box template file that has been saved on a disk.

5.1
(page
112)

Paste an existing dialog box into the Dialog Editor.

5.2
(page
115)

Capture a dialog box from another application.

5.1. Paste Program Editor Code into the Dialog Editor

You can use the Dialog Editor to modify the statements in your script that correspond to an entire
dialog box or to one or more dialog box controls.

Paste the following into the Dialog Editor.

• An existing dialog box.
• One of more controls from an existing dialog box.
• Notes for pasting code into a dialog box.

Paste Dialog Box Code into a Dialog box Template

1. Select code in the Program Editor for the entire dialog box.

The code:

• Begins with Begin Dialog (page 231) (statement).
• Ends with End Dialog (page 322) (statement).

2. Do one of the following.
• Click Edit>Copy on the Program Editor menu bar.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 113

• Press Ctrl+C on the keyboard.

3. Select the dialog box in the Dialog Editor that will be replaced.

4. Do one of the following.
• Click Edit>Paste on the Dialog Editor menu bar.
• Press Ctrl+V on the keyboard.

A message box opens asking:

Do you want to replace the dialog box?

5. Click Yes.

Result: The dialog box template code copied from the Program Editor script replaces the
selected dialog box template. The dialog box changes according to the pasted code.

Paste Control Code into a Dialog Box Template

6. Select code in the Program Editor that defines one or more controls for a dialog box.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 114

7. Do one of the following.
• Click Edit>Copy on the Program Editor menu bar.
• Press Ctrl+C on the keyboard.

8. Select the dialog box in the Dialog Editor that will be modified.

9. Do one of the following.
• Click Edit>Paste on the Dialog Editor menu bar.
• Press Ctrl+V on the keyboard.

The selected controls are pasted into the dialog box based on the location specifications in the code.

Notes for Pasting Code into a Dialog Box

• When you paste a dialog box template into the Dialog Editor, the tabbing order of the controls is
determined by the order in which the controls are described in the template.

• When you paste one or more controls into Dialog Editor, they will come last in the tabbing
order, following the controls that are already present in the current dialog box.

• If there are any errors in the statements that describe the dialog box or controls, the Dialog
Translation Errors dialog box will open when you attempt to paste these statements into Dialog
Editor. This dialog box shows the lines of code containing the errors and provides a brief
description of the nature of each error.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 115

5.2. Capture a Dialog Box from Another Application

The Dialog Editor provides a quick way to capture standard Windows dialog box controls from
another application and insert those controls into Dialog Editor for editing.

Important: The Dialog Editor only supports standard Windows controls and standard Windows
dialog boxes.

If the target dialog box

• Contains both standard Windows controls and custom controls, only the standard Windows
controls will appear in Dialog Editor's application window.

• Is not a standard Windows dialog box, you will be unable to capture the dialog box or any of its
controls.

1. Open a standard Windows dialog box that has controls you want to use.

2. Open the Dialog Editor.

3. Click File>Capture Dialog on the Dialog Editor menu bar.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 116

A Select the Dialog Box to Capture browser opens.

4. Select the dialog to capture.

5. Click OK.

A message opens to confirm if you want to replace the dialog box that is currently in the Dialog
Editor.

6. Click Yes.

The captured dialog box with standard controls replaces the current dialog box.

7. Modify the layout the same as you would for any other dialog box.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 117

8. Use any of the Dialog Editor methods to save the dialog box or insert/paste the dialog box
template code into a script.

The captured dialog box template code displays in the Program Editor. The code can be modified to
fill the script's requirements.

6. Test a Dialog Box

6. Test a Dialog Box

6.1
(page
118)

Check for basic dialog box editing errors.

6.2
(page
118)

Run the dialog box test.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 118

6.1. Check for Basic Dialog Box Editing Errors

Following is a checklist of common errors.

It is recommended that you check the dialog box for these errors before testing it.

When all statements on the list are True, the dialog box is ready to be tested.

Statement T/F

The dialog box contains a command button, i.e. a default OK or Cancel button, a push button, or a picture button.

The dialog box contains all the necessary push buttons

The dialog box contains a Help button, if required.

All the controls are aligned correctly.

All the controls are sized correctly.

The font is set correctly in text controls.

The Close button displays, if required.

The title bar displays, if required.

All control labels are spelled correctly.

All control labels are capitalized correctly.

The title is spelled correctly.

The title is capitalized correctly.

All the controls fit in the borders of the dialog box.

All related controls are grouped together effectively in group boxes.

All of the controls are labelled with their own labels or de-facto text labels.

All of the necessary key assignments have been made.

6.2. Run the Dialog Box Test

Testing a dialog box is an iterative process that involves running the dialog box to see how well it
works, identifying problems, stopping the test and fixing those problems, then running the dialog box
again to make sure the problems are fixed.

1
(page
119)

Start a test.

2
(page
119)

Test the dialog box.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 119

3
(page
120)

Stop the test.

Start a Test

Do one of the following.

A Click the Test Dialog button

B Click File>Test Dialog on the Dialog Editor menu bar.

C Press F5 on the keyboard.

Result: The dialog box goes into Run mode.

Test the Dialog Box

When the dialog box is in Run mode the dialog box:

• Editing functionality is disabled.
• Controls perform the basic generic operations they are designed to do, e.g. the buttons go down

and up; text can be written in a Text Box; scroll bars for multiple line controls scroll; check
boxes and Option buttons can be checked.

Test the control on the running dialog box to make sure they are functioning correctly.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 120

Check the following features.

If a statement is False, stop the dialog box and make the required corrections.

Statement T/
F

The Tab key moves through the control selection in a logical order. Note: Objects that users cannot act on, e.g.
Group boxes, text controls and pictures are not selected.

The Option buttons are grouped correctly.

Text in a text box wraps or does not wrap, according to requirements.

All of the accelerator keys work correctly.

Stop the test

Do one of the following.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 121

A Click the Test Dialog button

B Click File>Test Dialog on the Dialog Editor menu bar.

C Press F5 on the keyboard.

Result: The dialog box goes back to Edit mode.

7. Exit from the Dialog Editor

1. Do one of the following.

A Click File>Exit and Return on the Dialog Editor menu bar.

B Click the Exit button on the Dialog Editor title bar.

C Press Alt+F4 on the keyboard.

A message opens with the following question.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 122

Do you want to save the dialog box template?

2. Do one of the following.
• Click Yes.

Results:

a. The Dialog Editor closes.
b. The dialog box template code is inserted into the Program Editor script.

Important: Any highlighted line or lines in the script will be overwritten.

• Click No.

The Dialog Editor closes.

• Click Cancel.

The Exit command is cancelled; the Dialog Editor remains opens.

8. Use a Custom Dialog Box in a Script

8. Use a Custom Dialog Box in a Script

After using Dialog Editor to insert a custom dialog box template into your script, you'll need to make
the following modifications to your script:

8.1
(page
123)

Create a dialog record.

8.2
(page
123)

Enter information into the custom dialog box.

8.3
(page
125)

Display the custom dialog box.

8.4
(page
126)

Retrieve values from the custom dialog box.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 123

8.1. Create a Dialog Record

To store the values retrieved from a custom dialog box, you create a dialog record with a Dim
statement, using the following syntax:

Dim DialogRecord As DialogVariable

Examples

Following are examples of how to create dialog records

Dim b As UserDialog 'Define a dialog record "b".

Dim PlayCD As CDDialog 'Define a dialog record "PlayCD".

Sample script

This sample script that illustrates how to create a dialog record named b within a dialog box
template named UserDialog . Notice that the order of the statements within the script is as follows:
the dialog box template precedes the statement that creates the dialog record, and the Dialog
statement follows both of them.

Sub Main()
 Dim ListBox1$() 'Initialize list box array.
 'Define the dialog box template.
 Begin Dialog UserDialog ,,163,94,"Grocery Order"
 Text 13,6,32,8,"&Quantity:",.Text1
 TextBox 48,4,28,12,.TextBox1
 ListBox 12,28,68,32,ListBox1$,.ListBox1
 OKButton 112,8,40,14
 CancelButton 112,28,40,14
 End Dialog
 Dim b As UserDialog 'Create the dialog record.
 Dialog b 'Display the dialog box.
End Sub

8.2. Enter Information into the Custom Dialog Box

If you open and run the sample script shown in the preceding subsection, you will see a dialog box
that resembles the following.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 124

• Controls to which values can be assigned.
• Define and fill an array.
• Set default text in a text box.
• Set the initial focus and controlling the tabbing order.

Controls to which Values can be Assigned

This custom dialog box is not very useful. For one thing, the user doesn't see any items in the list box
along the left side of the dialog box. To put information into this dialog box, you assign values to its
controls by modifying the statements in your script that are responsible for displaying those controls
to the user. The following table lists the dialog box controls to which you can assign values and the
types of information you can control:

Control(s) Types of Information

List box, drop list box, and combo box Items

Text box Default text

Check box Values

Define and Fill an Array

You can store items in the list box shown in the example above by creating an array and then
assigning values to the elements of the array. For example, you could include the following lines to
initialize an array with three elements and assign the names of three common fruits to these elements
of your array:

Dim ListBox1$(3) 'Initialize list box array.
ListBox1$(0) = "Apples"
ListBox1$(1) = "Oranges"
ListBox1$(2) = "Pears"

Set Default Text in a Text Box

You can set the default value of the text box in your script to 12 with the following statement, which
must follow the statement that defines the dialog record but precede the statement or function that
displays the custom dialog box:

Basic Control Engine and Scripting Reference | 1 - Script Editors | 125

b.TextBox1 = "12"

Set the Initial Focus and Controlling the Tabbing Order

You can determine which control has the focus when your custom dialog box is first displayed as
well as the tabbing order between controls by understanding two rules that the Basic Control Engine
script follows. First, the focus in a custom dialog box is always set initially to the first control to
appear in the dialog box template. Second, the order in which subsequent controls appear within the
dialog box template determines the tabbing order. That is, pressing the Tab key will change the focus
from the first control to the second one, pressing the Tab key again will change the focus to the third
control, and so on.

8.3. Display the Custom Dialog Box

To display a custom dialog box, you can use either of the following.

Dialog() function

Dialog statement.

Dialog() Function

You can use a Dialog() function to determine how the user closed your custom dialog box. For
example, the following statement will return a value when the user clicks an OK button or a Cancel
button or takes another action:

response% = Dialog(b)

The Dialog() function returns any of the following values:

Value
returned

If a user clicks:

–1 The OK button.

 0 The Cancel button.

>0 A push button. The returned number represents which button was clicked based on its order in the dialog
box template (1 is the first push button, 2 is the second push button, and so on).

Dialog Statement

You can use the Dialog statement when you don't need to determine how the user closed your
dialog box. You'll still be able to retrieve other information from the dialog box record, such as the
value of a list box or other dialog box control.

An example of the correct use of the Dialog statement is:

Basic Control Engine and Scripting Reference | 1 - Script Editors | 126

Dialog mydlg

Where

Dialog is the statement that calls a declared dialog name.

mydlg is the dialog name in this example.

8.4. Retrieve Values from the Custom Dialog Box

After displaying a custom dialog box for your user, your script must retrieve the values of the dialog
controls. You retrieve these values by referencing the appropriate identifiers in the dialog record.

You'll find an example of how to retrieve values from a custom dialog box in the following
subsection.

Sample

In the following sample script several of the techniques described earlier in this section have been
used.

In this script, the array named ListBox1 is filled with three elements ("Apples" , "Oranges" ,
and "Pears"). The default value of TextBox1 is set to 12. A variable named response is used
to store information about how the custom dialog box was closed. An identifier named ListBox1
is used to determine whether the user chose "Apples" , "Oranges" , or "Pears" in the list box
named ListBox$. Finally, a Select Case . . . End Select statement is used to display a message box
appropriate to the manner in which the user dismissed the dialog box.

Sub Main()
 Dim ListBox1$(2) 'Initialize list box array.
 Dim response%
 ListBox1$(0) = "Apples"
 ListBox1$(1) = "Oranges"
 ListBox1$(2) = "Pears"
 Begin Dialog UserDialog ,,163,94,"Grocery Order"
 Text 13,6,32,8,"&Quantity:",.Text1 'First control in
 'template gets the focus.
 TextBox 48,4,28,12,.TextBox1
 ListBox 12,28,68,32,ListBox1$,.ListBox1
 OKButton 112,8,40,14
 CancelButton 112,28,40,14
 End Dialog
 Dim b As UserDialog 'Create the dialog record.
 b.TextBox1 = "12" 'Set default value of the text box
 'to 1 dozen.
 response = Dialog(b) 'Display the dialog box.
 Select Case response%
 Case -1
 Fruit$ = ListBox1$(b.ListBox1)

Basic Control Engine and Scripting Reference | 1 - Script Editors | 127

 MsgBox "Thank you for ordering " + b.TextBox1 + " " + Fruit$ + "."
 Case 0
 MsgBox "Your order has been canceled."
 End Select
End Sub

9. Use a Dynamic Dialog Box in a Script

9. Use a Dynamic Dialog Box in a Script

You can retrieve values from a custom dialog box while the dialog box is displayed, using the
dynamic dialog boxes feature.

9.1
(page
127)

Sample script for a dynamic dialog box.

9.2
(page
128)

Make a dialog box dynamic.

9.1. Sample Script for a Dynamic Dialog Box

The following script illustrates the most important concepts you'll need to understand in order to
create a dynamic dialog box in your script:

'Dim "Fruits" and "Vegetables" arrays here to make them accessible to
'all procedures.
Dim Fruits(2) As String
Dim Vegetables(2) As String
'Dialog procedure--must precede the procedure that defines the custom
'dialog box.
Function DialogControl(ctrl$, action%, suppvalue%) As Integer
 Select Case action%
 Case 1
 DlgListBoxArray "ListBox1", fruits 'Fill list box with
 'items before dialog
 'box is visible.
 DlgValue "ListBox1", 0 'Set default value to
 'first item in list box.
 Case 2
 'Fill the list box with names of fruits or vegetables
 'when the user selects an option button.
 If ctrl$ = "OptionButton1" Then
 DlgListBoxArray "ListBox1", fruits
 DlgValue "ListBox1", 0
 ElseIf ctrl$ = "OptionButton2" Then
 DlgListBoxArray "ListBox1", vegetables
 DlgValue "ListBox1", 0
 End If

Basic Control Engine and Scripting Reference | 1 - Script Editors | 128

 nd Select
End Function
Sub Main()
 Dim ListBox1$() 'Initialize array for use by ListBox
 'statement in template.
 Dim Produce$
'Assign values to elements in the "Fruits" and "Vegetables"
'arrays.
 Fruits(0) = "Apples"
 Fruits(1) = "Oranges"
 Fruits(2) = "Pears"
 Vegetables(0) = "Carrots"
 Vegetables(1) = "Peas"
 Vegetables(2) = "Lettuce"
 'Define the dialog box template.
 Begin Dialog UserDialog ,,163,94,"Grocery Order",.DialogControl
 Text 13,6,32,8,"&Quantity:",.Text1 'First control in
 'template gets the focus.
 TextBox 48,4,28,12,.TextBox1
 ListBox 12,28,68,32,ListBox1$,.ListBox1
 OptionGroup .OptionGroup1
 OptionButton 12,68,48,8,"&Fruit",.OptionButton1
 OptionButton 12,80,48,8,"&Vegetables",.OptionButton2
 OKButton 112,8,40,14
 CancelButton 112,28,40,14
 End Dialog
 im b As UserDialog 'Create the dialog record.
 b.TextBox1 = "12" 'Set the default value of the text
 'box to 1 dozen.
 response% = Dialog(b) 'Display the dialog box.
 Select Case response%
 Case -1
 If b.OptionGroup1 = 0 Then
 produce$ = fruits(b.ListBox1)
 Else
 produce$ = vegetables(b.ListBox1)
 End If
 MsgBox "Thank you for ordering " & b.TextBox1 & " " & produce$ & "."
 ase 0
 MsgBox "Your order has been canceled."
 End Select
End Sub

9.2. Make a Dialog Box Dynamic

The first thing to notice about the preceding script is that an identifier named DialogControl
has been added to the Begin Dialog statement. As you will learn in the following subsection,
this parameter to the Begin Dialog statement tells the Basic Control Engine to pass control to a
function procedure named DialogControl.

• Use a dialog function.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 129

• Respond to user actions.

Use a Dialog Function

Before the Basic Control Engine displays a custom dialog box by executing a Dialog statement or
Dialog() function, it must first initialize the dialog box. During this initialization process, the Basic
Control Engine checks to see whether you've defined a dialog function as part of your dialog box
template. If so, the Basic Control Engine will give control to your dialog function, allowing your
script to carry out certain actions, such as hiding or disabling dialog box controls.

After completing its initialization process, the Basic Control Engine displays your custom dialog box.
When the user selects an item in a list box, clears a check box, or carries out certain other actions
within the dialog box, the Basic Control Engine will again call your dialog function.

Responding to User Actions

The Basic Control Engine dialog function can respond to six types of user actions:

Action Description

1 This action is sent immediately before the dialog box is shown for the first time.

2 This action is sent when:

A button is clicked, such as OK, Cancel, or a push button.

A check box's state has been modified

An option button is selected. In this case, ControlName$ contains the name of the option button that was
clicked, and SuppValue contains the index of the option button within the option button group (0 is the first
option button, 1 is the second, and so on).

The current selection is changed in a list box, drop list box, or combo box. In this case, ControlName$ contains
the name of the list box, combo box, or drop list box, and SuppValue contains the index of the new item (0 is the
first item, 1 is the second, and so on).

3 This action is sent when the content of a text box or combo box has been changed and that control loses
focus.

4 This action is sent when a control gains the focus.

5 This action is sent continuously when the dialog box is idle. The user should return a 0 or idle processing will
use up the CPU.

6 This action is sent when the dialog box is moved.

You'll find a more complete explanation of these action codes in the A–Z Reference. See the
DlgProc (Function) entry in that documentation.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 130

Debug Scripts

Debug Scripts

• Debug overview
• Debug options

Debug Overview

While debugging, you are actually executing the code in a script line by line.

1. Start the script.

2. Click the Pause button on the Application toolbar.

The script is ready to be debugged.

A The Program Editor displays an instruction pointer on the line of code that is about to be executed. When the
instruction pointer is on a line of code, the text on that line appears in black on a gray background that spans
the width of the entire line.

B The edit pane is read-only during the debugging process. You are free to move the insertion point throughout
the script, select text and copy it to the Clipboard as necessary, set breakpoints, and add and remove watch
variables, but you cannot make any changes to the script until you stop running it.

Debug Options

1
(page
131)

Fabricate event information.

2
(page
132)

Step through scripts.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 131

3
(page
136)

Use breakpoints.

4
(page
139)

Perform traces in scripts.

5
(page
142)

Use a Watch variable.

1. Fabricate Event Information

The Event Editor allows the user to configure a script to run in response to an event. When a project
is running, the Event Manager runs a script either when a specified event or any event occurs,
depending on what is specified in the script.

However

• On one hand, when you build the script in the Program Editor there is no real event to trigger
the script.

• On the other hand, when the script runs with the Event Manager, you can not debug it in the
Program Editor.

An Event Information dialog box is available to fabricate the event information that the APIs would
provide in a real environment.

Using this fabrication you can safely test the accuracy of your script.

Do one of the following.

1 Select Debug>Set Event Information on the Program Editor menu bar.

2 Press D+Alt+V on the keyboard.

Result: The Event Information dialog box opens.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 132

Because you are using the Event Information dialog box to fabricate a real world environment, what
you enter depends on what is included in your script. If the script includes specific entries for any of
the fields, you have to enter what is in the script. For any entries that are not specifically referred to
in the script, you can enter whatever you want.

Example

A script defines the:

Event Type as Alarm Generated

Resource ID as $SYSTEM .

As a result, Alarm Generated and $SYSTEM are selected in the Event Information dialog box.

Entries in the other fields are fictitious.

Whenever, you run the script, it will draw its information from what you entered. You only have to
change your entries in the Event Information dialog box if a script requires a change in a specific
entry.

2. Step through Scripts

• Step through a script procedure
• Step through a script tools

Step through a Script Procedure

Two methods are available to step through a script.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 133

Both methods involve stepping through a script code line by line.

Method Description

Single step Steps into calls to user-defined functions and subroutines.

Procedure
step

Does not step into calls to user defined functions and subroutines. The procedure step does execute
the calls.

1. Use either method to start stepping through your script with either the single step or procedure
step method.

Method Do one of the following.

Single step • Click Debug>Step on the CIMPLICITY Program Editor menu bar.
• Press F8 on the keyboard.

Procedure step • Click Debug>Step Into on the CIMPLICITY Program Editor menu bar.
• Press Shift + F8 on the keyboard.

The Program Editor places the instruction pointer on the sub main line of the script.

2. Repeat the command as many times as necessary to continue stepping through..

Each time you repeat the Step command, Program Editor executes the line containing the
instruction pointer and moves the instruction pointer to the next line to be executed.

3. Do one of the following when you finish stepping through the script execution.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 134

A Click the Start button on the Application toolbar.

B Click the End button on the Application toolbar.

C Click Run>Start on the Program Editor menu bar.

D Click Run>End on the Program Editor menu bar.

E Press F5 on the keyboard.

Note: When script execution is initiated, the script will first be compiled, if necessary.
Therefore, there may be a slight pause before execution actually begins. If the script contains
any compile errors, it will not be executed.

Do the following.

4. Correct any compile errors

5. Initiate execution again.

6. Repeat the Step command to continue stepping through the script line by line,

Step through a Script Tools

Calls dialog box

Set Next Statement

Calls dialog box

When stepping through a subroutine, you can determine the procedure calls made to arrive at
the paused point in the script..

7. Do one of the following.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 135

A Click Debug>Call Stack on the Program Editor menu bar.

B Press Alt+D+K on the keyboard.

The Calls dialog box opens when you use either method.

The Calls dialog box lists the procedure calls made by the script to arrive at the selected
subroutine.

8. Do one of the following.

Click Description

Show a. Select a procedure call in the Calls list.
b. Click Show.
• The Calls dialog box closes.
• The Program Editor highlights the currently executing line in the procedure you selected, scrolling

that line into view if necessary.

Close Closes the Calls dialog box.

Help Opens the Program Editor documentation.

Set Next Statement

When stepping through a subroutine, you can move the insertion point to another line within a
subroutine to repeat or skip execution of a section of code.

9. Place the insertion point in the line where you want to resume stepping through the script.

10. Do one of the following.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 136

A Click Debug>Set Next Statement on the Program Editor menu bar.

B Press Alt+D+N on the keyboard.

The instruction pointer moves to the line you selected; you can resume stepping through your script
from there.

Note: You can only use the Set Next Statement command to move the instruction pointer within
the same subroutine.

3. Use Breakpoints

1
(page
137)

Select breakpoints.

2
(page
137)

Run the Debugger.

3
(page
139)

Remove breakpoints.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 137

If you only need to debug one or more portions of a long script one or more breakpoints can be set at
selected lines in your script.

Valid breakpoints can only be set on lines in your script that contain code, including lines in
functions and subroutines. Although you can set a breakpoint anywhere within a script prior to
execution, when you compile and run the script, invalid breakpoints (breakpoints on lines that don't
contain code) are automatically removed. While you are debugging your script, the Program Editor
will beep if you try to set a breakpoint on a line that does not contain code.

Select Breakpoints

1. Place the insertion point in the line where you want to do one of the following.

• A select point.
• A line outside the current subroutine.
• Selected portions of a program.

1. Do one of the following.

1 Click the Breakpoint button on the Application toolbar.

2 Click Debug>Toggle Breakpoint on the Program Editor menu bar.

3 Press F9 on the keyboard.

1. Repeat the process to set as many breakpoints as needed, up to 255.

Result: The script is ready to be debugged.

Run the Debugger

Do any of the following.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 138

A Click the Start button on the Application toolbar.

B Click Run>Start on the Program Editor menu bar.

D Press F5 on the keyboard.

Results

A breakpoint was inserted at:

• A select point

The Program Editor:

Runs the script at full speed until it reaches the line containing the breakpoint and then pauses with
the instruction pointer on that line.

The line will be executed next when you either proceed with debugging or resume running the script.

If you want to continue debugging at another line in your script, you can use the Set Next Statement
command in the Debug menu to move the instruction pointer to the desired line—provided the line is
within the same subroutine.

• A line outside the current subroutine

Runs the script at full speed until it reaches the line containing the breakpoint and then pauses with
the instruction pointer on that line.

You can now resume stepping through your script from that point.

• Selected portions of a program

Runs the script at full speed until it reaches the line containing the first breakpoint and then pauses
with the instruction pointer on that line.

1. Step through as much of the code as you need to.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 139

2. To resume running your script, click the Start button on the toolbar or press F5.

The script executes at full speed until it reaches the line containing the second breakpoint and then
pauses with the instruction pointer on that line.

1. Repeat 1 and 2 until you have finished debugging the selected portions of your script.

Remove breakpoints

Breakpoints can be removed either manually or automatically.

• Remove a single breakpoint manually

1. Place the insertion point on the line containing the breakpoint that you want to remove.
2. Do one of the following.

• Click the Toggle Breakpoint button on the Application toolbar.
• Press F9 on the keyboard.

Result: The breakpoint is removed, and the line no longer displays in contrasting type.

• Remove all breakpoints manually

Click Debug>Clear All Breakpoints on the Program Editor menu bar.

Result: The Program Editor removes all breakpoints from your script.

Note: Breakpoints are removed automatically under the following circumstances:

• When a script is compiled and executed, breakpoints are removed from lines that don't contain
code.

• When you exit from the Program Editor, all breakpoints are cleared.

4. Perform Traces in Scripts

The Trace command can be used in Basic Control Engine scripts to print output to the Program
Editor window's Trace section.

1
(page
140)

Enable tracing.

2
(page
141)

Clear trace results.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 140

3
(page
142)

Disable tracing.

Enable Tracing

1. Enter a Trace (page 624) command in a script.

Example

Trace "TANK750 " & MyPoint.Value

1. Do one of the following.

1 Depress the Trace button on the Application toolbar.

2 Click Debug>Trace on the Program Editor menu bar.

3 Press Alt+D+R on the keyboard.

Trace is enabled.

1. Run the script.

Result: The trace results display in the Program Editor window trace section.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 141

Clear Trace Results

Do one of the following.

A Click the Clear Trace button on the Application toolbar.

B Click Debug>Clear Trace on the Program Editor menu bar.

C Press Alt+D+L on the keyboard.

Result: The trace results are deleted from the Program Editor trace section.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 142

Disable Tracing

Do one of the following.

A Restore the Trace button on the Application toolbar.

B Click Debug>Trace on the Program Editor menu bar.

C Press Alt+D+R on the keyboard.

Result: The trace entries are ignored when the script is run.

5. Use a Watch Variable

5. Use a Watch Variable

As you debug your script, you can use Program Editor's watch pane to monitor selected variables.
For each of the variables on this watch variable list, Program Editor displays the name of the
variable, where it is defined, its value (if the variable is not in scope, its value is shown as <not in
context>), and other key information such as its type and length (if it is a string). The values of the
variables on the watch list are updated each time you enter break mode.

5.1
(page
143)

Add a Watch variable to the Program Editor's Watch variable list.

5.2
(page
145)

Modify the value of a Watch variable.

5.3
(page
148)

Use Quick Watch.

5.4
(page
149)

Delete a Watch variable.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 143

5.1. Add a Watch Variable to the Program Editor's Watch Variable List

• Select Variable Procedure
• Guidelines for Variables

Select Variable Procedure

1. Select a variable in a script.

2. Do one of the following.

A Click the Add Watch button on the Application toolbar.

B Click Debug>Add Watch on the Program Editor menu bar.

C Press Shift+F9 on the keyboard.

An Add Watch dialog box opens.

3. Enter specifications as follows.

Field Description

Variable Name of the variable you want to add to the watch variable list.

Procedure Procedure that will be watched.

Script Script that will be watched.

4. Click OK or press Enter.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 144

The selected Variable is added to the Add Watch list.

If this is the first variable you are placing on the watch variable list, the watch pane opens far enough
to display that variable. If the watch pane was already open, it expands far enough to display the
variable you just added.

guide: Guidelines for Variables

• The following variables can or cannot be watched.

Cannot watch

Complex variables such as structures or arrays.

Can watch

• Variables of fundamental data types.

Examples

• Integer
• Long
• Variant
• Individual elements of arrays or structure members using the following syntax:

[variable [(index,...)] [.member [(index,...)]]...]

Where

variable = Name of the structure or array variable,

index = Literal number

member = Name of a structure member.

Example

Basic Control Engine and Scripting Reference | 1 - Script Editors | 145

The following are valid watch expressions:

Watch Variable Description

a(1) Element 1 of array a

person.age Member age of structure person.

company(10,23).person.age Member age of structure person that is at element 10,23 within the array of structures
named company

• If you are executing the script, you can

1. Display the names of all the variables that are in scope or defined within the current function or
subroutine on the drop-down Variable Name list.

2. Select the variable you want from that list.

• You can add as many watch variables to the list as you want.

The Watch pane only expands until it fills half of Program Editor's application window. If your list
of watch variables becomes longer than that, you can use the watch pane's scroll bars to bring hidden
portions of the list into view.

• The list of watch variables is maintained between script executions.

5.2. Modify the Value of a Watch Variable

When the debugger has control (page 130) , you can modify the value of any of the variables on
Program Editor's Watch variable list.

• Procedure to modify variables.
• Guidelines for modifying variables.

Procedure to Modify Variables

1. Select a variable to be modified.

2. Do one of the following.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 146

A Click Debug>Modify on the Program Editor menu bar.

B Press Alt+D+M on the keyboard.

C Double-click the variable line in the Watch list.

A Modify Variable dialog box opens.

3. Fill in the fields as follows.

Field Description

Name Name of the variable to be modified. Note: If the line was double-clicked the Name field:
• Displays the selected variable.
• Is read-only.

Value New value for the variable.

4. Click OK or press Enter.

The new variable value displays in the Watch list.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 147

guide: Guidelines for Modifying Variables

• When changing the value of a variable, the Program Editor converts the new value to be of the
same type as the variable being changed.

Example

An Integer value is 3.

1.7 is entered in the Value field

The Program Editor converts the new value to 2.

• When modifying a Variant variable, the Program Editor needs to determine both the type and
value of the data. Program Editor uses the following logic in performing this assignment (in this
order):

If the
new
value is

The variant variable is assigned:

Null Null (VarType 1)

Empty Empty (VarType 0).

True True (VarType 11).

False False (VarType 11).

number The value of number. The type of the variant is the smallest data type that fully represents that number.
You can force the data type of the variable using a type-declarator letter following number, such as %, #, &,
!, or @.

date The value of the new date (VarType 7)

Anything
else

String (VarType 8).

Basic Control Engine and Scripting Reference | 1 - Script Editors | 148

• The Program Editor will not assign a new value if it cannot be converted to the same type as the
specified variable.

5.3. Use Quick Watch

When the debugger has control (page 130) , you can use the Quick Watch window to do a quick
check of a variable value, without adding the variable to the Watch list (page 143) .

1. Select the variable whose value you want to quickly check.

2. Do one of the following.

A Click Debug>QuickWatch on the Program Editor menu bar.

B Press Alt+D+Q on the keyboard.

The QuickWatch window opens displaying the value for the selected variable.

3. (Optional) Evaluate another variable.
a. Enter the variable in the Variable field.
b. Click Evaluate.

The variable is evaluated; if it has a known value, the value displays in the evaluation box.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 149

4. Click Close.

 The QuickWatch window closes; you can continue debugging the script.

Note: You must close the QuickWatch window in order to return to the script window.

5.4. Delete a Watch Variable

1. Select a variable on the Watch list.

2. Do one of the following.

A Click Debug>Delete Watch on the Program Editor menu bar.

B Press Alt+D+D on the keyboard.

The variable is deleted from the Watch list..

Run a Program

Important: The CIMPLICITY project must be running in order to run the script.

Once you have finished editing your programs, you will want to run it to make sure it performs the
way you intended. You can also suspend or stop an executing script.

Run a script

Note: This will also compile your script, if necessary, and then execute it.

• Click the Start button on the toolbar.
• Press F5.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 150

The script is compiled (if it has not already been compiled), the focus is switched to the parent
window, and the script is executed.

• Suspend A Running Program.
• Stop a running program.

Suspend a Running Program

Press Ctrl+Break. or click the Break toolbar button.

Execution of the script is suspended, and the instruction pointer (a gray highlight) appears on the line
of code where the script stopped executing.

Note: The instruction pointer designates the line of code that will be executed next if you resume
running your script.

Stop a Running Program

Click the End tool on the toolbar.

Error Messages

Error Messages

This section contains listings of all the runtime errors. It is divided into two subsections, the first
describing errors messages compatible with "standard" Basic as implemented by Microsoft Visual
Basic and the second describing error messages specific to the Basic Control Engine.

A few error messages contain placeholders that get replaced by the runtime when forming the
completed runtime error message. These placeholders appear in the following list as the italicized
word placeholder.

1
(page
151)

Visual Basic compatible error messages.

2
(page
153)

Basic Control Engine-specific error messages.

3
(page
155)

Error message list.

Basic Control Engine and Scripting Reference | 1 - Script Editors | 151

1. Visual Basic Compatible Error Messages

The Visual Basic compatible error messages are:

Number Message

3 Return without GoSub

5 Illegal procedure call

6 Overflow

7 Out of memory

9 Subscript out of range

10 This array is fixed or temporarily locked

11 Division by zero

13 Type mismatch

14 Out of string space

19 No Resume

20 Resume without error

26 Dialog needs End Dialog or push button

28 Out of stack space

35 Sub or Function not defined

48 Error in loading DLL

49 Bad DLL calling convention

51 Internal error

52 Bad file name or number

53 File not found

54 Bad file mode

55 File already open

57 Device I/O error

58 File already exists

59 Bad record length

61 Disk full

62 Input past end of file

63 Bad record number

Basic Control Engine and Scripting Reference | 1 - Script Editors | 152

64 Bad file name

67 Too many files

68 Device unavailable

70 Permission denied

71 Disk not ready

74 Can't rename with different drive

75 Path/File access error

76 Path not found

91 Object variable or With block variable not set

93 Invalid pattern string

94 Invalid use of Null

139 Only one user dialog may be up at any time

140 Dialog control identifier does not match any current control

141 The placeholder statement is not available on this dialog control type

143 The dialog control with the focus may not be hidden or disabled

144 Focus may not be set to a hidden or disabled control

150 Dialog control identifier is already defined

163 This statement can only be used when a user dialog is active

260 No timer available

281 No more DDE channels

282 No foreign application responded to a DDE initiate

283 Multiple applications responded to a DDE initiate

285 Foreign application won't perform DDE method or operation

286 Timeout while waiting for DDE response

287 User pressed Escape key during DDE operation

288 Destination is busy

289 Data not provided in DDE operation

290 Data in wrong format

291 Foreign application quit

292 DDE conversation closed or changed

295 Message queue filled; DDE message lost

298 DDE requires ddeml.dll

Basic Control Engine and Scripting Reference | 1 - Script Editors | 153

429 OLE Automation server can't create object

430 Class doesn't support OLE Automation

431 OLE Automation server cannot load file

432 File name or class name not found during OLE Automation operation

433 OLE Automation object does not exist

434 Access to OLE Automation object denied

435 OLE initialization error

436 OLE Automation method returned unsupported type

437 OLE Automation method did not return a value

438 Object doesn't support this property or method placeholder

439 OLE Automation argument type mismatch placeholder

440 OLE Automation error placeholder

443 OLE Automation Object does not have a default value

452 Invalid ordinal

460 Invalid Clipboard format

520 Can't empty clipboard

521 Can't open clipboard

600 Set value not allowed on collections

601 Get value not allowed on collections

603 ODBC - SQLAllocEnv failure

604 ODBC - SQLAllocConnect failure

608 ODBC - SQLFreeConnect error

610 ODBC - SQLAllocStmt failure

3129 Invalid SQL statement; expected 'DELETE', 'INSERT', 'PROCEDURE', 'SELECT', or 'UPDATE'

3146 ODBC - call failed

3148 ODBC - connection failed

3276 Invalid database ID

2. Basic Control Engine-Specific Error Messages

The Basic Control Engine-specific error messages are:

Number Message

Basic Control Engine and Scripting Reference | 1 - Script Editors | 154

800 Incorrect Windows version

801 Too many dimensions

802 Can't find window

803 Can't find menu item

804 Another queue is being flushed

805 Can't find control

806 Bad channel number

807 Requested data not available

808 Can't create pop-up menu

809 Message box canceled

810 Command failed

811 Network error

812 Network function not supported

813 Bad password

814 Network access denied

815 Network function busy

816 Queue overflow

817 Too many dialog controls

818 Can't find list box/combo box item

819 Control is disabled

820 Window is disabled

821 Can't write to ini file

822 Can't read from ini file

823 Can't copy file onto itself

824 OLE Automation unknown object name

825 Can't re-dimension a fixed array

826 Can't load and initialize extension

827 Can't find extension

828 Unsupported function or statement

829 Can't find ODBC libraries

830 OLE Automation Lbound or Ubound on non-Array value

831 Incorrect definition for dialog procedure

Basic Control Engine and Scripting Reference | 1 - Script Editors | 155

3. Error Message List

The following table contains a list of all the errors generated by the Basic Control Engine compiler.
With some errors, the compiler changes placeholders within the error to text from the script being
compiled. These placeholders are represented in this table by the word placeholder.

Number Message

1 Variable Required - Can't assign to this expression

2 Letter range must be in ascending order

3 Redefinition of default type

4 Out of memory, too many variables defined

5 Type-character doesn't match defined type

6 Expression too complex

7 Cannot assign whole array

8 Assignment variable and expression are different types

10 Array type mismatch in parameter

11 Array type expected for parameter

12 Array type unexpected for parameter

13 Integer expression expected for an array index

14 Integer expression expected

15 String expression expected

18 Left of "." must be an object, structure, or dialog

19 Invalid string operator

20 Can't apply operator to array type

21 Operator type mismatch

22 "placeholder" is not a variable

23 "placeholder" is not a array variable or a function

24 Unknown placeholder "placeholder"

25 Out of memory

26 placeholder: Too many parameters encountered

27 placeholder: Missing parameter(s)

28 placeholder: Type mismatch in parameter placeholder

29 Missing label "placeholder"

Basic Control Engine and Scripting Reference | 1 - Script Editors | 156

30 Too many nested statements

31 Encountered new-line in string

32 Overflow in decimal value

33 Overflow in hex value

34 Overflow in octal value

35 Expression is not constant

37 No type-characters allowed on parameters with explicit type

39 Can't pass an array by value

40 "placeholder" is already declared as a parameter

41 Variable name used as label name

42 Duplicate label

43 Not inside a function

44 Not inside a sub

46 Can't assign to function

47 Identifier is already a variable

48 Unknown type

49 Variable is not an array type

50 Can't redimension an array to a different type

51 Identifier is not a string array variable

52 0 expected

55 Integer expression expected for file number

56 placeholder is not a method of the object

57 placeholder is not a property of the object

58 Expecting 0 or 1

59 Boolean expression expected

60 Numeric expression expected

61 Numeric type FOR variable expected

62 For...Next variable mismatch

63 Out of string storage space

64 Out of identifier storage space

65 Internal error 1

66 Maximum line length exceeded

Basic Control Engine and Scripting Reference | 1 - Script Editors | 157

67 Internal error 3

68 Division by zero

69 Overflow in expression

70 Floating-point expression expected

72 Invalid floating-point operator

74 Single character expected

75 Subroutine identifier can't have a type-declaration character

76 Script is too large to be compiled

77 Variable type expected

78 Can't evaluate expression

79 Can't assign to user or dialog type variable

80 Maximum string length exceeded

81 Identifier name already in use as another type

84 Operator cannot be used on an object

85 placeholder is not a property or method of the object

86 Type-character not allowed on label

87 Type-character mismatch on routine placeholder

88 Destination name is already a constant

89 Can't assign to constant

90 Error in format of compiler extensions

91 Identifier too long

92 Expecting string or structure expression

93 Can't assign to expression

94 Dialog and Object types are not supported in this context

95 Array expression not supported as parameter

96 Dialogs, objects, and structures expressions are not supported as a parameter

97 Invalid numeric operator

98 Invalid structure element name following "."

99 Access value can't be used with specified mode

101 Invalid operator for object

102 Can't LSet a type with a variable-length string

103 Syntax error

Basic Control Engine and Scripting Reference | 1 - Script Editors | 158

104 placeholder is not a method of the object

105 No members defined

106 Duplicate type member

107 Set is for object assignments

108 Type-character mismatch on variable

109 Bad octal number

110 Bad number

111 End-of-script encountered in comment

112 Misplaced line continuation

113 Invalid escape sequence

114 Missing End Inline

115 Statement expected

116 ByRef argument mismatch

117 Integer overflow

118 Long overflow

119 Single overflow

120 Double overflow

121 Currency overflow

122 Optional argument must be Variant

123 Parameter must be optional

124 Parameter is not optional

125 Expected: Lib

126 Illegal external function return type

127 Illegal function return type

128 Variable not defined

129 No default property for the object

130 The object does not have an assignable default property

131 Parameters cannot be fixed length strings

132 Invalid length for a fixed length string

133 Return type is different from a prior declaration

134 Private variable too large. Storage space exceeded

135 Public variables too large. Storage space exceeded

Chapter 2. CimScriptIDE Editor

About the CimScriptIDE Editor

A CimScriptIDE Editor enables and facilitates writing C# and VB .NET scripts.

An overview of how to open and take advantage of the CimScriptIDE editor includes the following.

1
(page
171)

Open the CimScriptIDE editor.

2
(page
162)

CimScriptIDE editor: Overview.

3
(page
170)

Technical Reference: CimScriptIDE editor.

Important: If you are familiar with the Program Editor for CimBasic, it is important to note that
the CimScriptIDE Editor for .NET scripting behaves differently than the CimBasic Program Editor in
regard to Compiling. Selecting Compile (page 166) for a .NET script saves the script file to disk;
selecting Compile (page 47) for CimBasic it does not.

1. Open the CimScriptIDE Editor

1. Open the CimScriptIDE Editor

Basic Control Engine and Scripting Reference | 2 - CimScriptIDE Editor | 160

1.1
(page
160)

Create a New C# or VB .NET script.

1.2
(page
161)

Open an Existing C# or VB .NET Script

1.1. Create a New C# or VB .NET Script

1. Select Project>Script Engine>Scripts in the Workbench left pane.

2. Do one of the following.

A Click File>New>Object on the Workbench menu bar.

B Click the New Object button on the Workbench toolbar.

C In the Workbench left pane:

Either Or

Double click Scripts. a. Right-click Scripts.
b. Select New on the Popup menu.

D a. In the Workbench right pane.
a. Right-click anywhere.
b. Select New on the Popup menu.

E Press Ctrl+N on the keyboard.

A Create Script dialog box opens.

Do the following.

Basic Control Engine and Scripting Reference | 2 - CimScriptIDE Editor | 161

A File Name Enter a unique name to identify the script.

B Check one of the following.

Basic Script Opens CIMPLICITY Program Editor.

Script file created * .bcl

C# Opens CimScriptIDE window.

Script file created *.cs.pscript

Visual Basic.NET Opens CimScriptIDE window.

Script file created *.vb.pscript

C Click one of the buttons.

Create a. Creates the script.
b. Opens the script editor window for the selected script type.

Cancel Closes the Create Script dialog box without creating a script.

3. Right-click Scripts.

4. Select New on the Popup menu.

5. Right-click anywhere.

6. Select New on the Popup menu.

7. Creates the script.

8. Opens the script editor window for the selected script type.

1.2. Open an Existing C# or VB .NET Script

1. Select Project>Script Engine>Scripts in the Workbench left pane.

2. Select a *.cs.pscript or *.vb.pscript file in the Workbench right pane.

3. Do one of the following.

Basic Control Engine and Scripting Reference | 2 - CimScriptIDE Editor | 162

A Click Edit>Properties on the Workbench menu bar.

B Click the Properties button on the Workbench toolbar.

C In the Workbench left pane:
a. Right-click Scripts.
b. Select Properties on the Popup menu.

D In the Workbench right pane:

Either Or

Double click a script. a. Right-click a script.
b. Select Properties on the Popup menu.

E Press Alt+Enter on the keyboard.

4. Right-click Scripts.

5. Select Properties on the Popup menu.

6. Right-click a script.

7. Select Properties on the Popup menu.

2. CimScriptIDE Editor: Overview

2. CimScriptIDE Editor: Overview

The CimScriptIDE editor:

Basic Control Engine and Scripting Reference | 2 - CimScriptIDE Editor | 163

• Supports and facilitates scripting in both C# and VB .NET.
• Includes features from the CIMPLICITY Program Editor that are familiar to CIMPLICITY

users.
• Provides features that are designed specifically for C# and VB.Net scripting.

Important: CimScriptIDE editor uses .NET 4.5, which was a required installation when
CIMPLICITY v9.0 was installed. However, the CimScriptIDE editor does not recognize certain
keywords that are new in .NET 4.5 and will display an error message when one is not recognized.
However, you can still compile and run scripts that contain the unrecognized keywords.

Example

CimScriptIDE editor does not recognize these keywords.

• async
• await

rect 266, 138, 307, 170 2.4. CimScriptIDE Editor: Right-Pane (page 169)
rect 17, 90, 42, 122 2.3. CimScriptIDE Editor: Class View Pane (page 168)
rect -1, 349, 24, 373 2.2. CimScriptIDE Editor: Toolbars and Status Bar (page 167)
rect -1, 41, 24, 65 2.2. CimScriptIDE Editor: Toolbars and Status Bar (page 167)
rect -1, 19, 24, 43 2.1. CimScriptIDE Editor: Menus (page 164)

2.1
(page
164)

CimScriptIDE Editor: Menus.

2.2
(page
167)

CimScriptIDE Editor: Toolbars and status bar.

Basic Control Engine and Scripting Reference | 2 - CimScriptIDE Editor | 164

2.3
(page
168)

CimScriptIDE Editor: Classes pane.

2.4
(page
169)

CimScriptIDE Editor: Right-pane.

2.1. CimScriptIDE Editor: Menus

Menus in the CimScriptIDE editor are as follows.

• File menu.
• Edit menu.
• View menu.
• Run menu.
• Tools menu.
• Window menu.
• Help menu.

File Menu

New Creates a new document for the Program Editor.

Open Opens an existing document for the Program editor.

Close Closes the script.

Save Saves the active document.

Save As Save the script with a different name.

Print Prints the active document

Print Preview Displays the active document as it will be printed

Print Setup Opens the Setup dialog box for the default printer.

Basic Control Engine and Scripting Reference | 2 - CimScriptIDE Editor | 165

Recent Files Displays the list of most recently accessed files.

Exit Exits the Program Editor.

Edit Menu

Undo Undoes actions, beginning with the last action performed.

Redo Redoes the actions that have been undone, beginning with the last undo.

Cut Cuts the selection and puts it on the Clipboard.

Copy Copies the selection and puts it on the Clipboard

Paste Inserts Clipboard contents.

View Menu

Toolbars and Docking
Windows

Displays the list of available toolbars. You can toggle the display of each toolbar.

Standard Displays the Standard toolbar.

Tools Displays the Tools toolbar.

Class View Displays the CimScriptIDE Editor left-pane.

Output Displays the bottom right pane

Customize Opens the Customize dialog box.

Status Bar Toggles the Status Bar at the bottom of the CimScriptIDE Editor.

Basic Control Engine and Scripting Reference | 2 - CimScriptIDE Editor | 166

Run Menu

Compile Compiles the script.

Start Runs the program

End Ends the running.

Tools Menu

Points Displays a submenu that enables you to browse for points, edit a point, and create a new point. You can
also use this menu item to include Setpoints, Getpoints and create local variables in the program.

Browse Opens the Select a Point browser.

Edit Opens a selected point's Properties dialog box.

New Opens a New Point dialog box.

Set Opens a Set Point dialog box.

Get Opens a Get Point dialog box.

Dim Opens a Dimension Point Object dialog box.

Alarms Displays a submenu that lets you generate or update alarms in the program.

Generate Opens a Generate Alarm dialog box.

Update Opens an Update Alarm dialog box.

Log
Status

Opens a Log Status dialog box enabling you to generate messages for the Status Log.

Dynamic Toggles Dynamic Configuration of points, alarm, etc. Note: When the project is running, dynamic is enabled
for users who have been assigned the Dynamic Configuration privilege.

Basic Control Engine and Scripting Reference | 2 - CimScriptIDE Editor | 167

Window Menu

New Window Opens a new window.

Open Windows Displays a list of open windows.

Windows Opens a Windows dialog box.

Help Menu

About
CimScriptIDE

Opens an About CimScriptIDE message box with details about the distribution number and installed
service upgrades.

2.2. CimScriptIDE Editor: Toolbars and Status Bar

The CimScriptIDE Editor contains the following toolbars.

• CimScriptIDE Editor: Toolbars.
• CimScriptIDE Editor: Status bar.

CimScriptIDE Editor: Toolbars

The CimScriptIDE editor has the following toolbars.

• Standard
• Tools

Standard Toolbar

A New Create a new document.

B Open Open an existing document

C Save Save the active document

Basic Control Engine and Scripting Reference | 2 - CimScriptIDE Editor | 168

D Cut Cut the selection and put it on the Clipboard

E Copy Copy the selection and put it on the Clipboard

F Paste Insert Clipboard contents

G Print Print the active document

H About Display program information, version number, and copyright

Tools Toolbar

Buttons on the Tools toolbar open the following browser and dialog boxes.

A Browse Point Select a Point browser.

B Edit Point Point Properties dialog box for a selected point.

C New Point New Point dialog box.

D Get Point Get Point dialog box.

E Set Point Set Point dialog box.

F Dim Point Dimension Point Object dialog box.

G Gen Alarm Generate an Alarm dialog box.

H Update Alarm Update Alarm dialog box.

I Log Status Log Status dialog box.

CimScriptIDE Editor: Status Bar

The CimScriptIDE editor status bar displays the following.

A Displays status messages or tool tips when the mouse hovers over selected items, e.g. Ready or Copy the
selection and put it on the clipboard.

B Reports if the following keys are on or off.

• CAP
• NUM
• SCRL

2.3. CimScriptIDE Editor: Class View Pane

Basic Control Engine and Scripting Reference | 2 - CimScriptIDE Editor | 169

The CimScriptIDE editor Class View pane enables you to easily

• Scan a script's imports, class nodes, function, properties, constants and class variables.
• Move the cursor to any selection by double-clicking the instance in the tree.

Note: Tree items can be expanded and collapsed.

A Based on the scripting type, a Using or Imports node can be expanded to list each entry in the script.

Script Type Node

C# Using

VB .NET Imports

B Class node

Note: This name must be the same as the script filename. If it is changed, make sure the filename is changed.

C Functions, nested classes, constants and class variables that are included in the class.

2.4. CimScriptIDE Editor: Right-Pane

The CimScriptIDE editor right-pane provides a robust environment for creating and editing C Sharp
and/or VB .NET scripts.

Features include the following.

Basic Control Engine and Scripting Reference | 2 - CimScriptIDE Editor | 170

A Multiple scripts, which can be open at the same time, are identified by tabs at the top of the right-pane. The script
for the selected tab (identified by an x) displays for editing.

B The scripting area includes numbered lines.

C As code is being written a CodeComplete Popup lists keywords, variables and members (methods, properties, and
events) that can be used based on what was just written. Any item can be selected and automatically inserted.

D A build tab displays compile errors.

E A Trace tab traces messages from the script when the script is run.

Important: The CimScriptIDE editor does not debug scripts; however, scripts written in the
CimScriptIDE editor can be debugged live using Visual Studio.

3. Technical Reference: CimScriptIDE Editor

3. Technical Reference: CimScriptIDE Editor

3.1
(page
171)

CimScriptIDE debugging in Visual Studio.

3.2
(page
172)

Attach Additional .NET Assembly references.

Basic Control Engine and Scripting Reference | 2 - CimScriptIDE Editor | 171

3.1. CimScriptIDE Debugging in Visual Studio

1. Create a CIMPLICITY event that will trigger the script.

2. Make sure the CIMPLICITY router is running.

3. Open Microsoft Visual Studio as an Administrator.

4. Click File>Open>File on the Visual Studio menu bar.

5. Find the script in the location you had saved it when you were in the CimScriptIDE editor.

6. Open the script.

7. Set the break points and trace points.

8. Select one of the following on the Visual Studio menu bar.
• Tools>Attach to Process.
• Debug>Attach to Process.

9. Do the following.

Feature Action

A Attach to field. Select Managed code.

B Process list. Select EMRP.exe.

C Show processes from all users checkbox. (Optional) Check

Basic Control Engine and Scripting Reference | 2 - CimScriptIDE Editor | 172

D Show processes in all sessions checkbox. (Optional) Check

E Attach button. Click.

The script will be triggered for debugging.

3.2. Attach Additional .NET Assembly References

CIMPLICITY provides default .NET assembly references for C# and VB .NET; additional
references can be added or removed in the (Event Editor) Setup dialog box.

1. Open the Project Propertiesdialog box.

2. Do the following.

A Select the Settings tab.

B Select Event Editor.

C Click Settings.

A Setup dialog box opens.

3. Do any of the following.

Basic Control Engine and Scripting Reference | 2 - CimScriptIDE Editor | 173

A Add a .Net Assembly
reference.

a. Click the Open button to the right of the .Net Assembly References
field.

b. An Open dialog box opens.
c. Select the .dll file that should be added to the list.
d. Click Add.

Result: The selected file is listed as one of the .Net Assembly references.

B Remove a reference. Select the file to be removed; click Remove.

C Modify the list. Click Modify. The .Net Assembly Reference field is cleared.

4. Click the Open button to the right of the .Net Assembly References field.

5. An Open dialog box opens.

6. Select the .dll file that should be added to the list.

7. Click Add.

The selected file is listed as one of the .Net Assembly references.

Chapter 3. Basic Control Engine Language
Reference

Using the Basic Control Engine Language Reference

The Basic Control Engine Language Reference documentation is organized like a dictionary
containing an entry for each language element. The language elements are categorized as follows:

Category Description

data type Any of the support data types, such as Integer, String, and so on.

function Language element that takes zero or more parameters, performs an action, and returns a value

keyword Language element that doesn't fit into any of the other categories

operator Language elements that cause an evaluation to be performed either on one or two operands

statement Language element that takes zero or more parameters and performs an action.

topic Describes information about a topic rather than a language element

Each entry in the Basic Control Engine Language Reference documentation contains the following
headings:

Heading Description

Syntax The syntax of the language element. The conventions used in describing the syntax are described in
Chapter 1 of the Basic Control Engine Language Reference documentation.

Description Contains a one-line description of that language element.

Comments Contains any other important information about that language keyword.

Example Contains an example of that language keyword in use. An example is provided for every language
keyword.

See Also Contains a list of other entries in the Reference section that relate either directly or indirectly to that
language element.

Scripting Language Reference

Click a cell entry to display the first topic in the Basic Control Engine Language Reference section.

Double-click Locate on the Help toolbar to locate the topic in the Table of Contents.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 175

Basic Control Engine Language Reference

Intro
(page
176)

Symbols
(page
191)

A
(page
203)

G
(page
354)

N
(page
412)

T
(page
500)

B
(page
223)

H
(page
362)

O
(page
422)

U
(page
510)

C
(page
235)

I (page
367)

P
(page
437)

V
(page
514)

D
(page
261)

K
(page
385)

Q
(page
450)

W
(page
521)

E
(page
302)

L
(page
386)

R
(page
451)

X
(page
532)

F
(page
338)

M
(page
400)

S
(page
465)

Y
(page
533)

CIMPLICITY Extensions to Basic
(page 533)

CIMPLICITY Program Editor
(page 42)

Object Model

CIMPLICITY Configuration

CIMPLICITY Visual Basic Extensions for CimBasic

CimLangMapper

CimEdit / CimView

CIMPLICITY Historical Data Connector

CIMPLICITY Historical Alarm Viewer

CIMPLICITY Safe Array

CIMPLICITY XY Plot

Tracker Agents

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 176

TADB

CIMPLICITY Solve Engine Interface

CIMPLICITY XML Translator

About the Basic Control Syntax

This section contains a complete, alphabetical listing of all keywords in the Basic Control Engine
script language. When syntax is described, the following notations are used:

Notation Description

While...Wend Elements belonging to the Basic Control Engine script language, referred to in this manual as
keywords, appear in the typeface shown to the left.

variable Items that are to be replaced with information that you supply appear in italics. The type of replacement
is indicated in the following description.

text$ The presence of a type-declaration character following a parameter signifies that the parameter must
be a variable of that type or an expression that evaluates to that type. If a parameter does not appear
with a type-declaration character, then its type is described in the text.

[parameter] Square brackets indicate that the enclosed items are optional. In Basic Control Engine script language,
you cannot end a statement with a comma, even if the parameters are optional:

MsgBox "Hello",,"Message" ' <--OK

MsgBox "Hello",, ' <-- Not valid

{Input |
Binary}

Braces indicate that you must choose one of the enclosed items, which are separated by a vertical bar.

... Ellipses indicate that the preceding expression can be repeated any number of times.

Language Elements by Category

Language Elements By Category

The following subsections list Basic Control Engine language elements by category.

Arrays

Clipboard

Comments

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 177

Comparison operators

 Controlling other programs

Controlling program flow

Controlling the operating environment

Conversion

Data types

Database

Date/time

DDE

Error handling

File I/O

File system

Financial

Getting information from Basic Control Engine

INI Files

Logical/binary operators

Math

Miscellaneous

Numeric operators

Objects

Parsing

Predefined dialogs

Printing

Procedures

String operators

Strings

User Dialogs

Variables and constants

Variants

Arrays

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 178

ArrayDims Return the number of dimensions of an array

ArraySort Sort an array

Erase Erase the elements in one or more arrays

LBound Return the lower bound of a given array dimension

Option Base Change the default lower bound for array declarations

ReDim Re-establish the dimensions of an array

UBound Return the upper bound of a dimension of an array

Clipboard

Clipboard$ (function) Return the content of the clipboard as a string

Clipboard$ (statement) Set the content of the clipboard

Clipboard.Clear Clear the clipboard

Clipboard.GetFormat Get the type of data stored in the clipboard

Clipboard.GetText Get text from the clipboard

Clipboard.SetText Set the content of the clipboard to text

Comments

' Comment to end-of-line

REM Add a comment

Comparison Operators

< Less than

<= Less than or equal to

<> Not equal

= Equal

> Greater than

>= Greater than or equal to

Controlling other Programs

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 179

AppActivate Activate an application

AppClose Close an application

AppFind Return the full name of an application

AppGetActive$ Return the name of the active application

AppGetPosition Get the position and size of an application

AppGetState Get the window state of an application

AppHide Hide an application

AppList Fill an array with a list of running applications

AppMaximize Maximize an application

AppMinimize Minimize an application

AppMove Move an application

AppRestore Restore an application

AppSetState Set the state of an application's window

AppShow Show an application

AppSize Change the size of an application

AppType Return the type of an application

SendKeys Send keystrokes to another application

Shell Execute another application

Controlling Program Flow

Call Call a subroutine

Choose Return a value at a given index

Do...Loop Execute a group of statements repeatedly

DoEvents (function) Yield control to other applications

DoEvents (statement) Yield control to other applications

End Stop execution of a script

Exit Do Exit a Do loop

Exit For Exit a For loop

For...Next Repeat a block of statement a specified number of times

GoSub Execute at a specific label, allowing control to return later

Goto Execute at a specific label

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 180

If...Then...Else Conditionally execute one or more statements

IIf Return one of two values depending on a condition

Main Define a subroutine where execution begins

Return Continue execution after the most recent GoSub

Select...Case Execute one of a series of statements

Sleep Pause for a specified number of milliseconds

Stop Suspend execution, returning to a debugger (if present)

Switch Return one of a series of expressions depending on a condition

While...Wend Repeat a group of statements while a condition is True

Controlling the Operating Environment

Command, Command$ Return the command line

Environm Environ$ Return a string from the environment

Conversion

Asc Return the value of a character

CBool Convert a value to a Boolean

CCur Convert a value to Currency

CDate Convert a value to a Date

CDbl Convert a value to a Double

Chr, Chr$ Convert a character value to a string

CInt Convert a value to an Integer

CLng Convert a value to a Long

CSng Convert a value to a Single

CStr Convert a value to a String

CVar Convert a value to a Variant

CVDate Convert a value to a Date

CVErr Convert a value to an error

Hex, Hex$ Convert a number to a hexadecimal string

IsDate Determine if an expression is convertible to a date

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 181

IsError Determine if a variant contains a user-defined error value

IsNumeric Determine if an expression is convertible to a number

Oct, Oct$ Convert a number to an octal string

Str, Str$ Convert a number to a string

Val Convert a string to a number

Data Types

Boolean Data type representing True of False values

Currency Data type used to hold monetary values

Date Data type used to hold dates and times

Double Data type used to hold real number with 15-16 digits of precision

HWND Data type used to hold windows

Integer Data type used to hold whole numbers with 4 digits of precision

Long Data type used to hold whole numbers with 10 digits of precision

Object Data type used to hold OLE automation objects

Single Data type used to hold real number with 7 digits of precision

String Data type used to hold sequences of characters

Variant Data type that holds a number, string, or OLE automation objects

Database

SQLBind Specify where to place results with SQLRetrieve

SQLClose Close a connection to a database

SQLError Return error information when an SQL function fails

SQLExecQuery Execute a query on a database

SQLGetSchema Return information about the structure of a database

SQLOpen Establishes a connection with a database

SQLRequest Run a query on a database

SQLRetrieve Retrieve all or part of a query

SQLRetrieveToFile Retrieve all or part of a query, placing results in a file

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 182

Date/time

Date, Date$ (functions) Return the current date

Date, Date$ (statements) Change the system date

DateAdd Add a number of date intervals to a date

DateDiff Subtract a number of date intervals from a date

DatePart Return a portion of a date

DateSerial Assemble a date from date parts

DateValue Convert a string to a date

Day Return the day component of a date value

Hour Return the hour part of a date value

Minute Return the minute part of a date value

Month Return the month part of a date value

Now Return the date and time

Second Return the seconds part of a date value

Time, Time$ (functions) Return the current system time

Time, Time$ (statements) Set the system time

Timer Return the number of elapsed seconds since midnight

TimeSerial Assemble a date/time value from time components

TimeValue Convert a string to a date/time value

Weekday Return the day of the week of a date value

Year Return the year part of a date value

DDE

DDEExecute Execute a command in another application

DDEInitiate Initiate a DDE conversation with another application

DDEPoke Set a value in another application

DDERequest, DDERequest$ Return a value from another application

DDESend Establish a DDE conversation, then sets a value in another application

DDETerminate Terminate a conversation with another application

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 183

DDETerminateAll Terminate all conversations

DDETimeOut Set the timeout used for non-responding applications

Error Handling

Erl Return the line with the error

Err (function) Return the error that caused the current error trap

Err (statement) Set the value of the error

Error Simulate a trappable runtime error

Error, Error$ Return the text of a given error

On Error Trap an error

Resume Continue execution after an error trap

File I/O

Close Close one or more files

Eof Determine if the end-of-file has been reached

FreeFile Return the next available file number

Get Read data from a random or binary file

Input# Read data from a sequential file into variables

Input, Input$ Read a specified number of bytes from a file

Line Input # Read a line of text from a sequential file

Loc Return the record position of the file pointer within a file

Lock Lock a section of a file

Lof Return the number of bytes in an open file

Open Open a file for reading or writing

Print # Print data to a file

Put Write data to a binary or random file

Reset Close all open files

Seek Return the byte position of the file pointer within a file

Seek Set the byte position of the file pointer which a file

UnLock Unlock part of a file

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 184

Width# Specify the line width for sequential files

Write # Write data to a sequential file

File System

ChDir Change the current directory

ChDrive Change the current drive

CurDir, CurDir$ Return the current directory

Dir, Dir$ Return files in a directory

DiskDrives Fill an array with valid disk drive letters

DiskFree Return the free space on a given disk drive

FileAttr Return the mode in which a file is open

FileCopy Copy a file

FileDateTime Return the date and time when a file was last modified

FileDirs Fill an array with a subdirectory list

FileExists Determine if a file exists

FileLen Return the length of a file in bytes

FileList Fill an array with a list of files

FileParse$ Return a portion of a filename

GetAttr Return the attributes of a file

Kill Delete files from disk

MkDir Create a subdirectory

Name Rename a file

RmDir Remove a subdirectory

SetAttr Change the attributes of a file

Financial

DDB Return depreciation of an asset using double-declining balance method

Fv Return the future value of an annuity

IPmt Return the interest payment for a given period of an annuity

IRR Return the internal rate of return for a series of payments and receipts

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 185

MIRR Return the modified internal rate of return

NPer Return the number of periods of an annuity

Npv Return the net present value of an annuity

Pmt Return the payment for an annuity

PPmt Return the principal payment for a given period of an annuity

Pv Return the present value of an annuity

Rate Return the interest rate for each period of an annuity

Sln Return the straight-line depreciation of an asset

SYD Return the Sum of Years' Digits depreciation of an asset

Getting information from Basic Control Engine

Basic.Capability Return capabilities of the platform

Basic.Eoln$ Return the end-of-line character for the platform

Basic.FreeMemory Return the available memory

Basic.HomeDir$ Return the directory where Basic Control Engine is located

Basic.OS Return the platform id

Basic.PathSeparator$ Return the path separator character for the platform

Basic.Version$ Return the version of Basic Control Engine

INI Files

ReadIni$ Read a string from an INI file

ReadIniSection Read all the item names from a given section of an INI file

WriteIni Write a new value to an INI file

Logical/binary Operators

And Logical or binary conjunction

Eqv Logical or binary equivalence

Imp Logical or binary implication

Not Logical or binary negation

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 186

Or Logical or binary disjunction

Xor Logical or binary exclusion

Math

Abs Return the absolute value of a number

Atn Return the arc tangent of a number

Cos Return the cosine of an angle

Exp Return e raised to a given power

Fix Return the integer part of a number

Int Return the integer portion of a number

Log Return the natural logarithm of a number

Random Return a random number between two values

Randomize Initialize the random number generator

Rnd Generate a random number between 0 and 1

Sgn Return the sign of a number

Sin Return the sine of an angle

Sqr Return the square root of a number

Tan Return the tangent of an angle

Miscellaneous

() Force parts of an expression to be evaluated before others

_ Line continuation

Beep Make a sound

Inline Allow execution or interpretation of a block of text

Numeric Operators

* Multiply

+ Add

- Subtract

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 187

/ Divide

\ Integer divide

^ Power

Mod Remainder

Objects

CreateObject Instantiate an OLE automation object

GetObject Return an OLE automation object from a file, or returns a previously instantiated OLE automation object

Is Compare two object variables

Nothing Value indicating no valid object

Parsing

Item$ Return a range of items from a string

ItemCount Return the number of items in a string

Line$ Retrieve a line from a string

LineCount Return the number of lines in a string

Word$ Return a sequence of words from a string

WordCount Return the number of words in a string

Predefined Dialogs

AnswerBox Display a dialog asking a question

AskBox$ Display a dialog allowing the user to type a response

AskPassword$ Display a dialog allowing the user to type a password

InputBox, InputBox$ Display a dialog allowing the user to type a response

MsgBox (function) Display a dialog containing a message and some buttons

MsgBox (statement) Display a dialog containing a message and some buttons

OpenFilename$ Display a dialog requesting a file to open

SaveFilename$ Display a dialog requesting the name of a new file

SelectBox Display a dialog allowing selection of an item from an array

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 188

Printing

Print Print data to the screen

Spc Print a number of spaces within a Print statement

Tab Used with Print to print spaces up to a column position

Procedures

Declare An external routine or a forward reference

Exit Function Exit a function

Exit Sub Exit a subroutine

Function...End Create a user-defined function

Sub...End Create a user-defined subroutine

String Operators

& Concatenate two strings

Like Compare a string against a pattern

Strings

Format, Format$ Return a string formatted to a given specification

InStr Return the position of one string within another

LCase, LCase$ Convert a string to lower case

Left, Left$ Return the left portion of a string

Len Return the length of a string or the size of a data item

LSet Left align a string or user-defined type within another

LTrim, LTrim$ Remove leading spaces from a string

Mid, Mid$ Return a substring from a string

Mid, Mid$ Replace one part of a string with another

Option Compare Change the default comparison between text and binary

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 189

Option CStrings Allow interpretation of C-style escape sequences in strings

Right, Right$ Return the right portion of a string

RSet Right align a string within another

RTrim, RTrim$ Remove trailing spaces from a string

Space, Space$ Return a string os spaces

StrComp Compare two strings

String, String$ Return a string consisting of a repeated character

Trim, Trim$ Trim leading and trailing spaces from a string

UCase, UCase$ Return the upper case of a string

User Dialogs

Begin Dialog Begin definition of a dialog template

CancelButton Define a Cancel button within a dialog template

CheckBox Define a combo box in a dialog template

ComboBox Define a combo box in a dialog template

Dialog (function) Invoke a user-dialog, returning which button was selected

Dialog (statement) Invoke a user-dialog

DlgControlId Return the id of a control in a dynamic dialog

DlgEnable Determine if a control is enabled in a dynamic dialog

DlgEnable Enable or disables a control in a dynamic dialog

DlgFocus Return the control with the focus in a dynamic dialog

DlgFocus Set focus to a control in a dynamic dialog

DlgListBoxArray Set the content of a list box or combo box in a dynamic dialog

DlgListBoxArray Set the content of a list box or combo box in a dynamic dialog

DlgSetPicture Set the picture of a control in a dynamic dialog

DlgText (statement) Set the content of a control in a dynamic dialog

DlgText$ (function) Return the content of a control in a dynamic dialog

DlgValue (function) Return the value of a control in a dynamic dialog

DlgValue (statement) Set the value of a control in a dynamic dialog

DlgVisible (function) Determine if a control is visible in a dynamic dialog

DlgVisible (statement) Set the visibility of a control in a dynamic dialog

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 190

DropListBox Define a drop list box in a dialog template

GroupBox Define a group box in a dialog template

ListBox Add a list box to a dialog template

OKButton Add an OK button to a dialog template

OptionButton Add an option button to a dialog template

OptionGroup Add an option group to a dialog template

Picture Add a picture control to a dialog template

PictureButton Add a picture button to a dialog template

PushButton Add a push button to a dialog template

Text Add a text control to a dialog template

TextBox Add a text box to a dialog template

Variables and Constants

= Assignment

Const Define a constant

DefBool Set the default data type to Boolean

DefCur Set the default data type to Currency

DefDate Set the default data type to Date

DefDbl Set the default data type to Double

DefInt Set the default data type to Integer

DefLng Set the default data type to Long

DefObj Set the default data type to Object

DefSng Set the default data type to Single

DefStr Set the default data type to String

DefVar Set the default data type to Variant

Dim Declare a local variable

Global Declare variables for sharing between scripts

Let Assign a value to a variable

Private Declare variables accessible to all routines in a script

Public Declare variables accessible to all routines in all scripts

Set Assign an object variable

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 191

Type Declare a user-defined data type

Variants

IsEmpty Determine if a variant has been initialized

IsError Determine if a variant contains a user-defined error

IsMissing Determine if an optional parameter was specified

IsNull Determine if a variant contains valid data

IsObject Determine if an expression contains an object

VarType Return the type of data stored in a variant

Symbols

Symbols

' (keyword)

- (operator)

#Const (directive)

#If...Then...#Else (directive)

& (operator)

() (keyword)

* (operator)

. (keyword)

/ (operator)

\ (operator)

^ (operator)

_ (keyword)

+ (operator)

< (operator)

<= (operator)

<> (operator)

= (operator)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 192

= (statement)

> (operator)

>= (operator)

' (keyword)

Syntax ' text

Description Causes the compiler to skip all characters between this character and the end of the current line.

Comments This is very useful for commenting your code to make it more readable.

Example
Sub Main()
 'This whole line is treated as a comment.
 i$ = "Strings" 'This is a valid assignment with a comment.
 This line will cause an error (the apostrophe is missing).
End Sub

See Also Rem (page 460) (statement); Comments (page 260) (topic).

- (operator)

Syntax 1 expression1 – expression2

Syntax 2 – expression

Description Returns the difference between expression1 and expression2 or, in the second syntax, returns the
negation of expression.

Comments Syntax 1 The type of the result is the same as that of the most precise expression, with the following
exceptions:

If one expression is and the other expression is then the type result is

Long Single Double

Boolean Boolean Integer

A runtime error is generated if the result overflows its legal range. When either or both expressions are
Variant , then the following additional rules apply:

• If expression1 is Null and expression2 is Boolean , then the result is Empty . Otherwise, if either
expression is Null , then the result is Null .

• Empty is treated as an Integer of value 0 .
• If the type of the result is an Integer variant that overflows, then the result is a Long variant.
• If the type of the result is a Long , Single , or Date variant that overflows, then the result is a

Double variant.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 193

Syntax 2 If expression is numeric, then the type of the result is the same type as expression, with the
following exception:

• If expression is Boolean , then the result is Integer .

In 2's compliment arithmetic, unary minus may result in an overflow with Integer and Long variables
when the value of expression is the largest negative number representable for that data type. For
example, the following generates an overflow error:

Sub Main()
 Dim a As Integer
 a = -32768
 a = -a '<-- Generates overflow here.
End Sub

When negating variants, overflow will never occur because the result will be automatically promoted:
integers to longs and longs to doubles.

Example This example assigns values to two numeric variables and their difference to a third variable, then
displays the result.

Sub Main()
 i% = 100
 j# = 22.55
 k# = i% - j#
 MsgBox "The difference is: " & k#
End Sub

See Also Operator Precedence (page 431) (topic).

#Const (directive)

Syntax #Const constname = expression

Description Defines a preprocessor constant for use in the #If...Then...#Else statement.

Comments Internally, all preprocessor constants are of type Variant. Thus, the expression parameter can be any
type. Variables defined using #Const can only be used within the #If...Then...#Else statement and other
#Const statements. Use the Const statement to define constants that can be used within your code.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 194

Example

 #Const
 SUBPLATFORM = "XP"

#Const MANUFACTURER = "Windows"

#Const TYPE = "Workstation"

#Const PLATFORM = MANUFACTURER & " " & SUBPLATFORM & " " & TYPE

Sub Main()

 #If PLATFORM = "Windows XP Workstation" Then

 MsgBox "Running under Windows XP Workstation"

 #End If

End Sub

See Also #If...Then...#Else (page 194) (directive)

#If...Then...#Else (directive)

Syntax

 #If expression Then
 [statements]
 [
 #ElseIf expression Then
 [statements]]
 [
 #Else
 [statements]]
 #End If

Description Causes the compiler to include or exclude sections of code based on conditions.

Comments The expression represents any valid BasicScript Boolean expression evaluating to TRUE of FALSE.
The expression may consist of literals, operators, constants defined with #Const, and any of the following
predefined constants:

Constant Value

Win32 True if development environment is 32-bit Windows.

Empty Empty

FALSE False

NULL Null

TRUE True

The expression can use any of the following operators: +, -, *, /, \, ^, + (unary), - (unary), Mod, &, =, <>,
>=, >, <=, <, And, Or, Xor, Imp, Eqv.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 195

Following are results when an expression is evaluated.

Evaluates to a: Result

Numeric value Non-zero TRUE

Zero FALSE

String not convertible to a number Type mismatch error is generated.

Null Type mismatch error is generated.

Text comparisons within expression are always case-insensitive, regardless of the Option Compare
setting You can define your own constants using the #Const directive, and test for these constants within
the expression parameter as shown below:

 #Const VERSION = 2
 Sub Main
 #If VERSION =
 1 Then
 directory$ = "\apps\widget"
 #ElseIf VERSION =
 2 Then
 directory$ = "\apps\widget32"
 #Else
 MsgBox "Unknown version."
 #End If
End Sub

Any constant not already defined evaluates to Empty. A common use of the #If...Then...#Else directive
is to optionally include debugging statements in your code. The following example shows how debugging
code can be conditionally included to check parameters to a function:

 #Const DEBUG = 1
 Sub ChangeFormat(NewFormat As Integer,StatusText As String)
 #If DEBUG =
 1 Then
 If NewFormat <> 1 And NewFormat <> 2 Then
 MsgBox "Parameter ""NewFormat"" is invalid."
 Exit Sub
 End If
 If Len(StatusText) > 78 Then
 MsgBox "Parameter ""StatusText"" is too long."
 Exit Sub
 End If
 #End If
 Rem Change the format here...
 End Sub

Excluded section are not compiled by BasicScript, allowing you to exclude sections of code that has
errors or doesn’t even represent valid BasicScript syntax. For example, the following code uses the
#If...Then...#Else statement to include a multi-line comment:

 Sub Main
 #If 0
 The following section of code displays
 a dialog box containing a message and an
 OK button.
 #End If
 MsgBox "Hello, world."
 End Sub

In the above example, since the expression #If 0 never evaluates to TRUE, the text between that and the
matching #End If will never be compiled.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 196

See Also #Const (directive) (page 193)

& (operator)

Syntax expression1 & expression2

Description Returns the concatenation of expression1 and expression2.

Comments If both expressions are strings, then the type of the result is String . Otherwise, the type of the result is a
String variant. When nonstring expressions are encountered, each expression is converted to a String
variant. If both expressions are Null , then a Null variant is returned. If only one expression is Null ,
then it is treated as a zero-length string. Empty variants are also treated as zero-length strings. In many
instances, the plus (+) operator can be used in place of & . The difference is that + attempts addition
when used with at least one numeric expression, whereas & always concatenates.

Example This example assigns a concatenated string to variable s$ and a string to s2$, then concatenates the two
variables and displays the result in a dialog box.

Sub Main()
 s$ = "This string" & " is concatenated"
 s2$ = " with the '&' operator."
 MsgBox s$ & s2$
End Sub

See Also + (page 200) (operator); Operator Precedence (page 431) (topic).

() (keyword)

Syntax 1 ... (expression) ...

Syntax 2 ..., (parameter) ,...

Description Forces parts of an expression to be evaluated before others or forces a parameter to be passed by value.

Comments Parentheses within Expressions Parentheses override the normal precedence order of the scripts
operators, forcing a subexpression to be evaluated before other parts of the expression. For example, the
use of parentheses in the following expressions causes different results: i = 1 + 2 * 3 'Assigns 7. i =
(1 + 2) * 3 'Assigns 9. Use of parentheses can make your code easier to read, removing any ambiguity in
complicated expressions.

Parentheses Used in Parameter Passing Parentheses can also be used when passing parameters to
functions or subroutines to force a given parameter to be passed by value, as shown below: ShowForm
i 'Pass i by reference. ShowForm (i) 'Pass i by value. Enclosing parameters within parentheses can
be misleading. For example, the following statement appears to be calling a function called ShowForm
without assigning the result: ShowForm(i) The above statement actually calls a subroutine called
ShowForm , passing it the variable i by value. It may be clearer to use the ByVal keyword in this case,
which accomplishes the same thing: ShowForm ByVal i The result of an expression is always passed
by value.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 197

Example This example uses parentheses to clarify an expression.

Sub Main()
 bill = False
 dave = True
 jim = True
 If (dave And bill) Or (jim And bill) Then
 Msgbox "The required parties for the meeting are here."
 Else
 MsgBox "Someone is late for the meeting!"
 End If
End Sub

See Also ByVal (page 234) (keyword); Operator Precedence (page 431) (topic).

* (operator)

Syntax expression1 * expression2

Description Returns the product of expression1 and expression2.

Comments The result is the same type as the most precise expression, with the following exceptions:

If one expression is and the other expression is then the type the result is

Single Long Double

Boolean Boolean Integer

Date Date Double

When the * operator is used with variants, the following additional rules apply:

• Empty is treated as 0.
• If the type of the result is an Integer variant that overflows, then the result is automatically promoted

to a Long variant.
• If the type of the result is a Single , Long , or Date variant that overflows, then the result is

automatically promoted to a Double variant.
• If expression1 is Null and expression2 is Boolean , then the result is Empty . Otherwise, If either

expression is Null , then the result is Null .

Example This example assigns values to two variables and their product to a third variable, then displays the
product of s# * t#.

Sub Main()
 s# = 123.55
 t# = 2.55
 u# = s# * t#
 MsgBox s# & " * " & t# & " = " & s# * t#
End Sub

See Also Operator Precedence (page 431) (topic)

. (keyword)

Syntax 1 object . property

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 198

Syntax 2 structure.member

Description Separates an object from a property or a structure from a structure member.

Examples This example uses the period to separate an object from a property. Sub Main() MsgBox "The clipboard
text is: " & Clipboard.GetText() End Sub

This example uses the period to separate a structure from a member.

Type Rect
 left As Integer
 top As Integer
 right As Integer
 bottom As Integer
End Type
Sub Main()
 Dim r As Rect
 r. left = 10
 r. rigth = 12
 Msgbox "r.left = "& r.left & ", r.right = " & r.right
End Sub

See Also Objects (page 187) (topic).

/ (operator)

Syntax expression1 / expression2

Description Returns the quotient of expression1 and expression2.

Comments The type of the result is Double , with the following exceptions:

If one expression is and the other expression is then the type the result is

Integer Integer Single

Single Single Single

Boolean Boolean Single

A runtime error is generated if the result overflows its legal range. When either or both expressions is
Variant , then the following additional rules apply:

• If expression1 is Null and expression2 is Boolean , then the result is Empty . Otherwise, if either
expression is Null , then the result is Null .

• Empty is treated as an Integer of value 0 .
• If both expressions are either Integer or Single variants and the result overflows, then the result is

automatically promoted to a Double variant.

Example This example assigns values to two variables and their quotient to a third variable, then displays the
result.

Sub Main()
 i% = 100
 j# = 22.55
 k# = i% / j#
 MsgBox "The quotient of i/j is: " & k#
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 199

See Also \ (page 199) (operator): Operator Precedence (page 431) (topic)

\ (operator)

Syntax expression1 \ expression2

Description Returns the integer division of expression1 and expression2.

Comments Before the integer division is performed, each expression is converted to the data type of the most precise
expression. If the type of the expressions is either Single, Double, Date , or Currency , then each is
rounded to Long . If either expression is a Variant , then the following additional rules apply:

• If either expression is Null , then the result is Null .
• Empty is treated as an Integer of value 0 .

Example This example assigns the quotient of two literals to a variable and displays the result.

Sub Main()
 s% = 100.99 \ 2.6
 MsgBox "Integer division of 100.99\2.6 is: " & s%
End Sub

See Also / (page 198) (operator); Operator Precedence (page 431) (Topic)

^ (operator)

Syntax expression1 ^ expression2

Description Returns expression1 raised to the power specified in expression2.

Comments The following are special cases:

Special Case Value

n^0 1

0^-n Undefined

0^+n 0

1^n 1

The type of the result is always Double, except with Boolean expressions, in which case the result is
Boolean. Fractional and negative exponents are allowed. If either expression is a Variant containing
NULL, then the result is NULL. It is important to note that raising a number to a negative exponent
produces a fractional result.

Example
Sub Main()
 s# = 2 ^ 5 'Returns 2 to the 5th power.
 r# = 16 ^ .5 'Returns the square root of 16.
 MsgBox "2 to the 5th power is: " & s#
 MsgBox "The square root of 16 is: " & r#
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 200

See Also Operator Precedence (page 431) (topic).

_ (keyword)

Syntax s$ = "This is a very long line that I want to split " & _ "onto two lines"

Description Line-continuation character, which allows you to split a single script onto more than one line.

Comments The line-continuation character cannot be used within strings and must be preceded by white space
(either a space or a tab). The line-continuation character can be followed by a comment, as shown below:
 i = 5 + 6 & _ 'Continue on the next line. "Hello"

Example
Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 'The line-continuation operator is useful when concatenating
 'long strings.
 msg1 = "This line is a line of text that" & crlf & "extends beyond " _
 & "the borders of the editor" & crlf & "so it is split into " _
 & "multiple lines"
 'It is also useful for separating and continuing long calculation lines.
 b# = .124
 a# = .223
 s# = ((((Sin(b#) ^ 2) + (Cos(a#) ^ 2)) ^ .5) / _
 (((Sin(a#) ^ 2) + (Cos(b#) ^ 2)) ^ .5)) * 2.00
 MsgBox msg1 & crlf & crlf & "The value of s# is: " & s#
End Sub

+ (operator)

Syntax expression1 + expression2

Description Adds or concatenates two expressions.

Comments Addition operates differently depending on the type of the two expressions:

If one expression is and the other expression is then

Numeric Numeric Perform a numeric add (see below).

String String Concatenate, returning a string.

Numeric String A runtime error is generated.

Variant String Concatenate, returning a String variant.

Variant Numeric Perform a variant add (see below).

Empty variant Empty variant Return an Integer variant, value 0 .

Empty variant Boolean variant Return an Integer variant (value 0 or -1)

Empty variant Any data type Return the non- Empty expression unchanged.

Null variant Any data type Return Null .

Variant Variant If either is numeric, add; otherwise, concatenate.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 201

When using + to concatenate two variants, the result depends on the types of each variant at runtime.
You can remove any ambiguity by using the & operator. Numeric Add A numeric add is performed
when both expressions are numeric (i.e., not variant or string). The result is the same type as the most
precise expression, with the following exceptions:.

If one expression is and the other expression is then

Single Long Double

Boolean Boolean Integer

A runtime error is generated if the result overflows its legal range Variant Add If both expressions are
variants, or one expression is numeric and the other expression is Variant , then a variant add is
performed. The rules for variant add are the same as those for normal numeric add, with the following
exceptions:

• If the type of the result is an Integer variant that overflows, then the result is a Long variant.
• If the type of the result is a Long , Single , or Date variant that overflows, then the result is a

Double variant.

Example This example assigns string and numeric variable values and then uses the + operator to concatenate
the strings and form the sums of numeric variables.

Sub Main()
 i$ = "concatenate " + "strings!"
 j% = 95 + 5 'Addition of numeric literals
 k# = j% + j% 'Addition of numeric variable
 MsgBox "You can " + i$
 MsgBox "You can add literals or variables:" + Str(j%) + ", " + Str(k#)
End Sub

See Also & (page 196) (Operator); Operator Precedence (page 431) (topic)

< (operator)

See Comparison Operators (page
178) (topic).

<= (operator)

See Comparison Operators (page
178) (topic).

<> (operator)

See Comparison Operators (page
178) (topic).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 202

= (operator)

See Comparison Operators (page
178) (topic).

= (statement)

Syntax variable = expression

Description Assigns the result of an expression to a variable.

Comments When assigning expressions to variables, internal type conversions are performed automatically between
any two numeric quantities. Thus, you can freely assign numeric quantities without regard to type
conversions. However, it is possible for an overflow error to occur when converting from larger to smaller
types. This occurs when the larger type contains a numeric quantity that cannot be represented by the
smaller type. For example, the following code will produce a runtime error: Dim amount As Long
 Dim quantity As Integer amount = 400123 'Assign a value out of range for int. quantity =
amount 'Attempt to assign to Integer. When performing an automatic data conversion, underflow is
not an error.

The assignment operator (=) cannot be used to assign objects. Use the Set statement instead.

Example
Sub Main()
 a$ = "This is a string"
 b% = 100
 c# = 1213.3443
 MsgBox a$ & "," & b% & "," & c#
End Sub

See Also Let (page 390) (statement); Operator Precedence (page 431) (topic); Set (page 476) (statement);
Expression Evaluation (page 336) (topic).

> (operator)

See Comparison Operators (page
178) (topic).

>= (operator)

See Comparison Operators (page
178) (topic).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 203

A

A

Abs (function)

And (operator)

AnswerBox (function)

Any (data type)

AppActivate (statement)

AppClose (statement)

AppFind, AppFind$ (functions)

AppGetActive$ (function)

AppGetPosition (statement)

AppGetState (function)

AppHide (statement)

AppList (statement)

AppMaximize (statement)

AppMinimize (statement)

AppMove (statement)

AppRestore (statement)

AppSetState (statement)

AppShow (statement)

AppSize (statement)

AppType (function)

ArrayDims (function)

Arrays (topic)

ArraySort (statement)

Asc, AscB, AscW (functions)

AskBox, AskBox$ (functions)

AskPassword, AskPassword$ (functions)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 204

Atn (function)

Abs (function)

Syntax Abs (expression)

Description Returns the absolute value of expression.

Comments If expression is Null , then Null is returned. Empty is treated as 0 . The type of the result is the same
as that of expression, with the following exceptions:

• If expression is an Integer that overflows its legal range, then the result is returned as a Long .
This only occurs with the largest negative Integer :

 Dim a As Variant
 Dim i As Integer
 i = -32768
 a = Abs(i) 'Result is a Long.
 i = Abs(i) 'Overflow!

• If expression is a Long that overflows its legal range, then the result is returned as a Double . This
only occurs with the largest negative Long :

 Dim a As Variant
 Dim l As Long
 l = -2147483648
 a = Abs(l) 'Result is a Double.
 l = Abs(l) 'Overflow!

• If expression is a Currency value that overflows its legal range, an overflow error is generated.

Example This example assigns absolute values to variables of four types and displays the result.

Sub Main()
 s1% = Abs(-10.55)
 s2& = Abs(-10.55)
 s3! = Abs(-10.55)
 s4# = Abs(-10.55)
 MsgBox "The absolute values are: " & s1% & "," & s2& & "," & s3! & "," & s4#
End Sub

See Also Sgn (page 478) (function).

And (operator)

Syntax expression1 And expression2

Description Performs a logical or binary conjunction on two expressions.

Comments If both expressions are either Boolean, Boolean variants, or Null variants, then a logical conjunction is
performed as follows:

If the first expression is and the second expression is then the result is

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 205

True True True

True False False

True Null Null

False True False

False False False

False Null Null

Null True Null

Null False False

Null Null Null

Binary Conjunction If the two expressions are Integer, then a binary conjunction is performed, returning
an Integer result. All other numeric types (including Empty variants) are converted to Long, and a binary
conjunction is then performed, returning a Long result. Binary conjunction forms a new value based on a
bit-by-bit comparison of the binary representations of the two expressions according to the following table:

1 And 1 = 1 Example:

0 And 1 = 0 5 00001001

1 And 0 = 0 6 00001010

0 And 0 = 0 And 00001000

Example
Sub Main()
 n1 = 1001
 n2 = 1000
 b1 = True
 b2 = False
 'This example performs a numeric bitwise And operation and stores
 'the result in N3.
 n3 = n1 And n2
'This example performs a logical And comparing b1 and b2 and displays
'the result.
 If b1 And b2 Then
 MsgBox "b1 And b2 are True; n3 is: " & n3
 Else
 MsgBox "b1 And b2 are False; n3 is: " & n3
 End If
End Sub

See Also Operator Precedence (page 431) (topic); Or (page 435) (operator); Xor (page 532)
(operator); Eqv (page 323));(operator); (operator) (page 371).

AnswerBox (function)

Syntax AnswerBox(prompt [,[button1] [,[button2] [,button3]]]]])

Description Displays a dialog box prompting the user for a response and returns an Integer indicating which button
was clicked (1 for the first button, 2 for the second, and so on).

Comments The AnswerBox function takes the following parameters:

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 206

Parameter Description

Prompt Text to be displayed above the text box. The prompt parameter can be any expression
convertible to a String .

The Basic Control Engine script resizes the dialog box to hold the entire contents of prompt,
up to a maximum width of 5/8 of the width of the screen and a maximum height of 5/8 of the
height of the screen. It also word-wraps any lines too long to fit within the dialog box and
truncates all lines beyond the maximum number of lines that fit in the dialog box.

You can insert a carriage-return/line-feed character in a string to cause a line break in your
message.

A runtime error is generated if this parameter is Null .

Button1 Text for the first button. If omitted, then "OK" and "Cancel" are used. A runtime error is
generated if this parameter is Null .

Button2 Text for the second button. A runtime error is generated if this parameter is Null .

Button3 Text for the third button. A runtime error is generated if this parameter is Null .

The width of each button is determined by the width of the widest button. The AnswerBox function
returns 0 if the user selects Cancel. R% = AnswerBox("Copy files?")

R% = AnswerBox("Copy files?","Save","Restore","Cancel")

Example This example displays a dialog box containing three buttons. It displays an additional message based on
which of the three buttons is selected.

Sub Main()
 r% = AnswerBox("Temporary File Operation?","Save","Remove","Cancel")
 Select Case r%
 Case 1
 MsgBox "Files will be saved."
 Case 2
 MsgBox "Files will be removed."
 Case Else
 MsgBox "Operation canceled."
 End Select
End Sub

See Also MsgBox (page 411) (statement); AskBox$ (page 221) (function); AskPassword$ (page
222) (function); InputBox, InputBox$ (page 374) (functions); OpenFilename$ (page 429)
(function); SaveFilename$ (page 467) (function); SelectBox (page 473) (function).

Notes AnswerBox displays all text in its dialog box in 8-point MS Sans Serif.

Any (data type)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 207

Description Used with the Declare statement to indicate that type checking is not to be performed with a given
argument.

Comments Given the following declaration:

 Declare Sub Foo Lib "FOO.DLL" (a As Any)

The following calls are valid:

 Foo 10
 Foo "Hello, world."

Example The following example calls the FindWindow to determine if Program Manager is running. This example
uses the Any keyword to pass a NULL pointer, which is accepted by the FindWindow function.

Declare Function FindWindow16 Lib "user" Alias "FindWindow" (ByVal Class _
 As Any,ByVal Title As Any) As Integer
Declare Function FindWindow32 Lib "user32" Alias "FindWindowA" (ByVal Class _
 As Any,ByVal Title As Any) As Long
Sub Main()
 Dim hWnd As Variant
 If Basic.Os = ebWin16 Then
 hWnd = FindWindow 16("PROGMAN",0&)
 ElseIf Basic.Os = ebWin32 Then
 hWnd = FindWindow32("PROGMAN",0&)
 Else
 hWnd = 0
 End If
 If hWnd <> 0 Then
 MsgBox "Program manager is running, window handle is " & hWnd
 End If
End Sub

See Also Declare (page 276) (statement).

AppActivate (statement)

Syntax AppActivate name$ | taskID

Description Activates an application given its name or task ID.

Comments The AppActivate statement takes the following parameters:

Parameter Description

Name$ String containing the name of the application to be activated.

TaskID Number specifying the task ID of the application to be activated. Acceptable task IDs are
returned by the Shell function

When activating applications using the task ID, it is important to declare the variable used to hold the task
ID as a Variant . The type of the ID depends on the platform on which The Basic Control Engine script is
running.

Example 1 This example activates Program Manager.

Sub Main()
 AppActivate "Program Manager"
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 208

Example 2 This example runs another application, activates it, and maximizes it.

Sub Main()
 Dim id as variant
 id = Shell("notepad.exe") 'Run Notepad minimized.
 AppActivate id 'Now activate Notepad.
 AppMaximize
End Sub

See Also Shell (page 478) (function); SendKeys (page 474) (statement); WinActivate (page 523) (statement).

Notes
• The name$ parameter is the exact string appearing in the title bar of the named application's main

window. If no application is found whose title exactly matches name$, then a second search is
performed for applications whose title string begins with name$. If more than one application is found
that matches name$, then the first application encountered is used.

• Minimized applications are not restored before activation. Thus, activating a minimized DOS
application will not restore it; rather, it will highlight its icon.

• A runtime error results if the window being activated is not enabled, as is the case if that application is
currently displaying a modal dialog box.

AppClose (statement)

Syntax AppClose [name$]

Description Closes the named application.

Comments The name$ parameter is a String containing the name of the application. If the name$ parameter is
absent, then the AppClose statement closes the active application.

Example This example activates Excel, then closes it.

Sub Main()
 If AppFind$("Microsoft Excel") = "" Then 'Make sure Excel is there.
 MsgBox "Excel is not running."
 Exit Sub
 End If
 AppActivate "Microsoft Excel" 'Activate it (unnecessary).
 AppClose "Microsoft Excel" 'Close it.
End Sub

See Also AppMaximize (page 212) (statement); AppMinimize (page 212) (statement); AppRestore (page 214)
(statement); AppMove (page 213) (statement); AppSize (page 215) (statement).

Notes A runtime error results if the application being closed is not enabled, as is the case if that application is
currently displaying a modal dialog box. The name$ parameter is the exact string appearing in the title bar
of the named application's main window. If no application is found whose title exactly matches name$,
then a second search is performed for applications whose title string begins with name$. If more than one
application is found that matches name$, then the first application encountered is used.

AppFind, AppFind$ (functions)

Syntax AppFind[$] (title | taskID)

Description Returns a String containing the full name of the application matching either title or taskID.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 209

Comments The title parameter specifies the title of the application to find. If there is no exact match, BasicScript will
find an application whose title begins with title. Alternatively, you can specify the ID of the task as returned
by the Shell function. The AppFind$ functions returns a String, whereas the AppFind function returns a
String variant. If the specified application cannot be found, then AppFind$ returns a zero-length string and
AppFind returns Empty. Using AppFind allows you detect failure when attempting to find an application
with no caption (i.e., Empty is returned instead of a zero-length String). AppFind$ is generally used to
determine whether a given application is running. The following expression returns True if Microsoft Word
is running:

 AppFind$("Microsoft Word")

Example

 'This example checks to see whether Excel is running before
 'activating it.
 Sub Main()
 If AppFind$("Microsoft Excel") <> "" Then
 AppActivate "Microsoft Excel"
 Else
 MsgBox "Excel is not running."
 End If
 End Sub

Notes This function returns a String containing the exact text appearing in the title bar of the active
application's main window.

AppGetActive$ (function)

Syntax AppGetActive$()

Description Returns a String containing the name of the application.

Comments If no application is active, the AppGetActive$ function returns a zero-length string. You can use
AppGetActive$ to retrieve the name of the active application. You can then use this name in calls to
routines that require an application name.

Example
Sub Main()
n$ = AppGetActive$()
AppMinimize n$
End Sub

See Also AppActivate (page 207) (statement); WinFind (page 525) (function).

Notes This function returns a String containing the exact text appearing in the title bar of the active
application's main window.

AppGetPosition (statement)

Syntax AppGetPosition X,Y,width,height [,name$]

Description Retrieves the position of the named application.

Comments The AppGetPosition statement takes the following parameters:

Parameter Description

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 210

X, Y Names of Integer variables to receive the position of the application's window.

width,
height

Names of Integer variables to receive the size of the application's window.

Name$ String containing the name of the application. If the name$ parameter is omitted, then the
active application is used.

The x, y, width, and height variables are filled with the position and size of the application's window. If an
argument is not a variable, then the argument is ignored, as in the following example, which only retrieves
the x and y parameters and ignores the width and height parameters:

 Dim x As Integer,y As Integer
 AppGetPosition x,y,0,0,"Program Manager"

Example
Sub Main()
 Dim x As Integer,y As Integer
 Dim cx As Integer,cy As Integer
 AppGetPosition x,y,cx,cy,"Program Manager"
End Sub

See Also AppMove (page 213) (statement); AppSize (page 215) (statement).

Note The position and size of the window are returned in twips. The name$ parameter is the exact string
appearing in the title bar of the named application's main window. If no application is found whose title
exactly matches name$, then a second search is performed for applications whose title string begins with
name$. If more than one application is found that matches name$, then the first application encountered
is used.

AppGetState (function)

Syntax AppGetState [([name$])]

Description Returns an Integer specifying the state of the top-level window.

Comments The AppGetState function returns any of the following values:

If the window is then AppGetState returns

Maximized ebMaximized

Minimized ebMinimized

Restored ebRestored

The name$ parameter is a String containing the name of the desired application. If it is omitted, then the
AppGetState function returns the name of the active application.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 211

Examples This example saves the state of Program Manager, changes it, then restores it to its original setting.

Sub Main()
 If AppFind$("Program Manager") = "" Then
 MsgBox "Can't find Program Manager."
 Exit Sub
 End If
 AppActivate "Program Manager" 'Activate Program Manager.
 state = AppGetState 'Save its state.
 AppMinimize 'Minimize it.
 MsgBox "Program Manager is now minimized. Select OK to restore it."
 AppActivate "Program Manager"
 AppSetState state 'Restore it.
End Sub

See Also AppMaximize (page 212) (statement); AppMinimize (page 212) (statement); AppRestore (page 214)
(statement).

Notes The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is performed
for applications whose title string begins with name$. If more than one application is found that matches
name$, then the first application encountered is used.

AppHide (statement)

Syntax AppHide [name$]

Description Hides the named application.

Comments If the named application is already hidden, the AppHide statement will have no effect. The name$
parameter is a String containing the name of the desired application. If it is omitted, then the AppHide
statement hides the active application. AppHide generates a runtime error if the named application is
not enabled, as is the case if that application is displaying a modal dialog box.

Example This example hides Program Manager.

Sub Main()
 'See whether Program Manager is running.
 If AppFind$("Program Manager") = "" Then Exit Sub
 AppHide "Program Manager"
 MsgBox "Program Manager is now hidden. Press OK to show it once again."
 AppShow "Program Manager"
End Sub

See Also AppShow (page 215) (statement).

Notes The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is performed
for applications whose title string begins with name$. If more than one application is found that matches
name$, then the first application encountered is used.

AppList (statement)

Syntax AppList AppNames$()

Description Fills an array with the names of all open applications.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 212

Comments The AppNames$ parameter must specify either a zero- or one-dimensioned dynamic String array or a
one-dimensional fixed String array. If the array is dynamic, then it will be redimensioned to match the
number of open applications. For fixed arrays, AppList first erases each array element, then begins
assigning application names to the elements in the array. If there are fewer elements than will fit in the
array, then the remaining elements are unused. The script returns a runtime error if the array is too small
to hold the new elements. After calling this function, you can use LBound and UBound to determine
the new size of the array.

Example This example minimizes all applications on the desktop.

Sub Main()
 Dim apps$()
 AppList apps
 'Check to see whether any applications were found.
 If ArrayDims(apps) = 0 Then Exit Sub
 For i = LBound(apps) To UBound(apps)
 AppMinimize apps(i)
 Next i
End Sub

Notes The name of an application is considered to be the exact text that appears in the title bar of the
application's main window.

AppMaximize (statement)

Syntax AppMaximize [name$]

Description Maximizes the named application.

Comments The name$ parameter is a String containing the name of the desired application. If it is omitted, then the
AppMaximize function maximizes the active application.

Example
Sub Main()
 AppMaximize "Program Manager" 'Maximize Program Manager.

 If AppFind$("NotePad") <> "" Then
 AppActivate "NotePad" 'Set the focus to NotePad.
 AppMaximize 'Maximize it.
 End If
End Sub

See Also AppMinimize (page 212) (statement); AppRestore (page 214) (statement); AppMove (page 213)
(statement); AppSize (page 215) (statement); AppClose (page 208) (statement).

Notes If the named application is maximized or hidden, the AppMaximize statement will have no effect. The
name$ parameter is the exact string appearing in the title bar of the named application's main window.
If no application is found whose title exactly matches name$, then a second search is performed for
applications whose title string begins with name$. If more than one application is found that matches
name$, then the first application encountered is used. AppMaximize generates a runtime error if the
named application is not enabled, as is the case if that application is displaying a modal dialog box.

AppMinimize (statement)

Syntax AppMinimize [name$]

Description Minimizes the named application.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 213

Comments The name$ parameter is a String containing the name of the desired application. If it is omitted, then the
AppMinimize function minimizes the active application.

Example
Sub Main()
 AppMinimize "Program Manager" 'Maximize Program Manager.

 If AppFind$("NotePad") <> "" Then
 AppActivate "NotePad" 'Set the focus to NotePad.
 AppMinimize 'Maximize it.
 End If
End Sub

See Also AppMaximize (page 212) (statement); AppRestore (page 214) (statement); AppMove (page 213)
(statement); AppSize (page 215) (statement); AppClose (page 208) (statement).

Notes If the named application is minimized or hidden, the AppMinimize statement will have no effect. The
name$ parameter is the exact string appearing in the title bar of the named application's main window.
If no application is found whose title exactly matches name$, then a second search is performed for
applications whose title string begins with name$. If more than one application is found that matches
name$, then the first application encountered is used. AppMinimize generates a runtime error if the
named application is not enabled, as is the case if that application is displaying a modal dialog box.

AppMove (statement)

Syntax AppMove X, Y [,name$]

Description Sets the upper left corner of the named application to a given location.

Comments The AppMove statement takes the following parameters:

Parameter Description

X, Y Integer coordinates specifying the upper left corner of the new location of the application,
static to the upper left corner of the display.

name$ String containing the name of the application to move. If this parameter is omitted, then the
active application is moved.

Example This example activates Program Manager, then moves it 10 pixels to the right.

Sub Main()
 Dim x%,y%
 AppActivate "Program Manager" 'Activate Program Manager.
 AppGetPosition x%,y%,0,0 'Retrieve its position.
 x% = x% + Screen.TwipsPerPixelX * 10 'Add 10 pixels.
 AppMove x% + 10,y% 'Nudge it 10 pixels to the right.
End Sub

See Also AppMaximize (page 212) (statement); AppMinimize (page 212) (statement); AppRestore (page 214)
(statement); AppSize (page 215) (statement); AppClose (page 208) (statement).

Note If the named application is maximized or hidden, the AppMove statement will have no effect. The X
and Y parameters are specified in twips. AppMove will accept X and Y parameters that are off the
screen. The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is performed
for applications whose title string begins with name$. If more than one application is found that matches
name$, then the first application encountered is used. AppMove generates a runtime error if the named
application is not enabled, as is the case if that application is currently displaying a modal dialog box.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 214

AppRestore (statement)

Syntax AppRestore [name$]

Description Restores the named application.

Comments The name$ parameter is a String containing the name of the application to restore. If this parameter is
omitted, then the active application is restored.

Example This example minimizes Program Manager, then restores it.

Sub Main()
 If AppFind$("Program Manager") = "" Then Exit Sub
 AppActivate "Program Manager"
 AppMinimize "Program Manager"
 MsgBox "Program Manager is now minimized. Press OK to restore it."
 AppRestore "Program Manager"
End Sub

See Also AppMaximize (page 212) (statement); AppMinimize (page 212) (statement); AppMove (page 213)
(statement); AppSize (page 215) (statement); AppClose (page 208) (statement).

Notes The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is performed
for applications whose title string begins with name$. If more than one application is found that matches
name$, then the first application encountered is used. AppRestore will have an effect only if the main
window of the named application is either maximized or minimized. AppRestore will have no effect if the
named window is hidden. AppRestore generates a runtime error if the named application is not enabled,
as is the case if that application is currently displaying a modal dialog box.

AppSetState (statement)

Syntax AppSetState newstate [,name$]

Description Maximizes, minimizes, or restores the named application, depending on the value of newstate.

Comments The AppSetState statement takes the following parameters:

Parameter Description

Newstate Integer specifying the new state of the window. It can be any of the following values.

Value Description

ebMaximized The named application is maximized.

ebMinimized The named application is minimized.

ebRestored The named application is restored.

Name$ String containing the name of the application to change. If this parameter is omitted, then
the active application is used.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 215

Example This example saves the state of Program Manager, changes it, then restores it to its original setting.

Sub Main()
 If AppFind$("Program Manager") = "" Then
 MsgBox "Can't find Program Manager."
 Exit Sub
 End If
 AppActivate "Program Manager" 'Activate Program Manager.
 state = AppGetState 'Save its state.
 AppMinimize 'Minimize it.
 MsgBox "Program Manager is now minimized. Select OK to restore it."
 AppActivate "Program Manager"
 AppSetState state 'Restore it.
End Sub

See Also AppGetState (page 210) (function); AppRestore (page 214) (statement); AppMaximize (page 212)
(statement); AppMinimize (page 212) (statement)

Notes The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is performed
for applications whose title string begins with name$. If more than one application is found that matches
name$, then the first application encountered is used.

AppShow (statement)

Syntax AppShow [name$]

Description Makes the named application visible.

Comments The name$ parameter is a String containing the name of the application to show. If this parameter is
omitted, then the active application is shown.

Example This example hides Program Manager.

Sub Main()
 'See whether Program Manager is running.
 If AppFind$("Program Manager") = "" Then Exit Sub
 AppHide "Program Manager"
 MsgBox "Program Manager is now hidden. Press OK to show it once again."
 AppShow "Program Manager"
End Sub

See Also AppHide (page 211) (statement).

Notes: If the named application is already visible, AppShow will have no effect. The name$ parameter is the
exact string appearing in the title bar of the named application's main window. If no application is found
whose title exactly matches name$, then a second search is performed for applications whose title string
begins with name$. If more than one application is found that matches name$, then the first application
encountered is used. AppShow generates a runtime error if the named application is not enabled, as is
the case if that application is displaying a modal dialog box.

AppSize (statement)

Syntax AppSize width,height [,name$]

Description Sets the width and height of the named application.

Comments The AppSize statement takes the following parameters:

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 216

Parameter Description

Width,
height

Integer coordinates specifying the new size of the application.

Name$ String containing the name of the application to resize. If this parameter is omitted, then the
active application is used.

Example This example enlarges the active application by 10 pixels in both the vertical and horizontal directions.

Sub Main()
 Dim w%,h%
 AppGetPosition 0,0,w%,h% 'Get current width/height.
 x% = x% + Screen.TwipsPerPixelX * 10 'Add 10 pixels.
 y% = y% + Screen.TwipsPerPixelY * 10 'Add 10 pixels.
 AppSize w%,h% 'Change to new size.
End Sub

See Also AppMaximize (page 212) (statement); AppMinimize (page 212) (statement); AppRestore (page 214)
(statement); AppMove (page 213) (statement); AppClose (page 208) (statement).

Note The width and height parameters are specified in twips. This statement will only work if the named
application is restored (i.e., not minimized or maximized). The name$ parameter is the exact string
appearing in the title bar of the named application's main window. If no application is found whose title
exactly matches name$, then a second search is performed for applications whose title string begins with
name$. If more than one application is found that matches name$, then the first application encountered
is used. A runtime error results if the application being resized is not enabled, which is the case if that
application is displaying a modal dialog box when an AppSize statement is executed.

AppType (function)

Syntax AppType [(name$)]

Description Returns an Integer indicating the executable file type of the named application:

ebDos DOS executable

ebWindows Windows executable

Comments The name$ parameter is a String containing the name of the application. If this parameter is omitted,
then the active application is used.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 217

Example This example creates an array of strings containing the names of all the running Windows applications.
It uses the AppType command to determine whether an application is a Windows application or a DOS
application.

Sub Main()
 Dim apps$(),wapps$()
 AppList apps 'Retrieve a list of all Windows and DOS apps.
 If ArrayDims(apps) = 0 Then
 MsgBox "There are no running applications."
 Exit Sub
 End If
 'Create an array to hold only the Windows apps.
 ReDim wapps$(UBound(apps))
 n = 0 'Copy the Windows apps from one array to the target array.
 For i = LBound(apps) to UBound(apps)
 If AppType(apps(i)) = ebWindows Then
 wapps(n) = apps(i)
 n = n + 1
 End If
 Next I
 If n = 0 Then 'Make sure at least one Windows app was found.
 MsgBox "There are no running Windows applications."
 Exit Sub
 End If
 ReDim Preserve wapps(n - 1) 'Resize to hold the exact number.
 'Let the user pick one.
 index% = SelectBox("Windows Applications","Select a Windows application:",wapps)
End Sub

Notes The name$ parameter is the exact string appearing in the title bar of the named application's main
window. If no application is found whose title exactly matches name$, then a second search is performed
for applications whose title string begins with name$. If more than one application is found that matches
name$, then the first application encountered is used.

ArrayDims (function)

Syntax ArrayDims (arrayvariable)

Description Returns an Integer containing the number of dimensions of a given array.

Comments This function can be used to determine whether a given array contains any elements or if the array is
initially created with no dimensions and then redimensioned by another function, such as the FileList
function, as shown in the following example.

Example This example allocates an empty (null-dimensioned) array; fills the array with a list of filenames, which
resizes the array; then tests the array dimension and displays an appropriate message.

Sub Main()
 Dim f$()
 FileList f$,"c:*.bat"
 If ArrayDims(f$) = 0 Then
 MsgBox "The array is empty."
 Else
 MsgBox "The array size is: " & (UBound(f$) - UBound(f$) + 1)
 End If
End Sub

See Also LBound (page 387) (function); UBound (page 510) (function); Arrays (topic)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 218

Arrays (topic)

Declaring Array Variables Arrays in a Basic Control Engine script are declared using any of the following statements:

 Dim
 Public
 Private

For example:

 Dim a(10) As Integer
 Public LastNames(1 to 5,-2 to 7) As Variant
 Private

Arrays of any data type can be created, including Integer, Long, Single, Double, Boolean, Date, Variant, Object,
user-defined structures, and data objects. The lower and upper bounds of each array dimension must be within the
following range:

 -32768 <= bound <= 32767

Arrays can have up to 60 dimensions. Arrays can be declared as either fixed or dynamic, as described below.

Fixed Arrays The dimensions of fixed arrays cannot be adjusted at execution time. Once declared, a fixed array will
always require the same amount of storage. Fixed arrays can be declared with the Dim,Private, or Public statement by
supplying explicit dimensions. The following example declares a fixed array of ten strings:

 Dim a(10) As String

Fixed arrays can be used as members of user-defined data types. The following example shows a structure containing
fixed-length arrays:

 Type Foo
 rect(4) As Integer
 colors(10) As Integer
 End Type

Only fixed arrays can appear within structures.

Dynamic Arrays Dynamic arrays are declared without explicit dimensions, as shown below:

 Public Ages() As Integer

Dynamic arrays can be resized at execution time using the Redim statement:

 Redim Ages$(100)

Subsequent to their initial declaration, dynamic arrays can be redimensioned any number of times. When
redimensioning an array, the old array is first erased unless you use the Preserve keyword, as shown below:

 Redim Preserve Ages$(100)

Dynamic arrays cannot be members of user-defined data types.

Passing Arrays Arrays are always passed by reference.

Querying Arrays The following table describes the functions used to retrieve information about arrays.

Use this
function

to

LBound Retrieve the lower bound of an array. A runtime error is generated if the array has no dimensions.

UBound Retrieve the upper bound of an array. A runtime error is generated if the array has no dimensions.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 219

ArrayDims Retrieve the number of dimensions of an array. This function returns 0 if the array has no
dimensions

Operations on Arrays

The following table describes the function that operate on arrays:

Use this command to

ArraySort Sort an array of integers, longs, singles, doubles, currency, Booleans, dates, or variants.

FileList Fill an array with a list of files in a given directory.

DiskDrives Fill an array with a list of valid drive letters.

AppList Fill an array with a list of running applications.

SelectBox Display the contents of an array in a list box.

PopupMenu Display the contents of an array in a pop-up menu.

ReadIniSection Fill an array with the item names from a section in an ini file.

FileDirs Fill an array with a list of subdirectories.

Erase Erase all the elements of an array.

ReDim Establish the bounds and dimensions of an array.

Dim Declare an array.

ArraySort (statement)

Syntax ArraySort array()

Description Sorts a single-dimensioned array in ascending order.

Comments If a string array is specified, then the routine sorts alphabetically in ascending order using case-sensitive
string comparisons. If a numeric array is specified, the ArraySort statement sorts smaller numbers to the
lowest array index locations. The script generates a runtime error if you specify an array with more than
one dimension. When sorting an array of variants, the following rules apply:

• A runtime error is generated if any element of the array is an object.
• String is greater than any numeric type.
• Null is less than String and all numeric types.
• Empty is treated as a number with the value 0.

String comparison is case-sensitive (this function is not affected by the Option Compare setting).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 220

Example This example dimensions an array and fills it with filenames using FileList, then sorts the array and
displays it in a select box.

Sub Main()
 Dim f$()
 FileList f$,"c:*.*"
 ArraySort f$
 r% = SelectBox("Files","Choose one:",f$)
End Sub

See Also ArrayDims (page 217) (function); LBound (page 387) (function); UBound (page 510) (function)

Asc, AscB, AscW (functions)

Syntax Asc (string) AscB (string) AscW (string)

Description Returns an Integer containing the numeric code for the first character of string.

Comments This function returns the character value of the first character of string. On single-byte systems, this
function returns a number between 0 and 255, whereas on MBCS systems, this function returns a
number between -32768 and 32767. On wide platforms, this function returns the MBCS character code
after converting the wide character to MBCS. To return the value of the first byte of a string, use the AscB
function. This function is used when you need the value of the first byte of a string known to contain byte
data rather than character data. On single-byte systems, the AscB function is identical to the Asc function.
On platforms where BasicScript uses wide string internally (such as Win32), the AscW function returns
the character value native to that platform. For example, on Win32 platforms, this function returns the
UNICODE character code. On single-byte and MBCS platforms, the AscW function is equivalent to the Asc
function. The following table summarizes the values returned by these functions:

Function String Format Returns value of the:

Asc First byte of string (between 0 and 255)

MBCS First character of string (between -32769 and 32767)

Wide First character of string after conversion to MBCS.

AscB First byte of string.

MBCS First byte of string.

Wide First byte of string.

AscW Same as Asc.

MBCS Same as Asc.

Wide Wide character native to the operating system.

Example This example fills an array with the ASCII values of the string s components and displays the result.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 s$ = InputBox("Please enter a string.","Enter String")
 If s$ = "" Then End 'Exit if no string entered.
msg1 = ""
For i = 1 To Len(s$)
 msg1 = msg1 & Asc(Mid(s$,i,1)) & crlf
 Next i
 MsgBox "The Asc values of the string are:" & msg1
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 221

See Also Chr (page 241), Chr$ (page 241) (functions).

AskBox, AskBox$ (functions)

Syntax AskBox[$](prompt$ [,[default$] [,[title$][,helpfile,context]]])

Description Displays a dialog box requesting input from the user and returns that input as a String .

Comments The AskBox/AskBox$ functions take the following parameters:

Parameter Description

prompt$ String containing the text to be displayed above the text box. The dialog box is sized to the
appropriate width depending on the width of prompt$. A runtime error is generated if prompt
$ is Null.

default$ String containing the initial content of the text box. The user can return the default by
immediately selecting OK. A runtime error is generated if default$ is Null.

title$ String specifying the title of the dialog. If missing, then the default title is used.

helpfile Name of the file containing context-sensitive help for this dialog. If this parameter is
specified, then context must also be specified.

context Number specifying the ID of the topic within helpfile for this dialog's help. If this parameter is
specified, then helpfile must also be specified.

Function Returns

AskBox$ String containing the input typed by the user in the text box. A zero-length string is returned
if the user selects Cancel.

AskBox String variant containing the input typed by the user in the text box. An Empty variant is
returned if the user selects Cancel.

When the dialog box is displayed, the text box has the focus. The user can type a maximum of 255
characters into the text box displayed by AskBox$. If both the helpfile and context parameters are
specified, then a Help button is added in addition to the OK and Cancel buttons. Context-sensitive help
can be invoked by selecting this button or using the help key (F1). Invoking help does not remove the
dialog.

s$ = AskBox$ (" Type in the filename:")

s$ = AskBox$ ("Type in the filename:","filename.txt")

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 222

Example This example asks the user to enter a filename and then displays what he or she has typed.

Sub Main()
 s$ = AskBox$("Type in the filename:")
 MsgBox "The filename was: " & s$
End Sub

See Also MsgBox (page 409) (statement); AskPassword$ (function); InputBox, InputBox$ (page 374)
(functions); OpenFilename$ (page 429) (function); SaveFilename$ (page 467) (function); SelectBox
(page 473) (function).

Note The text in the dialog box is displayed in 8-point MS Sans Serif.

AskPassword, AskPassword$ (functions)

Syntax AskPassword[$](prompt$ [,[title$] [,helpfile,context]])

Description Returns a String containing the text that the user typed.

Comments Unlike the AskBox/AskBox$ functions, the user sees asterisks in place of the characters that are actually
typed. This allows the hidden input of passwords. The AskPassword/AskPassword$ functions take the
following parameters:

Parameter Description

prompt$ String containing the text to be displayed above the text box. The dialog box is sized to
the appropriate width depending on the width of prompt$. A runtime error is generated if
prompt$ is Null.

title$ String specifying the title of the dialog. If missing, then the default title is used.

helpfile Name of the file containing context-sensitive help for this dialog. If this parameter is
specified, then context must also be specified.

context Number specifying the ID of the topic within helpfile for this dialog's help. If this parameter
is specified, then helpfile must also be specified.

When the dialog box is first displayed, the text box has the focus. A maximum of 255 characters can be
typed into the text box.

Function Returns

AskPassword

$

text typed into the text box, up to a maximum of 255 characters. A zero-length string is
returned if the user selects Cancel.

AskPassword String variant. An Empty variant is returned if the user selects Cancel.

If both the helpfile and context parameters are specified, then a Help button is added in addition to the OK
and Cancel buttons. Context-sensitive help can be invoked by selecting this button or using the help key
(F1 on most platforms). Invoking help does not remove the dialog.

s$ = AskPassword$ ("Type in the password:")

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 223

Example
Sub Main()
 s$ = AskPassword$("Type in the password:")
 MsgBox "The password entered is: " & s$
End Sub

See Also MsgBox (page 409) (statement); AskBox$ (page 221) (function); InputBox, InputBox$ (page 374)
(functions); OpenFilename$ (page 429) (function); SaveFilename$ (page 467) (function); SelectBox
(page 473) (function); AnswerBox (page 205) (function).

Notes The text in the dialog box is displayed in 8-point MS Sans Serif.

Atn (function)

Syntax Atn (number)

Description Returns the angle (in radians) whose tangent is number.

Comments Some helpful conversions:

• Pi (3.1415926536) radians = 180 degrees.
• radian = 57.2957795131 degrees.
• degree = .0174532925 radians.

Example This example finds the angle whose tangent is 1 (45 degrees) and displays the result.

Sub Main()
 a# = Atn(1.00)
 MsgBox "1.00 is the tangent of " & a# & " radians (45 degrees)."
End Sub

See Also Tan (page 501) (function); Sin (page 479) (function); Cos (page 257) (function).

B

B

Basic.Architecture$ (property)

Basic.Capability (method)

Basic.CodePage (property)

Basic.Eoln$ (property)

Basic.FreeMemory (property)

Basic.HomeDir$ (property)

Basic.Locale$ (property)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 224

Basic.OperatingSystem$ (Property)

Basic.OperatingSystemVendor$

Basic.OperatingSystemVersion$

Basic.OS (property)

Basic.Pathseparator$ (property)

Basic.Processor$ (Property)

Basic.ProcessorCount$ (property)

Basic.Version$ (property)

Beep (statement)

Begin Dialog (statement)

Boolean (data type)

ByRef (keyword)

ByVal (keyword)

Basic.Architecture$ (property)

Syntax Basic.Architecture$

Description Returns a String containing the CPU architecture on which BasicScript is executing.

Comments The following table describes what Basic.Architecture$ returns on:

Win32 Intel, MIPS, Alpha AXP, or PowerPC

The Basic.Architecture$ property returns an empty string if the architecture cannot
be determined by BasicScript.

Example

 '
 'Print the CPU architecture...
 '
 Sub Main()
 MsgBox Basic.Architecture
$
End Sub

See Also Basic.Processor$ (page 230) (property), Basic.ProcessorCount (page 230)
(property)

Basic.Capability (method)

Syntax Basic.Capability(which)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 225

Description Returns True if the specified capability exists on the current platform; returns False otherwise.

Comments The which parameter is an Integer specifying the capability for which to test. It can be any of the
following values:

Value Returns True If the Platform Supports

1 Disk drives

2 System file attribute (ebSystem)

3 Hidden file attribute (ebHidden)

4 Volume label file attribute (ebVolume)

5 Archive file attribute (ebArchive)

6 Denormalized floating-point math

7 File locking (i.e., the Lock and Unlock statements)

8 Big endian byte ordering

Example This example tests to see whether your current platform supports disk drives and hidden file attributes and
displays the result.

Sub Main()
 msg1 = "This operating system "
 If Basic.Capability(1) Then
 msg1 = msg1 & "supports disk drives."
 Else
 msg1 = msg1 & "does not support disk drives."
 End If
 MsgBox msg1
End Sub

See Also Basic.OS (page 229) (property)

Basic.CodePage (property)

Syntax Basic.CodePage

Description Returns an Integer representing the code page for the current locale.

Comments Basic.CodePage returns ANSI code page for the current locale, such as 437 for MS-DOS Latin US or 932
for Japanese.

Example

 Sub Main
 If Basic.OS = ebWin16 And Basic.CodePage = 437 Then
 MsgBox "Running US Windows"
 Else if Basic.OS = ebWin32 And Basic.CodePage = 932 Then
 MsgBox "Japanese XP"
 End If
 End Sub

See Also Basic.Locale$ (page 227) (property); Basic.OS (page 229) (property)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 226

Basic.Eoln$ (property)

Syntax Basic.Eoln$

Description Returns a String containing the end-of-line character sequence appropriate to the current platform.

Comments This string will be either a carriage return, a carriage return/line feed, or a line feed.

Example This example writes two lines of text in a message box.

Sub Main()
 MsgBox "This is the first line of text." & Basic.Eoln$ & "This is the second line of text."
End Sub

See Also Basic.PathSeparator$ (page 229) (property).

Basic.FreeMemory (property)

Syntax Basic.FreeMemory

Description Returns a Long representing the number of bytes of free memory in the script's data space.

Comments This function returns the size of the largest free block in the script's data space. Before this number is
returned, the data space is compacted, consolidating free space into a single contiguous free block. The
script's data space contains strings and dynamic arrays.

Example This example displays free memory in a dialog box.

Sub Main()
 MsgBox "The largest free memory block is: " & Basic.FreeMemory
End Sub

See Also System.TotalMemory (page 499) (property); System.FreeMemory (page 498) (property);
System.FreeResources (page 498) (property); Basic.FreeMemory (page 226) (property).

Basic.HomeDir$ (property)

Syntax Basic.HomeDir$

Description Returns the path to the basic script runtime engine components, e.g. c:\Program Files\Proficy\Proficy
CIMPLICITY\exe.

Comments This method is used to find the HMI/SCADA CIMPLICITY exe directory.

Example This example assigns the home directory to HD and displays it.

Sub Main()
 hd$ = Basic.HomeDir$
 MsgBox "The Basic Control Engine home directory is: " & hd$
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 227

See Also System.WindowsDirectory$ (page 499) (property).

Basic.Locale$ (property)

Syntax Basic.Locale$

Description Returns a String containing the locale under which BasicScript is running.

Comments The locale helps you identify information about your environment, such as the date formats, time
format, and other country-sensitive information. The following table describes the returned value from
Basic.Locale$ on the Win32 platform.

 Returns a string in the format:

abbrevlang,langid,nativelang,englang

abbrevlang Three-letter name of the language. This name is formed by taking the two-letter language
abbreviation as found in the ISO Standard 639 and adding a third letter, as appropriate, to
indicate the sublanguage.

langid: Language ID as defined by the operating system.

nativelang Native name of the language.

englang: Full English name of the language as defined by ISO standard 639.

Example

 'This example checks to see if we are running in a Japanese
 'version of Windows.
 Sub Main
 If Basic.OS = ebWin16 And Item$(Basic.Locale$,1) = "jpn" Then
 MsgBox "Running Windows on a Japanese computer."
 End If
 End Sub

See Also Basic.OS (page 229) (property) , Basic.CodePage (page 225) (property)

Basic.OperatingSystem$ (property)

Syntax Basic.OperatingSystem$

Description Returns a String containing the name of the operating system.

Comments The value returned by this function for the Win32 operating systems is Win32s.

The version of the operating system is determined by calling Basic.OperatingSystemVersion$.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 228

Example

 'This script checks the Windows version for special networking
 ’capabilities.
 '
 Sub Main()
 If Basic.OS = ebWin16 Then
 If Basic.OperatingSystem$ = "Windows" Then
 MsgBox "Special networking capabilities aren’t present."
 ElseIf Basic.OperatingSystem$ = "Windows for Workgroups" Then
 MsgBox "Network capabilities are present."
 End If
 End Sub

See Also Basic.OperatingSystemVendor$ (page 228) (property), Basic.OperatingSystemVersion$ (page 228)
(property), Basic.OS (page 229) (property)

Basic.OperatingSystemVendor$ (property)

Syntax Basic.OperatingSystemVendor$

Description Returns a String containing the version of the operating system under which BasicScript is running.

Comments For the Win32 platform, Basic.OperatingSystemVendor$ returns, Microsoft.

Example

 '
 'The following example prints the operating system vendor
 '
 Sub Main
 MsgBox "The manufacturer of the operating system is: " & _
Basic.OperatingSystemVendor$
End Sub

See Also Basic.OperatingSystem$ (page 227) (property), Basic.OperatingSystemVersion$ (page 228)
(property), Basic.OS (page 229) (property)

Basic.OperatingSystemVersion$ (property)

Syntax Basic.OperatingSystemVersion$

Description Returns a String containing the version of the operating system under which BasicScript is running.

Comments The version number is returned in the following format: major.minor.buildnumber The parts of the
version number are as follows.

Part Identifies the:

major Major version number of the operating system.

minor Minor version number of the operating system.

buildnumber Build number of the operating system.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 229

Example

 '
 'This example checks the Windows version to ensure that a
 'feature is supported.
 '
 Sub Main
 If Basic.OperatingSystem$ = "Windows"
 If Basic.OperatingSystemVersion$ <= 2000 Then
 MsgBox "That feature is not supported."
 Else
 MsgBox "Windows version 2000 or greater"
 End If
 End If
 End Sub

See Also Basic.OperatingSystem$ (property), Basic.OperatingSystemVendor$ (property), Basic.OS
(property)

Basic.OS (property)

Syntax Basic.OS

Description Returns an Integer indicating the current platform.

Comments Value Constant Platform

2 ebWin32 Windows XP Windows 2003

The value returned is not necessarily the platform under which the Basic Control Language script is
running but rather an indicator of the platform for which the script was created.

Example This example determines the operating system for which this version was created and displays the
appropriate message.

Sub Main()
 Select Case Basic.OS
 Case ebWin32
 s = "Windows XP"
 Case Else
 s = "not Wndows XP"
 End Select
 MsgBox "You are currently running " & s
End Sub

Basic.PathSeparator$ (property)

Syntax Basic.PathSeparator$

Description Returns a String containing the path separator appropriate for the current platform.

Comments The returned string is any one of the following characters: / (slash), \ (back slash), : (colon)

Example
Sub Main()
 MsgBox "The path separator for this platform is: " & Basic.PathSeparator$
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 230

See Also Basic.Eoln$ (page 226) (property)

Basic.Processor$ (property)

Syntax Basic.Processor$

Description Returns a String containing the name of the CPU in the computer on which BasicScript is running.

Comments Sample values returned for Win32 platforms include:

Platform Sample Value returned

Intel 80386 80486 Pentium

MIPS The string "Rx" such as R4000

Alpha 321064 321066 321164

PowerPC 601
603
604
603+
604+
620

Example

 '
 'This example prints the CPU of the computer on which
 'BasicScript is executing.
 '
 Sub Main()
 MsgBox "Processor = " & Basic.Processor
$
End Sub

See Also Basic.ProcessorCount (page 230) (property)

Note You can retrieve the number of processors within the computer using the Basic.ProcessorCount
property.

Basic.ProcessorCount$ (property)

Syntax Basic.ProcessorCount

Description Returns the number of CPUs installed on the computer on which BasicScript is running.

Comments Basic.ProcessorCount$ returns 1 if the CPU has only one processor or is otherwise incapable of
containing more than one processor.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 231

Example

 '
 'Print the number of processors in the computer.
 '
 Sub Main()
 MsgBox "There are " & Basic.ProcessorCount & _
 " processor(s) in the computer."
 End Sub

See Also Basic.Processor$ (page 230) (property)

Note The Basic.Processor$ property determines the type of processor.

Basic.Version$ (Property)

Syntax Basic.Version$

Description Returns a String containing the version of Basic Control Engine.

Comments This function returns the major and minor version numbers in the format major.minor.BuildNumber, as in
"2.00.30."

Example This example displays the current version of the Basic Control Engine.

Sub Main()
 MsgBox "Version " & Basic.Version$ & " of Basic Control Engine is running"
End Sub

Beep (statement)

Syntax Beep

Description Makes a single system beep.

Example This example causes the system to beep five times and displays a reminder message.

Sub Main()
 For i = 1 To 5
 Beep
 Sleep 200
 Next i
 MsgBox "You have an upcoming appointment!"
End Sub

Begin Dialog (statement)

Syntax Begin Dialog DialogName [x],[y],width,height,title$ [,[.DlgProc] [,[PicName$] [,style]]] Dialog Statements
End Dialog

Description Defines a dialog box template for use with the Dialog statement and function.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 232

Comments A dialog box template is constructed by placing any of the following statements between the Begin Dialog
and End Dialog statements (no other statements besides comments can appear within a dialog box
template):

Picture OptionButton OptionGroup

CancelButton Text TextBox

GroupBox DropListBox ListBox

ComboBox CheckBox PictureButton

PushButton OKButton

The Begin Dialog statement requires the following parameters:

Parameter Description

x, y Integer coordinates specifying the position of the upper left corner of the dialog box
static to the parent window. These coordinates are in dialog units. If either coordinate is
unspecified, then the dialog box will be centered in that direction on the parent window.

width, height Integer coordinates specifying the width and height of the dialog box (in dialog units).

DialogName Name of the dialog box template. Once a dialog box template has been created, a variable
can be dimensioned using this name.

title$ String containing the name to appear in the title bar of the dialog box. If this parameter
specifies a zero-length string, then the name "Basic Control Engine" is used.

.DlgProc Name of the dialog function. The routine specified by .DlgProc will be called by the script
when certain actions occur during processing of the dialog box. (See DlgProc [prototype]
for additional information about dialog functions.) If this omitted, then the script processes
the dialog box using the default dialog box processing behavior.

style Specifies extra styles for the dialog. It can be any of the following values:

Value Meaning

0 Dialog does not contain a title or close box.

1 Dialog contains a title and no close box.

2 (or omitted) Dialog contains both the title and close box.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 233

The script generates an error if the dialog box template contains no controls. A dialog box template must
have at least one PushButton , OKButton , or CancelButton statement. Otherwise, there will be no
way to close the dialog box. Dialog units are defined as ¼ the width of the font in the horizontal direction
and 1/8 the height of the font in the vertical direction. Any number of user dialog boxes can be created,
but each one must be created using a different name as the DialogName. Only one user dialog box
may be invoked at any time. Expression Evaluation within the Dialog Box Template The Begin Dialog
statement creates the template for the dialog box. Any expression or variable name that appears within
any of the statements in the dialog box template is not evaluated until a variable is dimensioned of type
DialogName. The following example shows this behavior:

 Sub Main()
 MyTitle$ = "Hello, World"
 Begin Dialog MyTemplate 16,32,116,64,MyTitle$
 OKButton 12,40,40,14
 End Dialog
 MyTitle$ = "Sample Dialog"
 Dim dummy As MyTemplate
 rc% = Dialog(dummy)
 End Sub

The above example creates a dialog box with the title " Sample Dialog ". Expressions within dialog box
templates cannot reference external subroutines or functions. All controls within a dialog box use the
same font. The fonts used for text and text box control can be changed explicitly by setting the font
parameters in the Text and TextBox statements. A maximum of 128 fonts can be used within a single
dialog, although the practical limitation may be less.

Example This example creates an exit dialog box.

Sub Main()
 Begin Dialog QuitDialogTemplate 16,32,116,64,"Quit"
 Text 4,8,108,8,"Are you sure you want to exit?"
 CheckBox 32,24,63,8,"Save Changes",.SaveChanges
 OKButton 12,40,40,14
 CancelButton 60,40,40,14
 End Dialog
 Dim QuitDialog As QuitDialogTemplate
 rc% = Dialog(QuitDialog)
 Select Case rc%
 Case -1
 MsgBox "OK was pressed!"
 Case 1
 MsgBox "Cancel was pressed!"
 End Select
End Sub

See Also CancelButton (page 243) (statement); CheckBox (page 240) (statement); ComboBox (page 249)
(statement); Dialog (page 278) (function); Dialog (page 279) (statement); DropListBox (page
301) (statement); End Dialog (page 322) (statement); GroupBox (page 361) (statement); ListBox
(page 394) (statement); OKButton (page 426) (statement); OptionButton (page 434) (statement);
OptionGroup (page 435) (statement); Picture (statement; PushButton (page 447) (statement); Text
(page 502) (statement); TextBox (page 503) (statement); DlgProc (page 289) (function).

Note Within user dialog boxes, the default font is 8-point MS Sans Serif.

Boolean (data type)

Syntax Boolean

Description A data type capable of representing the logical values TRUE and FALSE .

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 234

Comments Boolean variables are used to hold a binary value—either TRUE or FALSE. Variables can be declared
as Boolean using the Dim , Public , or Private statement. Variants can hold Boolean values when
assigned the results of comparisons or the constants TRUE or FALSE. Internally, a Boolean variable
is a 2-byte value holding –1 (for TRUE) or 0 (for FALSE). Any type of data can be assigned to Boolean
variables. When assigning, non-0 values are converted to TRUE , and 0 values are converted to FALSE.
When appearing as a structure member, Boolean members require 2 bytes of storage. When used
within binary or random files, 2 bytes of storage are required. When passed to external routines, Boolean
values are sign-extended to the size of an integer on that platform (either 16 or 32 bits) before pushing
onto the stack. There is no type-declaration character for Boolean variables.

Boolean variables that have not yet been assigned are given an initial value of False .

See Also Currency (page 259) (data type); Date (page 263) (data type); Double (page 300) (data type);
Integer (page 377) (data type); Long (page 398) (data type); Object (page 422) (data type); Single
(page 479) (data type); String (page 494) (data type); Variant (page 515) (data type); DefType (page
276) (statement); CBool (page 237) (function); True (page 507) (constant); False (page 338)
(constant).

ByRef (keyword)

Syntax ..., ByRef parameter,...

Description Used within the Sub...End Sub, Function...End Function, or Declare statement to specify that a given
parameter can be modified by the called routine.

Comments Passing a parameter by reference means that the caller can modify that variable's value. Unlike the
ByVal keyword, the ByRef keyword cannot be used when passing a parameter. The absence of the ByVal
keyword is sufficient to force a parameter to be passed by reference:

 MySub ByVal I '<-- Pass i by value.
 MySub ByRef i '<-- Illegal (will not compile).
 MySub i '<-- Pass i by reference.

Example
Sub Test(ByRef a As Variant)
 a = 14
End Sub
Sub Main()
 b = 12
 Test b
 MsgBox "The ByRef value is: " & b ' <-- Displays 14.
End Sub

See Also () (page 196) (keyword), ByVal (page 234) (keyword).

ByVal (keyword)

Syntax ...ByVal parameter...

Description Forces a parameter to be passed by value rather than by reference.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 235

Comments The ByVal keyword can appear before any parameter passed to any function, statement, or method to
force that parameter to be passed by value. Passing a parameter by value means that the caller cannot
modify that variable's value. Enclosing a variable within parentheses has the same effect as the ByVal
keyword:

 Foo ByVal i 'Forces i to be passed by value.
 Foo(i) 'Forces i to be passed by value.

When calling external statements and functions (that is, routines defined using the Declare statement), the
ByVal keyword forces the parameter to be passed by value regardless of the declaration of that parameter
in the Declare statement. The following example shows the effect of the ByVal keyword used to passed an
Integer to an external routine:

 Declare Sub Foo Lib "MyLib" (ByRef i As Integer)
 i% = 6
 Foo ByVal i% 'Pass a 2-byte Integer.
 Foo i% 'Pass a 4-byte pointer to an Integer.

Since the Foo routine expects to receive a pointer to an Integer , the first call to Foo will have
unpredictable results.

Example This example demonstrates the use of the ByVal keyword.

Sub Foo(a As Integer)
 a = a + 1
End Sub
Sub Main()
 Dim i As Integer
 i = 10
 Foo i
 MsgBox "The ByVal value is: " & i 'Displays 11 (Foo changed the value).
 Foo ByVal i
 MsgBox "The ByVal value is still: " & i 'Displays 11 (Foo did not change the value).
End Sub

See Also () (page 196) (keyword), ByRef (page 234) (keyword).

C

C

Call (statement)

CancelButton (statement)

CBool (function)

CCur (function)

CDate, CVDate (functions)

CDbl (function)

ChDir (statement)

ChDrive (statement)

CheckBox (statement)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 236

Choose (function)

Chr, Chr$, ChrB, ChrB$, ChrW, ChrW$ (functions)

Clnt (function)

Clipboard$ (function)

Clipboard$ (statement)

Clipboard.Clear (method)

Clipboard.GetFormat (method)

Clipboard.GetText (method)

Clipboard.SetText (method)

CLng (function)

Close (statement)

ComboBox (statement)

Command, Command$ (function)

Comments (topic)

Comparison Operators (topic)

Const (statement)

Constants (topic)

Cos (function)

CreateObject (function)

CSng (function)

CStr (function)

CurDir, CurDir$ (function)

Currency (data type)

CVar (function)

CVErr (function)

Call (statement)

Syntax Call subroutine_name [(arguments)]

Description Transfers control to the given subroutine, optionally passing the specified arguments.

Comments Using this statement is equivalent to: subroutine_name [arguments] Use of the Call statement is
optional. The Call statement can only be used to execute subroutines; functions cannot be executed with
this statement. The subroutine to which control is transferred by the Call statement must be declared
outside of the Main procedure, as shown in the following example.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 237

Example This example demonstrates the use of the Call statement to pass control to another function.

Sub Example_Call(s$)
 'This subroutine is declared externally to Main and displays the text
 'passed in the parameter s$.
 MsgBox "Call: " & s$
End Sub
Sub Main()
 'This example assigns a string variable to display, then calls subroutine
 'Example_Call, passing parameter S$ to be displayed in a message box
 'within the subroutine.
 s$ = "DAVE"
 Example_Call s$
 Call Example_Call("SUSAN")
End Sub

See Also Goto (page 361) (statement); GoSub (page 360) (statement); Declare (page 276) (statement).

CDbl (function)

Syntax CDbl(expression)

Description Converts any expression to a Double .

Comments This function accepts any expression convertible to a Double , including strings. A runtime error is
generated if expression is Null . Empty is treated as 0.0 . When passed a numeric expression, this
function has the same effect as assigning the numeric expression number to a Double . When used with
variants, this function guarantees that the variant will be assigned a Double (VarType 5).

Example This example displays the result of two numbers as a Double.

Sub Main()
 i% = 100
 j! = 123.44
 MsgBox "The double value is: " & CDbl(i% * j!)
End Sub

See Also CCur (page 238) (function); CBool (page 237) (function); CDate, CVDate (page 238) (functions);
CInt (page 243) (function); CLng (page 248) (function); CSng (page 258) (function); CStr (page
258) (function); CVar (page 259) (function); CVErr (page 260) (function); Double (page 300) (data
type).

CBool (function)

Syntax CBool (expression)

Description Converts expression to True or False , returning a Boolean value.

Comments The expression parameter is any expression that can be converted to a Boolean . A runtime error is
generated if expression is Null . All numeric data types are convertible to Boolean . If expression is
zero, then the CBool returns False ; otherwise, CBool returns True . Empty is treated as False . If
expression is a String , then CBool first attempts to convert it to a number, then converts the number to
a Boolean . A runtime error is generated if expression cannot be converted to a number. A runtime error
is generated if expression cannot be converted to a Boolean .

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 238

Example This example uses CBool to determine whether a string is numeric or just plain text.

Sub Main()
 Dim IsNumericOrDate As Boolean
 s$ = 34224.54
 IsNumeric = CBool(IsNumeric(s$))
 If IsNumeric = True Then
 MsgBox s$ & " is either a valid number!"
 Else
 MsgBox s$ & " is not a valid number!"
 End If
End Sub

See Also CCur (page 238) (function); CDate, CVDate (page 238) (functions); CDbl (page 237) (function); CInt
(page 243) (function); CLng (page 248) (function); CSng (page 258) (function); CStr (page 258)
(function); CVar (page 259) (function); CVErr (page 260) (function); Boolean (page 233) (data type).

CCur (function)

Syntax CCur (expression)

Description Converts any expression to a Currency .

Comments This function accepts any expression convertible to a Currency , including strings. A runtime error is
generated if expression is Null or a String not convertible to a number. Empty is treated as 0. When
passed a numeric expression, this function has the same effect as assigning the numeric expression
number to a Currency . When used with variants, this function guarantees that the variant will be
assigned a Currency (VarType 6).

Example This example displays the value of a String converted into a Currency value.

Sub Main()
 i$ = "100.44"
 MsgBox "The currency value is: " & CCur(i$)
End Sub

See Also CBool (page 237) (function); CDate, CVDate (page 238) (functions); CDbl (page 237) (function);
CInt (page 243) (function); CLng (page 248) (function); CSng (page 258) (function); CStr (page
258) (function); CVar (page 259) (function); CVErr (page 260) (function); Currency (page 259)
(data type).

CDate, CVDate (functions)

Syntax CDate (expression) CVDate (expression)

Description Converts expression to a date, returning a Date value.

Comments The expression parameter is any expression that can be converted to a Date . A runtime error is
generated if expression is Null . If expression is a String , an attempt is made to convert it to a Date
using the current country settings. If expression does not represent a valid date, then an attempt is made
to convert expression to a number. A runtime error is generated if expression cannot be represented as
a date. These functions are sensitive to the date and time formats of your computer. The CDate and
CVDate functions are identical.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 239

Example This example takes two dates and computes the difference between them.

Sub Main()
 Dim date1 As Date
 Dim date2 As Date
 Dim diff As Date
 date1 = CDate(#1/1/1994#)
 date2 = CDate("February 1, 1994")
 diff = DateDiff("d",date1,date2)
 MsgBox "The date difference is " & CInt(diff) & " days."
End Sub

See Also CCur (page 238) (function); CBool (page 237) (function); CDbl (page 237) (function); CInt (page
243) (function); CLng (page 248) (function); CSng (page 258) (function); CStr (page 258)
(function); CVar (page 259) (function); CVErr (page 260) (function); Date (page 263) (data type).

ChDir (statement)

Syntax ChDir newdir$

Description Changes the current directory of the specified drive to newdir$. This routine will not change the current
drive. (See ChDrive [statement].)

Example This example saves the current directory, then changes to the root directory, displays the old and new
directories, restores the old directory, and displays it.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 save$ = CurDir$
 ChDir(Basic.PathSeparator$)
 MsgBox "Old directory: " & save$ & crlf & "New directory: " & CurDir$
 ChDir(save$)
 MsgBox "Directory restored to: " & CurDir$
End Sub

See Also ChDrive (page 239) (statement); CurDir, CurDir$ (page 259) (functions); Dir, Dir$ (page 280)
(functions); MkDir (page 405) (statement); RmDir (page 463) (statement).

ChDrive (statement)

Syntax ChDrive DriveLetter$

Description Changes the default drive to the specified drive.

Comments Only the first character of DriveLetter$ is used. DriveLetter$ is not case-sensitive. If DriveLetter$ is empty,
then the current drive is not changed.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 240

Example This example allows the user to select a new current drive and uses ChDrive to make their choice the new
current drive.

Const crlf$ = Chr$(13) + Chr$(10)
Sub Main()
 Dim d()
 old$ = FileParse$(CurDir,1)
 DiskDrives d
Again:
 r = SelectBox("Available Drives","Select new current drive:",d)
 On Error Goto Error_Trap
 If r <> -1 Then ChDrive d®
 MsgBox "Old Current Drive: " & old$ & crlf & "New Current Drive: " & CurDir
 End
Error_Trap:
 MsgBox Error(err)
 Resume Again
End Sub

See Also ChDir (page 239) (statement); CurDir, CurDir$ (page 259) (functions); Dir, Dir$ (page 280)
(functions); MkDir (page 405) (statement); RmDir (page 463) (statement); DiskDrives (page 281)
(statement).

CheckBox (statement)

Syntax CheckBox X, Y, width, height, title$, .Identifier

Description Defines a check box within a dialog box template.

Comments Check box controls are either on or off, depending on the value of .Identifier. This statement can only
appear within a dialog box template (i.e., between the Begin Dialog and End Dialog statements). The
CheckBox statement requires the following parameters:

Parameter Description

X, Y Integer coordinates specifying the position of the control (in dialog units) static to the upper
left corner of the dialog box.

Width,
height

Integer coordinates specifying the dimensions of the control in dialog units.

Title$ String containing the text that appears within the check box. This text may contain an
ampersand character to denote an accelerator letter, such as "&Font" for Font (indicating
that the Font control may be selected by pressing the F accelerator key).

Identifier Name by which this control can be referenced by statements in a dialog function (such as
DlgFocus and DlgEnable). This parameter also creates an integer variable whose value
corresponds to the state of the check box (1 = checked; 0 = unchecked). This variable can
be accessed using the syntax: DialogVariable.Identifier.

When the dialog box is first created, the value referenced by .Identifier is used to set the initial state of the
check box. When the dialog box is dismissed, the final state of the check box is placed into this variable.
By default, the .Identifier variable contains 0, meaning that the check box is unchecked.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 241

Example This example displays a dialog box with two check boxes in different states.

Sub Main()
 Begin Dialog SaveOptionsTemplate 36,32,151,52,"Save"
 GroupBox 4,4,84,40,"GroupBox"
 CheckBox 12,16,67,8,"Include heading",.IncludeHeading
 CheckBox 12,28,73,8,"Expand keywords",.ExpandKeywords
 OKButton 104,8,40,14,.OK
 CancelButton 104,28,40,14,.Cancel
 End Dialog
 Dim SaveOptions As SaveOptionsTemplate
 SaveOptions.IncludeHeading = 1 'Check box initially on.
 SaveOptions.ExpandKeywords = 0 'Check box initially off.
 r% = Dialog(SaveOptions)
 If r% = -1 Then
 MsgBox "OK was pressed."
 End If
End Sub

See Also CancelButton (page 243) (statement); Dialog (page 278) (function); Dialog (page 279) (statement);
DropListBox (page 301) (statement); GroupBox (page 361) (statement); ListBox (page 394)
(statement); OKButton (page 426) (statement); OptionButton (page 434) (statement); OptionGroup
(page 435) (statement); Picture (page 438) (statement); PushButton (page 447) (statement); Text
(page 502) (statement); TextBox (page 503) (statement); Begin Dialog (page 231) (statement),
PictureButton (page 447) (statement).

Notes Accelerators are underlined, and the accelerator combination Alt+letter is used.

Choose (function)

Syntax Choose(index,expression1,expression2,...,expression13)

Description Returns the expression at the specified index position.

Comments The index parameter specifies which expression is to be returned. If index is 1, then expression1 is
returned; if index is 2, then expression2 is returned, and so on. If index is less than 1 or greater than the
number of supplied expressions, then Null is returned. The Choose function returns the expression
without converting its type. Each expression is evaluated before returning the selected one.

Example This example assigns a variable of indeterminate type to a.

Sub Main()
 Dim a As Variant
 Dim c As Integer
 c% = 2
 a = Choose(c%,"Hello, world",#1/1/94#,5.5,False)
 MsgBox "Item " & c% & " is '" & a & "'" 'Displays the date passed as parameter 2.
End Sub

See Also Switch (page 496) (function); IIf (page 369) (function); If...Then...Else (page 368) (statement);
Select...Case (page 472) (statement).

Chr, Chr$, ChrB, ChrB$, ChrW, ChrW$ (functions)

Syntax Chr[$](charcode) ChrB[$](charcode) ChrW[$](charcode)

Description Returns the character whose value is Code.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 242

Comments The Chr$, ChrB$, and ChrW$ functions return a String, whereas the Chr, ChrB, and ChrW functions return a
String variant. These functions behave differently depending on the string format used by BasicScript.
These differences are summarized in the following table:

Function

String
Format

 Value between Returns a

Chr[$] SBCS 0 and 255 1-byte character string.

MBCS -32768 and
32767

1-byte or 2-byte MBCS character string depending on
charcode.

Wide -32768 and
32767

2-byte character string.

ChrB[$] SBCS 0 and 255 1-byte character string.

MBCS 0 and 255 1-byte character string.

Wide 0 and 255 1-byte character string.

ChrW[$] SBCS 0 and 255 1-byte character string (same as the Chr and Chr$
functions)

MBCS -32768 and
32767

1-byte or 2-byte MBCS character string depending on
charcode.

Wide -32768 and
32767

2-byte character string.

The Chr$ function can be used within constant declarations, as in the following example: Const crlf = Chr
$(13) + Chr$(10) Some common uses of this function are:

Chr$(9) Tab

Chr$(13) + Chr$(10) End-of-line (carriage return, linefeed)

Chr$(26) End-of-file

Chr$(0) Null

Example

 Sub Main()
 'Concatenates carriage return (13) and line feed (10) to
 'CRLF$, then displays a multiple-line message using CRLF$
 'to separate lines.
 crlf$ = Chr$(13) + Chr$(10)
 MsgBox "First line." & crlf$ & "Second line."

 'Fills an array with the ASCII characters for ABC and
 'displays their corresponding characters.
 Dim a%(2)
 For i = 0 To 2
 a%(i) = (65 + i)
 Next i
 MsgBox "The first three elements of the array are: " _
 & Chr$(a%(0)) & Chr$(a%(1)) & Chr$(a%(2))
 End Sub

See Also Asc, AscB, AscW (page 220) (functions); Str, Str$ (page 492) (functions).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 243

CInt (function)

Syntax CInt(expression)

Description Converts expression to an Integer .

Comments This function accepts any expression convertible to an Integer , including strings. A runtime error is
generated if expression is Null . Empty is treated as 0 . The passed numeric expression must be within
the valid range for integers:

 –32768 <= expression <= 32767

A runtime error results if the passed expression is not within the above range. When passed a numeric
expression, this function has the same effect as assigning a numeric expression to an Integer . Note that
integer variables are rounded before conversion. When used with variants, this function guarantees that
the expression is converted to an Integer variant (VarType 2).

Example This example demonstrates the various results of integer manipulation with CInt.

Sub Main()
 '(1) Assigns i# to 100.55 and displays its integer representation (101).
 I# = 100.55
 MsgBox "The value of CInt(i) = " & CInt(i#)
 '(2) Sets j# to 100.22 and displays the CInt representation (100).
 j# = 100.22
 MsgBox "The value of CInt(j) = " & CInt(j#)
 '(3) Assigns k% (integer) to the CInt sum of j# and k% and displays k% '(201).
 k% = CInt(i# + j#)
 MsgBox "The integer sum of 100.55 and 100.22 is: " & k%
 '(4) Reassigns i# to 50.35 and recalculates k%, then displays the result
 '(note rounding).
 i# = 50.35
 k% = CInt(i# + j#)
 MsgBox "The integer sum of 50.35 and 100.22 is: " & k%
End Sub

See Also CCur (page 238) (function); CBool (page 237) (function); CDate, CVDate (page 238) (functions);
CDbl (page 237) (function); CLng (page 248) (function); CSng (page 258) (function); CStr (page
258) (function); CVar (page 259) (function); CVErr (page 260) (function); Integer (page 377) (data
type).

CancelButton (statement)

Syntax CancelButton X, Y, width, height [,.Identifier]

Description Defines a Cancel button that appears within a dialog box template.

Comments This statement can only appear within a dialog box template (i.e., between the Begin Dialog and End
Dialog statements). Selecting the Cancel button (or pressing Esc) dismisses the user dialog box, causing
the Dialog function to return 0 . (Note: A dialog function can redefine this behavior.) Pressing the Esc
key or double-clicking the close box will have no effect if a dialog box does not contain a CancelButton
statement. The CancelButton statement requires the following parameters:

Parameter Description

X, Y Integer coordinates specifying the position of the control (in dialog units) static to the upper
left corner of the dialog box.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 244

width,
height

Integer coordinates specifying the dimensions of the control in dialog units.

Identifier Optional parameter specifying the name by which this control can be referenced by
statements in a dialog function (such as DlgFocus and DlgEnable). If omitted, then the
word Cancel is used.

A dialog box must contain at least one OKButton, CancelButton, or PushButton statement; otherwise,
the dialog box cannot be dismissed.

Example This example creates a sample dialog box with OK and Cancel buttons.

Sub Main()
 Begin Dialog QuitDialogTemplate 16,32,116,64,"Quit"
 Text 4,8,108,8,"Are you sure you want to exit?"
 CheckBox 32,24,63,8,"Save Changes",.SaveChanges
 OKButton 12,40,40,14
 CancelButton 60,40,40,14
 End Dialog
 Dim QuitDialog As QuitDialogTemplate
 rc% = Dialog(QuitDialog)
 Select Case rc%
 Case -1
 MsgBox "OK was pressed!"
 Case 1
 MsgBox "Cancel was pressed!"
 End Select
End Sub

See Also CheckBox (page 240) (statement); ComboBox (page 249) (statement); Dialog (page 278) (function);
Dialog (page 279) (statement); DropListBox (page 301) (statement); GroupBox (page 361)
(statement); ListBox (page 394) (statement); OKButton (page 426) (statement); OptionButton (page
434) (statement); OptionGroup (page 435) (statement); Picture (page 438) (statement); PushButton
(page 447) (statement); Text (page 502) (statement); TextBox (page 503) (statement); Begin (page
231) Dialog (page 231) (statement), PictureButton (page 439) (statement).

Clipboard$ (function)

Syntax Clipboard$[()]

Description Returns a String containing the contents of the Clipboard.

Comments If the Clipboard doesn't contain text or the Clipboard is empty, then a zero-length string is returned.

Example This example puts text on the Clipboard, displays it, clears the Clipboard, and displays the Clipboard
again.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 Clipboard$ "Hello out there!"
 MsgBox "The text in the Clipboard is:" & crlf & Clipboard$
 Clipboard.Clear
 MsgBox "The text in the Clipboard is:" & crlf & Clipboard$
End Sub

See Also Clipboard$ (page 244) (statement); Clipboard.GetText (page 247) (method); Clipboard.SetText (page
247) (method).

Clipboard $ (statement)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 245

Syntax Clipboard$ NewContent$

Description Copies NewContent$ into the Clipboard.

Example This example puts text on the Clipboard, displays it, clears the Clipboard, and displays the Clipboard
again.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 Clipboard$ "Hello out there!"
 MsgBox "The text in the Clipboard is:" & crlf & Clipboard$
 Clipboard.Clear
 MsgBox "The text in the Clipboard is now:" & crlf & Clipboard$
End Sub

See Also Clipboard$ (page 244) (function); Clipboard.GetText (page 247) (method); Clipboard.SetText (page
247) (method).

Clipboard.Clear (method)

Syntax Clipboard.Clear

Description This method clears the Clipboard by removing any content.

Example This example puts text on the Clipboard, displays it, clears the Clipboard, and displays the Clipboard
again.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 Clipboard$ "Hello out there!"
 MsgBox "The text in the Clipboard before clearing:" & crlf & Clipboard$
 Clipboard.Clear
 MsgBox "The text in the Clipboard after clearing:" & crlf & Clipboard$
End Sub

CreateObject (function)

Syntax CreateObject (class$)

Description Creates an OLE automation object and returns a reference to that object.

Comments The class$ parameter specifies the application used to create the object and the type of object being
created. It uses the following syntax: "application.class", where application is the application used to
create the object and class is the type of the object to create. At runtime, CreateObject looks for the
given application and runs that application if found. Once the object is created, its properties and methods
can be accessed using the dot syntax (e.g., object.property = value). There may be a slight delay when
an automation server is loaded (this depends on the speed with which a server can be loaded from disk).
This delay is reduced if an instance of the automation server is already loaded.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 246

Examples This first example instantiates Microsoft Excel. It then uses the resulting object to make Excel visible and
then close Excel.

Sub Main()
 Dim Excel As Object
 On Error GoTo Trap1 'Set error trap.
 Set Excel = CreateObject("excel.application"'Instantiate object.
 Excel.Visible = True 'Make Excel visible.
 Sleep 5000 'Wait 5 seconds.
 Excel.Quit 'Close Excel.
 Exit Sub 'Exit before error trap.
Trap1:
MsgBox "Can't create Excel object." 'Display error message.
Exit Sub 'Reset error handler.
End Sub

This second example uses CreateObject to instantiate a Visio object. It then uses the resulting object to
create a new document.

Sub Main()
 Dim Visio As Object
 Dim doc As Object
 Dim page As Object
 Dim shape As Object
 On Error Goto NO_VISIO
 Set Visio = CreateObject("visio.application")'Create Visio object.
 On Error Goto 0
 Set doc = Visio.Documents.Add("") 'Create a new document.
 Set page = doc.Pages(1) 'Get first page.
 Set shape = page.DrawRectangle(1,1,4,4) 'Create a new shape.
 shape.text = "Hello, world." 'Set text within shape.
 End
NO_VISIO:
 MsgBox "'Visio' cannot be found!",ebExclamation
End Sub

See Also GetObject (page 358) (function); Object (page 422) (data type).

Clipboard.GetFormat (method)

Syntax WhichFormat = Clipboard.GetFormat (format)

Description Returns TRUE if data of the specified format is available in the Clipboard; returns FALSE otherwise.

Comments This method is used to determine whether the data in the Clipboard is of a particular format. The format
parameter is an Integer representing the format to be queried:

Format Description

1 Text

2 Bitmap

3 Metafile

8 Device-independent bitmap (DIB)

9 Color palette

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 247

Example This example checks to see whether there is any text on the Clipboard, if so, it searches the text for a
string matching what the user entered.

Option Compare Text
Sub Main()
 r$ = InputBox("Enter a word to search for:","Scan Clipboard")
 If Clipboard.GetFormat(1) Then
 If Instr(Clipboard.GetText(1),r) = 0 Then
 MsgBox """" & r & """" & " was not found in the clipboard."
 Else
 MsgBox """" & r & """" & " is definitely in the clipboard."
 End If
 Else
 MsgBox "The Clipboard does not contain any text."
 End If
End Sub

See Also Clipboard$ (page 244) (function); Clipboard$ (page 244) (statement).

Clipboard .GetText (method)

Syntax Text$ = Clipboard.GetText ([format])

Description Returns the text contained in the Clipboard.

Comments The format parameter, if specified, must be 1 .

Example This example checks to see whether there is any text on the Clipboard, if so, it searches the text for a
string matching what the user entered.

Option Compare Text
Sub Main()
 r$ = InputBox("Enter a word to search for:","Scan Clipboard")
 If Clipboard.GetFormat(1) Then
 If Instr(Clipboard.GetText(1),r) = 0 Then
 MsgBox """" & r & """" & " was not found in the clipboard."
 Else
 MsgBox """" & r & """" & " is definitely in the clipboard."
 End If
 Else
 MsgBox "The Clipboard does not contain any text."
 End If
End Sub

See Also Clipboard$ (page 244) (statement); Clipboard$ (page 244) (function); Clipboard.SetText (page 247)
(method).

Clipboard .SetText (method)

Syntax Clipboard.SetText data$ [,format]

Description Copies the specified text string to the Clipboard.

Comments The data$ parameter specifies the text to be copied to the Clipboard. The format parameter, if specified,
must be 1 .

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 248

Example This example gets the contents of the Clipboard and uppercases it.

Sub Main()
If Not Clipboard.GetFormat(1) Then Exit Sub
Clipboard.SetText UCase(Clipboard.GetText(1)),1
End Sub

See Also Clipboard$ (page 244) (statement); Clipboard.GetText (page 247) (method); Clipboard$ (page 244)
(function).

CLng (function)

Syntax CLng (expression)

Description Converts expression to a Long .

Comments This function accepts any expression convertible to a Long , including strings. A runtime error is
generated if expression is Null . Empty is treated as 0 . The passed expression must be within the
following range:

 –2147483648 <= expression <= 2147483647

A runtime error results if the passed expression is not within the above range. When passed a numeric
expression, this function has the same effect as assigning the numeric expression to a Long . Note that
long variables are rounded before conversion. When used with variants, this function guarantees that the
expression is converted to a Long variant (VarType 3).

Example This example displays the results for various conversions of i and j (note rounding).

Sub Main()
 I% = 100
 j& = 123.666
 MsgBox "The result of i * j is: " & CLng(i% * j&) 'Displays 12367.
 MsgBox "The new variant type of i is: " & Vartype(CLng(i%))
End Sub

See Also CCur (page 238) (function); CBool (page 237) (function); CDate, CVDate (page 238) (functions);
CDbl (page 237) (function); CInt (page 243) (function); CSng (page 258) (function); CStr (page
258) (function); CVar (page 259) (function); CVErr (page 260) (function); Long (page 398) (data
type).

Close (statement)

Syntax Close [[#] filenumber [,[#] filenumber]...]

Description Closes the specified files.

Comments If no arguments are specified, then all files are closed.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 249

Example This example opens four files and closes them in various combinations.

Sub Main()
 Open "test1" For Output As #1
 Open "test2" For Output As #2
 Open "test3" For Random As #3
 Open "test4" For Binary As #4
 MsgBox "The next available file number is: " & FreeFile()
 Close #1 'Closes file 1 only.
 Close #2,#3 'Closes files 2 and 3.
 Close 'Closes all remaining files(4).
 MsgBox "The next available file number is: " & FreeFile()
End Sub

See Also Open (page 428) (statement); Reset (page 460) (statement); End
(page 322) (statement).

ComboBox (statement)

Syntax ComboBox X,Y,width,height,ArrayVariable,.Identifier

Description This statement defines a combo box within a dialog box template.

Comments When the dialog box is invoked, the combo box will be filled with the elements from the specified array
variable. This statement can only appear within a dialog box template (i.e., between the Begin Dialog
and End Dialog statements). The ComboBox statement requires the following parameters:

Parameter Description

X, Y Integer coordinates specifying the position of the control (in dialog units) static to the
upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog units.

ArrayVariable Single-dimensioned array used to initialize the elements of the combo box. If this array
has no dimensions, then the combo box will be initialized with no elements. A runtime
error results if the specified array contains more than one dimension. ArrayVariable can
specify an array of any fundamental data type (structures are not allowed). Null and
Empty values are treated as zero-length strings.

Identifier Name by which this control can be referenced by statements in a dialog function (such
as DlgFocus and DlgEnable). This parameter also creates a string variable whose
value corresponds to the content of the edit field of the combo box. This variable can be
accessed using the syntax: DialogVariable.Identifier

When the dialog box is invoked, the elements from ArrayVariable are placed into the combo box.
The .Identifier variable defines the initial content of the edit field of the combo box. When the dialog box is
dismissed, the .Identifier variable is updated to contain the current value of the edit field.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 250

Example This example creates a dialog box that allows the user to select a day of the week.

Sub Main()
 Dim days$(6)
 days$(0) = "Monday"
 days$(1) = "Tuesday"
 days$(2) = "Wednesday"
 days$(3) = "Thursday"
 days$(4) = "Friday"
 days$(5) = "Saturday"
 days$(6) = "Sunday"

 Begin Dialog DaysDialogTemplate 16,32,124,96,"Days"
 OKButton 76,8,40,14,.OK
 Text 8,10,39,8,"&Weekdays:"
 ComboBox 8,20,60,72,days$,.Days
 End Dialog
 Dim DaysDialog As DaysDialogTemplate
 DaysDialog.Days = Format(Now,"dddd") 'Set to today.
 r% = Dialog(DaysDialog)
 MsgBox "You selected: " & DaysDialog.Days
End Sub

See Also CancelButton (page 243) (statement); CheckBox (page 240) (statement); Dialog (page 278)
(function); Dialog (page 279) (statement); DropListBox (page 301) (statement); GroupBox (page
361) (statement); ListBox (page 394) (statement); OKButton (page 426) (statement); OptionButton
(page 434) (statement); OptionGroup (page 435) (statement); Picture (page 438) (statement);
PushButton (page 447) (statement); Text (page 502) (statement); TextBox (page 503) (statement);
Begin (page 231) Dialog (page 231) (statement), PictureButton (page 439) (statement).

Command, Command$ (functions)

Syntax Command[$][()]

Description Returns the argument from the command line used to start the application.

Comments Command$ returns a string, whereas Command returns a String variant.

Example This example checks to see if any command line parameters were used. If parameters were used they
are displayed and a check is made to see if the user used the "/s" switch.

Sub Main()
 cmd$ = Command
 If cmd$ <> "" Then
 If (InStr(cmd$,"/s")) <> 0 Then
 MsgBox "Safety Mode On!"
 Else
 MsgBox "Safety Mode Off!"
 End If
 MsgBox "The command line startup options were: " & cmd$
 Else
 MsgBox "No command line startup options were used!"
 End If
End Sub

See Also Environ, Environ$ (page 322) (functions).

Comparison Operators (topic)

Syntax Expression1 [< | > | <= | >= | <> | =] expression2

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 251

Description Comparison operators return True or False depending on the operator.

Comments The comparison operators are listed in the following table:

Operator Returns True If

> expression1 is greater than expression2

< expression1 is less than expression2

<= expression1 is less than or equal to expression2

>= expression1 is greater than or equal to expression2

<> expression1 is not equal to expression2

= expression1 is equal to expression2

This operator behaves differently depending on the types of the expressions, as shown in the following
table:

If one expression
is

and the other expression
is

 Then

Numeric Numeric A numeric comparison is performed (see below).

String String A string comparison is performed (see below).

Numeric String A compile error is generated.

Variant String A string comparison is performed (see below).

Variant Numeric A variant comparison is performed (see below).

Null variant Any data type Returns Null.

Variant Variant A variant comparison is performed (see below).

String Comparisons If the two expressions are strings, then the operator performs a text comparison
between the two string expressions, returning True if expression1 is less than expression2. The
text comparison is case-sensitive if Option Compare is Binary; otherwise, the comparison is case-
insensitive. When comparing letters with regard to case, lowercase characters in a string sort greater than
uppercase characters, so a comparison of "a" and "A" would indicate that "a" is greater than "A". Numeric
Comparisons When comparing two numeric expressions, the less precise expression is converted to
be the same type as the more precise expression. Dates are compared as doubles. This may produce
unexpected results as it is possible to have two dates that, when viewed as text, display as the same date
when, in fact, they are different. This can be seen in the following example:

 Sub Main()
 Dim date1 As Date
 Dim date2 As Date
 date1 = Now
 date2 = date1 + 0.000001 'Adds a fraction of a second.
 MsgBox date2 = date1 'Prints False (the dates are different).
 MsgBox date1 & "," & date2 'Prints two dates that are the same.
 End Sub

Variant Comparisons When comparing variants, the actual operation performed is determined at
execution time according to the following table:

If one variant is and the other variant is Then

Numeric Numeric The variants are compared as numbers.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 252

String String The variants are compared as text.

Numeric String The number is less than the string.

Null Any other data type Null

Numeric Empty The number is compared with 0.

String Empty The string is compared with a zero-length
string.

Example
Sub Main()
 'Tests two literals and displays the result.
 If 5 < 2 Then
 MsgBox "5 is less than 2."
 Else
 MsgBox "5 is not less than 2."
 End If
 'Tests two strings and displays the result.
 If "This" < "That" Then
 MsgBox "'This' is less than 'That'."
 Else
 MsgBox "'That' is less than 'This'."
 End If
End Sub

See Also Operator Precedence (page 431) (topic); Is (page 379) (operator); Like (page 391) (operator);
Option Compare (page 432) (statement).

Const (statement)

Syntax Const name [As type] = expression [,name [As type] = expression]...

Description Declares a constant for use within the current script.

Comments The name is only valid within the current Basic Control Engine script. Constant names must follow these
rules: 1. Must begin with a letter. 2. May contain only letters, digits, and the underscore character.
3. Must not exceed 80 characters in length. 4. Cannot be a reserved word. Constant names are not
case-sensitive.

The expression must be assembled from literals or other constants. Calls to functions are not allowed
except calls to the Chr$ function, as shown below:

Const s$ = "Hello, there" + Chr(44)

Constants can be given an explicit type by declaring the name with a type-declaration character, as
shown below:

 Const a% = 5 'Constant Integer whose value is 5
 Const b# = 5 'Constant Double whose value is 5.0
 Const c$ = "5" 'Constant String whose value is "5"
 Const d! = 5 'Constant Single whose value is 5.0
 Const e& = 5 'Constant Long whose value is 5

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 253

The type can also be given by specifying the As type clause:

 Const a As Integer = 5 'Constant Integer whose value is 5
 Const b As Double = 5 'Constant Double whose value is 5.0
 Const c As String = "5" 'Constant String whose value is "5"
 Const d As Single = 5 'Constant Single whose value is 5.0
 Const e As Long = 5 'Constant Long whose value is 5

You cannot specify both a type-declaration character and the type:

 Const a% As Integer = 5 'THIS IS ILLEGAL.

If an explicit type is not given, then the Basic Control Engine script will choose the most imprecise type
that completely represents the data, as shown below:

 Const a = 5 'Integer constant
 Const b = 5.5 'Single constant
 Const c = 5.5E200 'Double constant

Constants defined within a Sub or Function are local to that subroutine or function. Constants defined
outside of all subroutines and function can be used anywhere within that script. The following example
demonstrates the scoping of constants:

 Const DefFile = "default.txt"
 Sub Test1
 Const DefFile = "foobar.txt"
 MsgBox DefFile 'Displays "foobar.txt".
 End Sub
 Sub Test2
 MsgBox DefFile 'Displays "default.txt".
 End Sub

Example This example displays the declared constants in a dialog box (crlf produces a new line in the dialog box).

Const crlf = Chr$(13) + Chr$(10)
Const greeting As String = "Hello, "
Const question1 As String = "How are you today?"
Sub Main()
 r = InputBox("Please enter your name","Enter Name")
 MsgBox greeting & r & crlf & crlf & question1
End Sub

See Also DefType (page 276) (statement); Let (page 390) (statement); = (statement); Constants (page 253)
(topic).

Constants (topic)

Constants are variables that cannot change value during script execution. The following constants are
predefined by the Basic Control Engine:

Constant Value Description

ebMinimized 1 The application is minimized.

ebMaximized 2 The application is maximized.

ebRestored 3 The application is restored.

True 1 Boolean value True.

False 0 Boolean value False.

Empty Empty Variant of type 0, indicating that the variant is un-initialized.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 254

Nothing 0 Value indicating that an object variable no longer references a valid object.

Null Null Variant of type 1, indicating that the variant contains no data.

ebCFText 1 Text.

ebCFBitmap 2 Bitmap

ebCFMetafile 3 Metafile.

ebCFDIB 8 Device-independent bitmap.

ebCFPalette 9 Palette

ebCFUnicode 13 Unicode text

ebUseSunday 0 Use the date setting as specified by the current locale.

ebSunday 1 Sunday.

ebMonday 2 Monday

ebTuesday 3 Tuesday

ebWednesday 4 Wednesday.

ebThursday 5 Thursday

ebFriday 6 Friday

ebSaturday 7 Saturday.

ebFirstJan1 1 Start with week in which January 1 occurs.

ebFirstFourDays 2 Start with first week with at least four days in the new year.

ebFirstFullWeek 3 Start with first full week of the year.

ebNormal 0 Read-only, archive, subdir, and none.

ebReadOnly 1 Read-only files.

ebHidden 2 Hidden files.

ebSystem 4 System files

ebVolume 8 Volume labels

ebDirectory 16 Subdirectory

ebArchive 32 Files that have changed since the last backup.

ebNone 64 Files with no attributes.

ebWindows Windows executable file

ebRegular 1 Normal font (i.e., neither bold nor italic).

ebItalic 2 Italic font.

ebBold 4 Bold font.

ebBoldItalic 6 Bold-italic font.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 255

ebIMENoOp 0 IME not installed

ebIMEOn 1 IME on

ebIMEOff 2 IME off

ebIMEDisabled 3 IME disabled

ebIMEHiragana 4 Hiragana double-byte character.

ebIMEKatakanaDbl 5 Katakana double-byte characters.

ebIMEKatakanaSng 6 Katakana single-byte characters.

ebIMEAlphaDbl 7 Alphanumeric double-byte characters.

ebIMEAlphaSng 8 Alphanumeric single-byte characters.

PI 3.1415... Value of PI.

ebOKOnly 0 Displays only the OK button.

ebOKCancel 1 Displays OK and Cancel buttons.

ebAbortRetryIgnore 2 Displays Abort, Retry, and Ignore buttons.

ebYesNoCancel 3 Displays Yes, No, and Cancel buttons.

ebYesNo 4 Displays Yes and No buttons.

ebRetryCancel 5 Displays Cancel and Retry buttons.

ebCritical 16 Displays the stop icon.

ebQuestion 32 Displays the question icon.

ebExclamation 48 Displays the exclamation icon.

ebInformation 64 Displays the information icon.

ebApplicationModal 0 The current application is suspended until the dialog box is closed.

ebDefaultButton1 0 First button is the default button.

ebDefaultButton2 256 Second button is the default button.

ebDefaultButton3 512 Third button is the default button.

ebSystemModal 4096 All applications are suspended until the dialog box is closed.

ebOK 1 Returned from MsgBox indicating that OK was pressed.

ebCancel 2 Returned from MsgBox indicating that Cancel was pressed.

ebAbort 3 Returned from MsgBox indicating that Abort was pressed.

ebRetry 4 Returned from MsgBox indicating that Retry was pressed.

ebIgnore 5 Returned from MsgBox indicating that Ignore was pressed.

ebYes 6 Returned from MsgBox indicating that Yes was pressed.

ebNo 7 Returned from MsgBox indicating that No was pressed.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 256

ebLandscape 1 Landscape paper orientation.

ebPortrait 2 Portrait paper orientation

ebLeftButton 1 Left mouse button

ebRightButton 2 Right mouse button

ebHide 0 Application is initially hidden.

ebNormalFocus 1 Application is displayed at the default position and has the focus.

ebMinimizedFocus 2 Application is initially minimized and has the focus.

ebMaximizedFocus 3 Application is maximized and has the focus.

ebNormalNoFocus 4 Application is displayed at the default position and does not have the focus.

ebMinimizedNoFocus 6 Application is minimized and does not have the focus.

ebUpperCase 1 Converts string to uppercase.

ebLowerCase 2 Converts string to lowercase.

ebProperCase 3 Capitalizes the first letter of each word.

ebWide 4 Converts narrow characters to wide characters.

ebNarrow 8 Converts wide characters to narrow characters.

ebKatakana 16 Converts Hiragana characters to Katakana characters.

ebHiragana 32 Converts Katakana characters to Hiragana characters.

ebUnicode 64 Converts string from MBCS to UNICODE.

ebFromUnicode 128 Converts string from UNICODE to MBCS.

ebEmpty 0 Variant has not been initialized.

ebNull 1 Variant contains no valid data.

ebInteger 2 Variant contains an Integer.

ebLong 3 Variant contains a Long.

ebSingle 4 Variant contains a Single.

ebDouble 5 Variant contains a Double.

ebCurrency 6 Variant contains a Currency.

ebDate 7 Variant contains a Date.

ebString 8 Variant contains a String.

ebObject 9 Variant contains an Object.

ebError 10 Variant contains an Error.

ebBoolean 11 Variant contains a Boolean.

ebVariant 12 Variant contains an array of Variants.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 257

ebDataObject 13 Variant contains a data object.

ebArray 8192 Added to any of the other types to indicate an array of that type.

Constant Value Description

ebBack Chr$(8) String containing a backspace.

ebCr Chr$(13) String containing a carriage return.

ebCrLf Chr$(13) & Chr
$(10)

String containing a carriage-return linefeed pair.

ebFormFeed Chr$(11) String containing a form feed.

ebLf Chr$(10) String containing a line feed.

ebNullChar Chr$(0) String containing a single null character.

ebNullString 0 Special string value used to pass null pointers to external routines.

ebTab Chr$(9) String containing a tab.

ebVerticalTab Chr$(12) String containing a vertical tab.

Constant Value

Win32 True if development environment is 32-bit Windows.

Empty Empty

False False

Null Null

True True

You can define your own constants using the Const statement. Preprocessor constants are defined using #Const.

Cos (function)

Syntax Cos (angle)

Description Returns a Double representing the cosine of angle.

Comments The angle parameter is a Double specifying an angle in radians.

Example This example assigns the cosine of pi/4 radians (45 degrees) to C# and displays its value.

Sub Main()
 c# = Cos(3.14159 / 4)
 MsgBox "The cosine of 45 degrees is: " & c#
End Sub

See Also Tan (page 501) (function); Sin (page 479) (function); Atn (page 223) (function).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 258

CSng (function)

Syntax CSng (expression)

Description Converts expression to a Single .

Comments This function accepts any expression convertible to a Single , including strings. A runtime error is
generated if expression is Null . Empty is treated as 0.0 . A runtime error results if the passed
expression is not within the valid range for Single . When passed a numeric expression, this function has
the same effect as assigning the numeric expression to a Single . When used with variants, this function
guarantees that the expression is converted to a Single variant (VarType 4).

Example This example displays the value of a String converted to a Single.

Sub Main()
 s$ = "100"
 MsgBox "The single value is: " & CSng(s$)
End Sub

See Also CCur (page 238) (function); CBool (page 237) (function); CDate, CVDate (page 238) (functions);
CDbl (page 237) (function); CInt (page 243) (function); CLng (page 248) (function); CStr (page
258) (function); CVar (page 259) (function); CVErr (page 260) (function); Single (page 479) (data
type).

CStr (function)

Syntax CStr (expression)

Description Converts expression to a String .

Comments Unlike Str$ or Str , the string returned by CStr will not contain a leading space if the expression is
positive. Further, the CStr function correctly recognizes thousands and decimal separators for your
locale. Different data types are converted to String in accordance with the following rules:

Data Type CStr Returns

Any numeric type A string containing the number without the leading space for positive values.

Date A string converted to a date using the short date format.

Boolean A string containing either TRUE or FALSE.

Null variant A runtime error.

Empty variant A zero-length string.

Example This example displays the value of a Double converted to a String.

Sub Main()
 s# = 123.456
 MsgBox "The string value is: " & CStr(s#)
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 259

See Also CCur (page 238) (function); CBool (page 237) (function); CDate, CVDate (page 238) (functions);
CDbl (page 237) (function); CInt (page 243) (function); CLng (page 248) (function); CSng (page
258) (function); CVar (page 259) (function); CVErr (page 260) (function); String (page 494) (data
type); Str, Str$ (page 492) (functions).

CurDir, CurDir$ (functions)

Syntax CurDir[$] [(drive$)]

Description Returns the current directory on the specified drive. If no drive$ is specified or drive$ is zero-length, then
the current directory on the current drive is returned.

Comments CurDir$ returns a String , whereas CurDir returns a String variant. The script generates a runtime
error if drive$ is invalid.

Example This example saves the current directory, changes to the next higher directory, and displays the change;
then restores the original directory and displays the change. Note: The dot designators will not work with
all platforms.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 save$ = CurDir
 ChDir ("..")
 MsgBox "Old directory: " & save$ & crlf & "New directory: " & CurDir
 ChDir (save$)
 MsgBox "Directory restored to: " & CurDir
End Sub

See Also ChDir (page 239) (statement); ChDrive (page 239) (statement); Dir, Dir$ (page 280) (functions);
MkDir (page 405) (statement); RmDir (page 463) (statement).

Currency (data type)

Syntax Currency

Description A data type used to declare variables capable of holding fixed-point numbers with 15 digits to the left of
the decimal point and 4 digits to the right.

Comments Currency variables are used to hold numbers within the following range:

 –922,337,203,685,477.5808 <= currency <= 922,337,203,685,477.5807

Due to their accuracy, Currency variables are useful within calculations involving money. The type-
declaration character for Currency is @ . Storage Internally, currency values are 8-byte integers scaled
by 10000. Thus, when appearing within a structure, currency values require 8 bytes of storage. When
used with binary or random files, 8 bytes of storage are required.

See Also Date (page 263) (data type); Double (page 300) (data type); Integer (data type); Long (page 398)
(data type); Object (page 422) (data type); Single (page 479) (data type); String (page 494)
(data type); Variant (page 515) (data type); Boolean (page 233) (data type); DefType (page 276)
(statement); CCur (page 238) (function).

CVar (function)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 260

Syntax CVar (expression)

Description Converts expression to a Variant .

Comments This function is used to convert an expression into a variant. Use of this function is not necessary (except
for code documentation purposes) because assignment to variant variables automatically performs the
necessary conversion:

 Sub Main()
 Dim v As Variant
 v = 4 & "th" 'Assigns "4th" to v.
 MsgBox "You came in: " & v
 v = CVar(4 & "th") 'Assigns "4th" to v.
 MsgBox "You came in: " & v
 End Sub

Example This example converts an expression into a Variant.

Sub Main()
 Dim s As String
 Dim a As Variant
 s = CStr("The quick brown fox ")
 msg1 = CVar(s & "jumped over the lazy dog.")
 MsgBox msg1
End Sub

See Also CCur (page 238) (function); CBool (page 237) (function); CDate, CVDate (page 238) (functions);
CDbl (page 237) (function); CInt (page 243) (function); CLng (page 248) (function); CSng (page
258) (function); CStr (page 258) (function); CVErr (page 260) (function); Variant (page 515) (data
type).

CVErr (function)

Syntax CVErr (expression)

Description Converts expression to an error.

Comments This function is used to convert an expression into a user-defined error number. A runtime error is
generated under the following conditions: If expression is Null . If expression is a number outside the
legal range for errors, which is as follows:

 0 <= expression <= 65535

If expression is Boolean . If expression is a String that can't be converted to a number within the legal
range. Empty is treated as 0.

Example This example simulates a user-defined error and displays the error number.

Sub Main()
 MsgBox "The error is: " & CStr(CVErr(2046))
End Sub

See Also CCur (page 238) (function); CBool (page 237) (function); CDate, CVDate (page 238) (functions);
CDbl (page 237) (function); CInt (page 243) (function); CLng (page 248) (function); CSng (page
258) (function); CStr (page 258) (function); CVar (page 259) (function), IsError (page 381)
(function).

Comments (topic)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 261

Comments can be added to Basic Control Engine script code in the following manner: All text between a single
quotation mark and the end of the line is ignored:

MsgBox "Hello" 'Displays a message box.

The REM statement causes the compiler to ignore the entire line:

REM This is a comment.

The Basic Control Engine supports C-style multiline comment blocks /*...*/, as shown in the following example:

 MsgBox "Before comment"
 /* This stuff is all commented out.
 This line, too, will be ignored.
 This is the last line of the comment. */
 MsgBox "After comment"

C-style comments can be nested.

D

D

Date (data type)

Date, Date$ (functions)

Date, Date$ (statements)

DateAdd (function)

DateDiff (function)

DatePart (function)

DateSerial (function)

DateValue (function)

Day (function)

DDB (function)

DDEExecute (statement)

DDEInitiate (function)

DDEPoke (statement)

DDERequest, DDERequest$ (function)

DDESend (statement)

DDETerminate (statement)

DDETerminateAll (statement)

DDETimeout (statement)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 262

Declare (statement)

DefType (statement)

DeleteSetting (statement)

Dialog (function)

Dialog (statement)

Dim (statement)

Dir, Dir$ (function)

DiskDrives (statement)

DiskFree (function)

DlgCaption (function)

DlgCaption (statement)

DlgControlId (function)

DlgEnable (function)

DlgEnable (statement)

DlgFocus (function)

DlgFocus (statement)

DlgListBoxArray (function)

DlgListBoxArray (statement)

DlgProc (function)

DlgSetPicture (statement)

DlgText (statement)

DlgText$ (function)

DlgValue (function)

DlgValue (statement)

DlgVisible (function)

DlgVisible (statement)

Do...Loop (statement)

DoEvents (function)

DoEvents (statement)

Double (data type)

DropListBox (statement)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 263

Date (data type)

Syntax Date

Description A data type capable of holding date and time values.

Comments Date variables are used to hold dates within the following range:

 January 1, 100 00:00:00 <= date <= December 31, 9999 23:59:59
 –6574340 <= date <= 2958465.99998843

Internally, dates are stored as 8-byte IEEE double values. The integer part holds the number of days
since December 31, 1899, and the fractional part holds the number of seconds as a fraction of the day.
For example, the number 32874.5 represents January 1, 1990 at 12:00:00. When appearing within a
structure, dates require 8 bytes of storage. Similarly, when used with binary or random files, 8 bytes of
storage are required. There is no type-declaration character for Date .

Date variables that haven't been assigned are given an initial value of 0 (i.e., December 31, 1899).

Date Literals Literal dates are specified using number signs, as shown below:

 Dim d As Date
 d = #January 1, 1990#

The interpretation of the date string (i.e., January 1, 1990 in the above example) occurs at runtime,
using the current country settings. This is a problem when interpreting dates such as 1/2/1990. If the date
format is M/D/Y, then this date is January 2, 1990. If the date format is D/M/Y, then this date is February
1, 1990. To remove any ambiguity when interpreting dates, use the universal date format: date_variable
= #YY/MM/DD HH:MM:SS# The following example specifies the date June 3, 1965 using the universal
date format:

 Dim d As Date
 d = #1965/6/3 10:23:45#

See Also Currency (page 259) (data type); Double (page 300) (data type); Integer (page 377) (data type);
Long (page 398) (data type); Object (page 422) (data type); Single (page 479) (data type); String
(page 494) (data type); Variant (page 515) (data type); Boolean (page 233) (data type); DefType
(page 276) (statement); CDate, CVDate (page 238) (functions).

Date, Date$ (functions)

Syntax Date[$] [()]

Description Returns the current system date.

Comments The Date$ function returns the date using the short date format. The Date function returns the date as
a Date variant. Use the Date/Date$ statements to set the system date. The date is returned using the
current short date format (defined by the operating system).

The Date$ function does not properly support international formats. Use the Date function instead.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 264

Example This example saves the current date to TheDate$, then changes the date and displays the result. It then
changes the date back to the saved date and displays the restored date.

' When run with non-US Regional or International settings,
' the two message boxes may display different dates.
' One set of International Date Formats which shows this is:
' Short Date Format: dd.M.yy (ex: 02.01.97 for 2 January 1997)
' Long Date Format: ddddd, dd M, yyyy (Thursday, 02 January 1997)
Sub Main()
 ' Save the current date
 TheDate$ = Date

' Set the date to one that may confuse the library functions
 ' (month and day < 12)
 Date = "01/02/97" ' 1 Feb 1997
 MsgBox(Format$ (Date$, "dddddd")) ' This may show 2 Jan
 MsgBox(Format$ (Date, "dddddd")) ' This may show 1 Feb

 ' Restore the date
 Date = TheDate$
End Sub

See Also CDate, CVDate (page 238) (functions); Time, Time$ (page 504) (functions); Date, Date$ (page 264)
(statements); Now (page 419) (function); Format, Format$ (page 348) (functions); DateSerial (page
268) (function); DateValue (page 268) (function).

Date, Date$ (statements)

Syntax Date[$] = newdate

Description Sets the system date to the specified date.

Comments The Date$ statement requires a string variable using one of the following formats: MM-DD-YYYY MM-
DD-YY MM/DD/YYYY MM/DD/YY, Where MM is a two-digit month between 1 and 31, DD is a two-
digit day between 1 and 31, and YYYY is a four-digit year between 1/1/100 and 12/31/9999. The Date
statement converts any expression to a date, including string and numeric values. Unlike the Date$
statement, Date recognizes many different date formats, including abbreviated and full month names and
a variety of ordering options. If newdate contains a time component, it is accepted, but the time is not
changed. An error occurs if newdate cannot be interpreted as a valid date.

Example This example saves the current date to Cdate$, then changes the date and displays the result. It then
changes the date back to the saved date and displays the result.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 TheDate$ = Date
 Date = "01/01/95"
 MsgBox "Saved date is: " & TheDate$ & crlf & "Changed date is: " & Date
 Date = TheDate$
 MsgBox "Restored date to: " & TheDate$
End Sub

See Also Date, Date$ (page 263) (functions); Time, Time$ (page 504) (statements).

Notes If you do not have permission to change the date, runtime error 70 will be generated.

DateAdd (function)

Syntax DateAdd (interval$, increment&, date)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 265

Description Returns a Date variant representing the sum of date and a specified number (increment) of time intervals
(interval$).

Comments This function adds a specified number (increment) of time intervals (interval$) to the specified date (date).
The following table describes the parameters to the DateAdd function:

Parameter Description

Interval$ String expression indicating the time interval used in the addition.

Increment Integer indicating the number of time intervals you wish to add. Positive values result in
dates in the future; negative values result in dates in the past.

Date Any expression convertible to a Date .

The interval$ parameter specifies what unit of time is to be added to the given date. It can be any of the
following:

Time Intervale

"y" Day of the year

"yyyy" Year

"d" Day

"m" Month

"q" Quarter

"ww" Week

"h" Hour

"n" Minute

"s" Second

"w" Weekday

To add days to a date, you may use either day, day of the year, or weekday, as they are all equivalent ("
d ", " y ", " w "). The DateAdd function will never return an invalid date/time expression. The following
example adds two months to December 31, 1992:

 s# = DateAdd("m",2,"December 31,1992")

In this example, s is returned as the double-precision number equal to " February 28, 1993 ", not "
February 31, 1993 ". A runtime error is generated if you try to subtract a time interval that is larger than
the time value of the date.

Example This example gets today's date using the Date$ function; adds three years, two months, one week, and
two days to it; and then displays the result in a dialog box.

Sub Main()
 Dim sdate$
 sdate$ = Date$
 NewDate# = DateAdd("yyyy",4,sdate$)
 NewDate# = DateAdd("m",3,NewDate#)
 NewDate# = DateAdd("ww",2,NewDate#)
 NewDate# = DateAdd("d",1,NewDate#)
 s$ = "Four years, three months, two weeks, and one day from now will be: "
 s$ = s$ & Format(NewDate#,"long date")
 MsgBox s$
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 266

See Also DateDiff (page 266) (function).

DateDiff (function)

Syntax DateDiff (interval$,date1,date2)

Description Returns a Date variant representing the number of given time intervals between date1 and date2.

Comments The following table describes the parameters:

Parameter Description

Interval$ String expression indicating the specific time interval you wish to find the difference between.

Date1 Any expression convertible to a Date . An example of a valid date/time string would be "
January 1, 1994 ".

Date2 Any expression convertible to a Date . An example of a valid date/time string would be "
January 1, 1994 ".

The following table lists the valid time interval strings and the meanings of each. The Format$ function
uses the same expressions.

Time Interval

"y" Day of the year

"yyyy" Year

"d" Day

"m" Month

"q" Quarter

"ww" Week

"h" Hour

"n" Minute

"s" Second

"w" Weekday

To find the number of days between two dates, you may use either day or day of the year, as they are
both equivalent ("d", "y").

The time interval weekday (" w ") will return the number of weekdays occurring between date1 and date2,
counting the first occurrence but not the last. However, if the time interval is week (" ww "), the function
will return the number of calendar weeks between date1 and date2, counting the number of Sundays. If
date1 falls on a Sunday, then that day is counted, but if date2 falls on a Sunday, it is not counted. The
DateDiff function will return a negative date/time value if date1 is a date later in time than date2.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 267

Example This example gets today's date and adds ten days to it. It then calculates the difference between the two
dates in days and weeks and displays the result.

Sub Main()
 Today$ = Format(Date$,"Short Date")
 NextWeek = Format(DateAdd("d",14,today$),"Short Date")
 DifDays# = DateDiff("d",today$,NextWeek)
 DifWeek# = DateDiff("w",today$,NextWeek)
 s$ = "The difference between " & today$ & " and " & NextWeek
 s$ = s$ & " is: " & DifDays# & " days or " & DifWeek# & " weeks"
 MsgBox s$
End Sub

See Also DateAdd (page 264) (function).

DatePart (function)

Syntax DatePart (interval$,date)

Description Returns an Integer representing a specific part of a date/time expression.

Comments The DatePart function decomposes the specified date and returns a given date/time element. The
following table describes the parameters:

Parameter Description

Interval$ String expression indicating the specific time interval you wish to find the difference between.

Date Any expression convertible to a Date. An example of a valid date/time string would be "
January 1, 1995" .

The following table lists the valid time interval strings and the meanings of each. The Format$ function
uses the same expressions.

Time Interval

"y" Day of the year

"yyyy" Year

"d" Day

"m" Month

"q" Quarter

"ww" Week

"h" Hour

"n" Minute

"s" Second

"w" Weekday

The weekday expression starts with Sunday as 1 and ends with Saturday as 7.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 268

Example This example displays the parts of the current date.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 today$ = Date$
 qt = DatePart("q",today$)
 yr = DatePart("yyyy",today$)
 mo = DatePart("m",today$)
 wk = DatePart("ww",today$)
 da = DatePart("d",today$)
 s$ = "The current date is:" & crlf & crlf
 s$ = s$ & "Quarter : " & qt & crlf
 s$ = s$ & "Year : " & yr & crlf
 s$ = s$ & "Month : " & mo & crlf
 s$ = s$ & "Week : " & wk & crlf
 s$ = s$ & "Day : " & da & crlf
 MsgBox s$
End Sub

See Also Day (page 269) (function); Minute (page 404) (function); Second (page 471) (function); Month (page
406) (function); Year (page 533) (function); Hour (page 364) (function); Weekday (page 521)
(function), Format (page 348) (function).

DateSerial (function)

Syntax DateSerial (year,month,day)

Description Returns a Date variant representing the specified date.

Comments The DateSerial function takes the following parameters:

Parameter Description

Year Integer between 100 and 9999

Month Integer between 1 and 12

Day Integer between 1 and 31

Example This example converts a date to a real number representing the serial date in days since
December 30, 1899 (which is day 0).

Sub Main()
 tdate# = DateSerial(1993,08,22)
 MsgBox "The DateSerial value for August 22, 1993, is: " & tdate#
End Sub

See Also DateValue (page 268) (function); TimeSerial (page 505) (function); TimeValue (page
506) (function); CDate, CVDate (page 238) (functions).

DateValue (function)

Syntax DateValue (date_string$)

Description Returns a Date variant representing the date contained in the specified string argument.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 269

Example This example returns the day of the month for today's date.

Sub Main()
 Tdate$ = Date$
 tday$ = DateValue(tdate$)
 MsgBox "The date value of " & tdate$ & " is: " & tday$
End Sub

See Also TimeSerial (page 505) (function); TimeValue (page 506) (function); DateSerial
(page 268) (function).

Platform(s) All.

Day (function)

Syntax Day (date)

Description Returns the day of the month specified by date.

Comments The value returned is an Integer between 0 and 31 inclusive. The date parameter is any expression that
converts to a Date .

Example This example gets the current date and then displays it.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 CurDate = Now()
 MsgBox "Today is day " & Day(CurDate) & " of the month." & crlf & "Tomorrow is day " &
 Day(CurDate + 1) & "."
End Sub

See Also Minute (page 404) (function); Second (page 471) (function); Month (page 406) (function); Year
(page 533) (function); Hour (page 364) (function); Weekday (page 521) (function); DatePart (page
267) (function).

DDB (function)

Syntax DDB (Cost, Salvage, Life, Period)

Description Calculates the depreciation of an asset for a specified Period of time using the double-declining balance
method.

Comments The double-declining balance method calculates the depreciation of an asset at an accelerated rate. The
depreciation is at its highest in the first period and becomes progressively lower in each additional period.
DDB uses the following formula to calculate the depreciation:

 DDB = ((Cost – Total_depreciation_from_all_other_periods) * 2) / Life

The DDB function uses the following parameters:

Parameter Description

Cost Double representing the initial cost of the asset.

Salvage Double representing the estimated value of the asset at the end of its predicted useful life

Life Double representing the predicted length of the asset's useful life

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 270

Period Double representing the period for which you wish to calculate the depreciation

Life and Period must be expressed using the same units. For example, if Life is expressed in months,
then Period must also be expressed in months.

Example This example calculates the depreciation for capital equipment that cost $10,000, has a service life of ten
years, and is worth $2,000 as scrap. The dialog box displays the depreciation for each of the first four
years.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 s$ = "Depreciation Table" & crlf & crlf
 For yy = 1 To 4
 CurDep# = DDB(10000.0,2000.0,10,yy)
 s$ = s$ & "Year " & yy & " : " & CurDep# & crlf
 Next yy
 MsgBox s$
End Sub

See Also Sln (page 480) (function); SYD (page 497) (function).

DDEExecute (statement)

Syntax DDEExecute channel, command$

Description Executes a command in another application.

Comments The DDEExecute statement takes the following parameters:

Parameter Description

Channel Integer containing the DDE channel number returned from DDEInitiate. An error will result if
channel is invalid.

Command
$

String containing the command to be executed. The format of command$ depends on the
receiving application.

If the receiving application does not execute the instructions, a runtime error is generated.

Example This example sets and retrieves a cell in an Excel spreadsheet. The command strings being created
contain Microsoft Excel macro commands and may be concatenated and sent as one string to speed
things up.

Sub Main()
 Dim cmd,q,ch%
 Q = Chr(34) ' Define quotation marks.

 Id = Shell("c:\excel5\excel.exe",3) 'Start Excel.
 ch% = DDEInitiate("Excel","Sheet1")

 On Error Resume Next
 cmd = "[ACTIVATE(" & q &"SHEET1" & q & ")]" 'Activate worksheet.
 DDEExecute ch%,cmd

 DDEPoke ch%,"R1C1","$1000.00" 'Send value to cell.
 'Retrieve value and display.
 MsgBox "The value of Row 1, Cell 1 is: " & DDERequest(ch%,"R1C1")

 DDETerminate ch%
 Msgbox "Finished..."
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 271

See Also DDEInitiate (page 271) (function); DDEPoke (page 271) (statement); DDERequest, DDERequest$
(page 272) (functions); DDESend (page 273) (function); DDETerminate (page 274) (statement);
DDETerminateAll (page 274) (statement); DDETimeout (page 275) (statement).

DDEInitiate (function)

Syntax DDEInitiate (application$, topic$)

Description Initializes a DDE link to another application and returns a unique number subsequently used to refer to the
open DDE channel.

Comments The DDEInitiate statement takes the following parameters:

Parameter Description

Application
$

String containing the name of the application (the server) with which a DDE conversation
will be established.

Topic$ String containing the name of the topic for the conversation. The possible values for this
parameter are described in the documentation for the server application.

This function returns 0 if the link cannot be established. This will occur under any of the following
circumstances:

• The specified application is not running.
• The topic was invalid for that application.
• Memory or system resources are insufficient to establish the DDE link.

Example This example sets and retrieves a cell in an Excel spreadsheet.

Sub Main()
 Dim cmd,q,ch%
 q = Chr(34) ' Define quotation marks.

 id = Shell("c:\excel5\excel.exe",3) 'Start Excel.
 ch% = DDEInitiate("Excel","Sheet1")

 On Error Resume Next
 cmd = "[ACTIVATE(" & q &"SHEET1" & q & ")]" 'Activate worksheet.
 DDEExecute ch%,cmd

 DDEPoke ch%,"R1C1","$1000.00" 'Send value to cell.
 'Retrieve value and display.
 MsgBox "The value of Row 1, Cell 1 is: " & DDERequest(ch%,"R1C1")

 DDETerminate ch%
 Msgbox "Finished..."
End Sub

See Also DDEExecute (page 270) (statement); DDEPoke (page 271) (statement); DDERequest, DDERequest
$ (page 272) (functions); DDESend (page 273) (function); DDETerminate (page 274) (statement);
DDETerminateAll (page 274) (statement); DDETimeout (page 275) (statement).

DDEPoke (statement)

Syntax DDEPoke channel, DataItem, value

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 272

Description Sets the value of a data item in the receiving application associated with an open DDE link.

Comments The DDEPoke statement takes the following parameters:

Parameter Description

Channel Integer containing the DDE channel number returned from DDEInitiate. An error will result if
channel is invalid.

DataItem Data item to be set. This parameter can be any expression convertible to a String. The
format depends on the server.

Value The new value for the data item. This parameter can be any expression convertible to a
String. The format depends on the server. A runtime error is generated if value is Null.

Example This example sets and retrieves a cell in an Excel spreadsheet.

Sub Main()
 Dim cmd,q,ch%
 Q = Chr(34) ' Define quotation marks.

 Id = Shell("c:\excel5\excel.exe",3) 'Start Excel.
 Ch% = DDEInitiate("Excel","Sheet1")

 On Error Resume Next
 cmd = "[ACTIVATE(" & q &"SHEET1" & q & ")]" 'Activate worksheet.
 DDEExecute ch%,cmd

 DDEPoke ch%,"R1C1","$1000.00" 'Send value to cell.
 'Retrieve value and display.
 MsgBox "The value of Row 1, Cell 1 is: " & DDERequest(ch%,"R1C1")

 DDETerminate ch%
 Msgbox "Finished..."
End Sub

See Also DDEExecute (page 270) (statement); DDEInitiate (page 271) (function); DDERequest, DDERequest
$ (page 272) (functions); DDESend (page 273) (function); DDETerminate (page 274) (statement);
DDETerminateAll (page 274) (statement); DDETimeout (page 275) (statement).

DDERequest, DDERequest$ (functions)

Syntax DDERequest [$](channel,DataItem$)

Description Returns the value of the given data item in the receiving application associated with the open DDE
channel.

Comments DDERequest$ returns a String , whereas DDERequest returns a String variant. The DDERequest/
DDERequest$ functions take the following parameters:

Parameter Description

channel Integer containing the DDE channel number returned from DDEInitiate. An error will result if
channel is invalid.

DataItem$ String containing the name of the data item to request. The format for this parameter
depends on the server.

The format for the returned value depends on the server.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 273

Example This example sets and retrieves a cell in an Excel spreadsheet.

Sub Main()
 Dim cmd,q,ch%
 q = Chr(34) ' Define quotation marks.

 id = Shell("c:\excel5\excel.exe",3) 'Start Excel.
 ch% = DDEInitiate("Excel","Sheet1")

 On Error Resume Next
 cmd = "[ACTIVATE(" & q &"SHEET1" & q & ")]" 'Activate worksheet.
 DDEExecute ch%,cmd

 DDEPoke ch%,"R1C1","$1000.00" 'Send value to cell.
 'Retrieve value and display.
 MsgBox "The value of Row 1, Cell 1 is: " & DDERequest(ch%,"R1C1")

 DDETerminate ch%
 Msgbox "Finished..."
End Sub

See Also DDEExecute (page 270) (statement); DDEInitiate (page 271) (function); DDEPoke (page
271) (statement); DDESend (page 273) (function); DDETerminate (page 274) (statement);
DDETerminateAll (page 274) (statement); DDETimeout (page 275) (statement).

DDESend (statement)

Syntax DDESend application$, topic$, DataItem, value

Description Initiates a DDE conversation with the server as specified by application$ and topic$ and sends that server
a new value for the specified item.

Comments The DDESend statement takes the following parameters:

Parameter Description

application
$

String containing the name of the application (the server) with which a DDE conversation
will be established.

topic$ String containing the name of the topic for the conversation. The possible values for this
parameter are described in the documentation for the server application.

DataItem Data item to be set. This parameter can be any expression convertible to a String. The
format depends on the server.

value New value for the data item. This parameter can be any expression convertible to a String.
The format depends on the server. A runtime error is generated if value is Null.

The DDESend statement performs the equivalent of the following statements:

 ch% = DDEInitiate(application$,topic$)
 DDEPoke ch%,item,data
 DDETerminate ch%

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 274

Example This example sets the content of the first cell in an Excel spreadsheet.

Sub Main()
 Dim cmd,ch%
 id = Shell("c:\excel5\excel.exe",3) 'Start Excel.

 On Error Goto ExcelError
 DDESend "Excel","Sheet1","R1C1","Payroll For August 1995"
 Msgbox "Finished "
 Exit Sub

ExcelError:
 MsgBox "Error sending data to Excel."
 Exit Sub 'Reset error handler.
End Sub

See Also DDEExecute (page 270) (statement); DDEInitiate (page 271) (function); DDEPoke (page 271)
(statement); DDERequest (page 272), DDERequest$ (page 272) (functions); DDETerminate (page
274) (statement); DDETerminateAll (page 274) (statement); DDETimeout (page 275) (statement).

DDETerminate (statement)

Syntax DDETerminate channel

Description Closes the specified DDE channel.

Comments The channel parameter is an Integer containing the DDE channel number returned from DDEInitiate
. An error will result if channel is invalid. All open DDE channels are automatically terminated when the
script ends.

Example This example sets and retrieves a cell in an Excel spreadsheet.

Sub Main()
 Dim cmd,q,ch%
 q = Chr(34) ' Define quotation marks.

 Id = Shell("c:\excel5\excel.exe",3) 'Start Excel.
 Ch% = DDEInitiate("Excel","Sheet1")

 On Error Resume Next
 cmd = "[ACTIVATE(" & q &"SHEET1" & q & ")]" 'Activate worksheet.
 DDEExecute ch%,cmd

 DDEPoke ch%,"R1C1","$1000.00" 'Send value to cell.
 'Retrieve value and display.
 MsgBox "The value of Row 1, Cell 1 is: " & DDERequest(ch%,"R1C1")

 DDETerminate ch%
 Msgbox "Finished..."
End Sub

See Also DDEExecute (page 270) (statement); DDEInitiate (page 271) (function); DDEPoke (page 271)
(statement); DDERequest (page 272), DDERequest$ (page 272) (functions); DDESend (page 273)
(function); DDETerminateAll (page 274) (statement); DDETimeout (page 275) (statement).

DDETerminateAll (statement)

Syntax DDETerminateAll

Description Closes all open DDE channels.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 275

Comments All open DDE channels are automatically terminated when the script ends.

Example This example sets and retrieves a cell in an Excel spreadsheet.

Sub Main()
 Dim cmd,q,ch%
 q = Chr(34) ' Define quotation marks.

 id = Shell("c:\excel5\excel.exe",3) 'Start Excel.
 ch% = DDEInitiate("Excel","Sheet1")

 On Error Resume Next
 cmd = "[ACTIVATE(" & q &"SHEET1" & q & ")]" 'Activate worksheet.
 DDEExecute ch%,cmd

 DDEPoke ch%,"R1C1","$1000.00" 'Send value to cell.
 'Retrieve value and display.
 MsgBox "The value of Row 1, Cell 1 is: " & DDERequest(ch%,"R1C1")

 DDETerminateAll
 Msgbox "Finished "
End Sub

See Also DDEExecute (page 270) (statement); DDEInitiate (page 271) (function); DDEPoke (page 271)
(statement); DDERequest (page 272), DDERequest$ (page 272) (functions); DDESend (page 273)
(function); DDETerminate (page 274) (statement); DDETimeout (page 275) (statement).

DDETimeout (statement)

Syntax DDETimeout milliseconds

Description Sets the number of milliseconds that must elapse before any DDE command times out.

Comments The milliseconds parameter is a Long and must be within the following range: 0 <= milliseconds <=
2,147,483,647 The default is 10,000 (10 seconds).

Example This example sets and retrieves a cell in an Excel spreadsheet. The timeout has been set to wait 2
seconds for Excel to respond before timing out.

Sub Main()
 Dim cmd,q,ch%
 q = Chr(34) ' Define quotation marks.

 id = Shell("c:\excel5\excel.exe",3) 'Start Excel.
 ch% = DDEInitiate("Excel","Sheet1")
 DDETimeout 2000 'Wait 2 seconds for Excel to respond

 On Error Resume Next
 cmd = "[ACTIVATE(" & q &"SHEET1" & q & ")]" 'Activate worksheet.
 DDEExecute ch%,cmd

 DDEPoke ch%,"R1C1","$1000.00" 'Send value to cell.
 'Retrieve value and display.
 MsgBox "The value of Row 1, Cell 1 is: " & DDERequest(ch%,"R1C1")

 DDETerminate ch%
 Msgbox "Finished "
End Sub

See Also DDEExecute (page 270) (statement); DDEInitiate (page 271) (function); DDEPoke (page 271)
(statement); DDERequest (page 272), DDERequest$ (page 272) (functions); DDESend (page 273)
(function); DDETerminate (page 274) (statement); DDETerminateAll (page 274) (statement).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 276

Declare (statement)

If the libname$ parameter does not contain an explicit path to the DLL, the following search will be
performed for the DLL (in this order):

1. The directory containing the Basic Control Engine scripts.
2. The current directory.
3. The Windows system directory.
4. The Windows directory.
5. All directories listed in the path environment variable.

DefType (statement)

Syntax DefInt letterrange DefLng letterrange DefStr letterrange DefSng letterrange DefDbl letterrange
DefCur letterrange DefObj letterrange DefVar letterrange DefBool letterrange DefDate
letterrange

Description Establishes the default type assigned to undeclared or untyped variables.

Comments The Def Type statement controls automatic type declaration of variables. Normally, if a variable is
encountered that hasn't yet been declared with the Dim , Public , or Private statement or does not
appear with an explicit type-declaration character, then that variable is declared implicitly as a variant (
DefVar A–Z) . This can be changed using the Def Type statement to specify starting letter ranges for
type other than integer. The letterrange parameter is used to specify starting letters. Thus, any variable
that begins with a specified character will be declared using the specified Type.

The syntax for letterrange is: letter [-letter] [,letter [-letter]]... Def Type variable types are superseded by
an explicit type declaration¾using either a type-declaration character or the Dim , Public , or Private
statement.

The Def Type statement only affects how the Basic Control Engine compiles scripts and has no effect
at runtime. The Def Type statement can only appear outside all Sub and Function declarations. The
following table describes the data types referenced by the different variations of the Def Type statement:

Statement Data Type

DefInt Integer

DefLng Long

DefStr String

DefSng Single

DefDbl Double

DefCur Currency

DefObj Object

DefVar Variant

DefBool Boolean

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 277

DefDate Date

Example
DefStr a-m
DefLng n-r
DefSng s-u
DefDbl v-w
DefInt x-z

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 a = 100.52
 n = 100.52
 s = 100.52
 v = 100.52
 x = 100.52
 msg1 = "The values are:" & crlf & crlf
 msg1 = msg1 & "(String) a: " & a & crlf
 msg1 = msg1 & "(Long) n: " & n & crlf
 msg1 = msg1 & "(Single) s: " & s & crlf
 msg1 = msg1 & "(Double) v: " & v & crlf
 msg1 = msg1 & "(Integer) x: " & x & crlf
 MsgBox msg1
End Sub

See Also Currency (page 259) (data type); Date (page 263) (data type); Double (page 300) (data type); Long
(page 398) (data type); Object (page 422) (data type); Single (page 479) (data type); String (page
494) (data type); Variant (page 515) (data type); Boolean (page 233) (data type); Integer (page
377) (data type).

DeleteSetting (statement)

Syntax DeleteSetting appname [,section [,key]]

Description Deletes a setting from the registry.

Comments You can control the behavior of DeleteSetting by omitting parameters. If you specify all three parameters,
then DeleteSetting deletes your specified setting. If you omit key, then DeleteSetting deletes all of the
keys from section. If both section and key are omitted, then DeleteSetting removes that application’s
entry from the system registry. The following table describes the named parameters to the DeleteSetting
statement:

Parameter Description

appname String expression indicating the name of the application whose setting will be deleted.

section String expression indicating the name of the section whose setting will be deleted.

key String expression indicating the name of the setting to be deleted from the registry.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 278

Example

 'The following example adds two entries to the Windows registry
 'if run under Win32 or to NEWAPP.INI on other platforms,
 'using the SaveSetting statement. It then uses DeleteSetting
 'first to remove the Startup section, then to remove
 'the NewApp key altogether.
 Sub Main()
 SaveSetting appname := "NewApp", section := "Startup", _
 key := "Height", setting := 200
 SaveSetting appname := "NewApp", section := "Startup", _
 key := "Width", setting := 320
 DeleteSetting "NewApp", "Startup" 'Remove Startup section
 DeleteSetting "NewApp" 'Remove NewApp key
 End Sub

See Also SaveSetting (page 468) (statement), GetSetting (page 359) (function), GetAllSettings (page 356)
(function)

Notes Under Win32, this statement operates on the system registry. All settings are saved under the following
entry in the system registry: HKEY_CURRENT_USER\Software\BasicScript Program Settings\appname
\section\key

Dialog (function)

Syntax Dialog (DialogVariable [,[DefaultButton] [,Timeout]])

Description Displays the dialog box associated with DialogVariable, returning an Integer indicating which button was
clicked.

Comments The function returns any of the following values:

-1 The OK button was clicked.

0 The Cancel button was clicked.

>0 A push button was clicked. The returned number represents which button was clicked based on its
order in the dialog box template (1 is the first push button, 2 is the second push button, and so on).

The Dialog function accepts the following parameters:

Parameter Description

DialogVariable Name of a variable that has previously been dimensioned as a user dialog box. This is
accomplished using the Dim statement:

 Dim MyDialog As MyTemplate

All dialog variables are local to the Sub or Function in which they are defined. Private
and public dialog variables are not allowed.

DefaultButton An Integer specifying which button is to act as the default button in the dialog box. The
value of DefaultButton can be any of the following:

-2 This value indicates that there is no default button.

-1 This value indicates that the OK button, if present, should be used as the default.

0 This value indicates that the Cancel button, if present, should be used as the default.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 279

>0 This value indicates that the Nth button should be used as the default. This number is
the index of a push button within the dialog box template.

If DefaultButton is not specified, then -1 is used. If the number specified by
DefaultButton does not correspond to an existing button, then there will be no default
button. The default button appears with a thick border and is selected when the user
presses Enter on a control other than a push button.

Timeout An Integer specifying the number of milliseconds to display the dialog box before
automatically dismissing it. If TimeOut is not specified or is equal to 0 , then the dialog box
will be displayed until dismissed by the user. If a dialog box has been dismissed due to a
timeout, the Dialog function returns 0 .

Example This example displays an abort/retry/ignore disk error dialog box.

Sub Main()
 Begin Dialog DiskErrorTemplate 16,32,152,48,"Disk Error"
 Text 8,8,100,8,"The disk drive door is open."
 PushButton 8,24,40,14,"Abort",.Abort
 PushButton 56,24,40,14,"Retry",.Retry
 PushButton 104,24,40,14,"Ignore",.Ignore
 End Dialog
 Dim DiskError As DiskErrorTemplate
 r% = Dialog(DiskError,3,0)
 MsgBox "You selected button: " & r%
End Sub

See Also CancelButton (page 243) (statement); CheckBox (page 240) (statement); ComboBox (page 249)
(statement); Dialog (page 279) (statement); DlgProc (page 289) (function); DropListBox (page 301)
(statement); GroupBox (page 361) (statement); ListBox (page 394) (statement); OKButton (page
426) (statement); OptionButton (page 434) (statement); OptionGroup (page 435) (statement);
Picture (page 438) (statement); PushButton (page 447) (statement); Text (page 502) (statement);
TextBox (page 503) (statement); Begin (page 231) Dialog (page 231) (statement), PictureButton
(page 439) (statement).

Dialog (statement)

Syntax Dialog DialogVariable [,[DefaultButton] [,Timeout]]

Description Same as the Dialog (page 278) function, except that the Dialog statement does not
return a value.

Example This example displays an Abort/Retry/Ignore disk error dialog box.

Sub Main()
 Begin Dialog DiskErrorTemplate 16,32,152,48,"Disk Error"
 Text 8,8,100,8,"The disk drive door is open."
 PushButton 8,24,40,14,"Abort",.Abort
 PushButton 56,24,40,14,"Retry",.Retry
 PushButton 104,24,40,14,"Ignore",.Ignore
 End Dialog
 Dim DiskError As DiskErrorTemplate
 Dialog DiskError,3,0
End Sub

See Also Dialog (page 278) (function); DlgProc (page 289) (function)

Dim (statement)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 280

Naming ConventionsVariable names must follow these naming rules:

1. Must start with a letter.
2. May contain letters, digits, and the underscore character (_); punctuation is not allowed. The

exclamation point (!) can appear within the name as long as it is not the last character, in which
case it is interpreted as a type-declaration character.

3. The last character of the name can be any of the following type-declaration characters: # , @ ,
% , ! , & , and $.

4. Must not exceed 80 characters in length.
5. Cannot be a reserved word.

Dir, Dir$ (functions)

Syntax Dir$ [(filespec$ [,attributes])]

Description Returns a String containing the first or next file matching filespec$. If filespec$ is specified, then the first
file matching that filespec$ is returned. If filespec$ is not specified, then the next file matching the initial
filespec$ is returned.

Comments Dir$ returns a String , whereas Dir returns a String variant. The Dir$ / Dir functions take the
following parameters:

Parameter Description

filespec$ String containing a file specification. If this parameter is specified, then Dir$ returns
the first file matching this file specification. If this parameter is omitted, then the next file
matching the initial file specification is returned. If no path is specified in filespec$, then
the current directory is used.

attributes Integer specifying attributes of files you want included in the list, as described below. If
omitted, then only the normal, read-only, and archive files are returned.

An error is generated if Dir$ is called without first calling it with a valid filespec$. If there is no matching
filespec$, then a zero-length string is returned.

Wildcards The filespec$ argument can include wildcards, such as * and ?. The * character matches any
sequence of zero or more characters, whereas the ? character matches any single character. Multiple *'s
and ?'s can appear within the expression to form complete searching patterns. The following table shows
some examples:

This pattern Matches these files Doesn't match these files

S.TXT SAMPLE.TXT GOOSE.TXT

SAMS.TXT

SAMPLE SAMPLE.DAT

C*T.TXT CAT.TXT CAP.TXT ACATS.TXT

C*T CAT CAP.TXT CAT.DOC

C?T CAT CUT CAT.TXT CAPIT CT

* (All files)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 281

Attributes You can control which files are included in the search by specifying the optional attributes
parameter. The Dir, Dir$ functions always return all normal, read-only, and archive files (ebNormal Or
ebReadOnly Or ebArchive). To include additional files, you can specify any combination of the following
attributes (combined with the Or operator):

Constant Value Includes

ebNormal 0 Normal, Read-only, and archive files

ebHidden 2 Hidden files

ebSystem 4 System files

ebVolume 8 Volume label

ebDirectory 16 DOS subdirectories

Example This example uses Dir to fill a SelectBox with the first 10 directory entries.

Const crlf = Chr$(13) + Chr$(10)
Option Base 1
Sub Main()
 Dim a$(10)
 i% = 1
 a(i%) = Dir("*.*")

 While (a(i%) <> "") and (i% < 10)
 i% = i% + 1
 a(i%) = Dir
 Wend

 r = SelectBox("Top 10 Directory Entries",,a)
End Sub

See Also ChDir (page 239) (statement); ChDrive (page 239) (statement); CurDir, CurDir$ (page 259)
(functions); MkDir (page 405) (statement); RmDir (page 463) (statement); FileList (page 343)
(statement).

DiskDrives (statement)

Syntax DiskDrives array()

Description Fills the specified String or Variant array with a list of valid drive letters.

Comments The array () parameter specifies either a zero- or a one-dimensioned array of strings or variants. The
array can be either dynamic or fixed. If array () is dynamic, then it will be redimensioned to exactly hold
the new number of elements. If there are no elements, then the array will be redimensioned to contain no
dimensions. You can use the LBound , UBound , and ArrayDims functions to determine the number
and size of the new array's dimensions. If the array is fixed, each array element is first erased, then the
new elements are placed into the array. If there are fewer elements than will fit in the array, then the
remaining elements are initialized to zero-length strings (for String arrays) or Empty (for Variant
arrays). A runtime error results if the array is too small to hold the new elements.

Example This example builds and displays an array containing the first three available disk drives.

Sub Main()
 Dim drive$()
 DiskDrives drive$
 r% = SelectBox("Available Disk Drives",,drive$)
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 282

See Also ChDrive (page 239) (statement); DiskFree (page 282) (function).

DiskFree (function)

Syntax DiskFree& ([drive$])

Description Returns a Long containing the free space (in bytes) available on the specified drive.

Comments If drive$ is zero-length or not specified, then the current drive is assumed. Only the first character of the
drive$ string is used.

Example This example uses DiskFree to set the value of i and then displays the result in a message box.

Sub Main()
 s$ = "c"
 i# = DiskFree(s$)
 MsgBox "Free disk space on drive '" & s$ & "' is: " & i#
End Sub

See Also ChDrive (page 239) (statement); DiskDrives (page 281) (statement).

DlgCaption (function)

Syntax DlgCaption[()]

Description Returns a string containing the caption of the active user-defined dialog box.

Comments This function returns a zero-length string if the active dialog has no caption.

See Also Begin Dialog (page 231) (statement)

DlgCaption (statement)

Syntax DlgCaption text

Description Changes the caption of the current dialog to text.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 283

Example

 'This example displays a dialog
 box, adjusting the caption
 'to contain the text of the
 currently selected option
 'button.
 Function DlgProc(c As String,a
 As Integer,v As Integer)
 If a = 1 Then
DlgCaption choose(DlgValue("OptionGroup1") + 1, _
 "Blue","Green")
 ElseIf a = 2 Then
DlgCaption choose(DlgValue("OptionGroup1") + 1, _
 "Blue","Green")
 End If
 End Function
 Sub Main()
 Begin Dialog
 UserDialog ,,149,45,"Untitled",.DlgProc
 OKButton 96,8,40,14
 OptionGroup .OptionGroup1
 OptionButton
 12,12,56,8,"Blue",.OptionButton1
 OptionButton
 12,28,56,8,"Green",.OptionButton2
 End Dialog
 Dim d As UserDialog
 Dialog d
 End Sub

See Also Begin Dialog (page 231) (statement)

DlgControlId (function)

Syntax DlgControlId (ControlName$)

Description Returns an Integer containing the index of the specified control as it appears in the dialog box template.

Comments The first control in the dialog box template is at index 0, the second is at index 1, and so on. The
ControlName$ parameter contains the name of the .Identifier parameter associated with that control in the
dialog box template.

The Basic Control Engine statements and functions that dynamically manipulate dialog box controls
identify individual controls using either the .Identifier name of the control or the control's index. Using the
index to refer to a control is slightly faster but results in code that is more difficult to maintain.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 284

Example This example uses DlgControlId to verify which control was triggered and branches the dynamic dialog
script accordingly.

Function DlgProc(ControlName$,Action%,SuppValue%) As Integer
 If Action% = 2 Then
 'Enable the next three controls.
 If DlgControlId(ControlName$) = 2 Then
 For i = 3 to 5
 DlgEnable i,DlgValue("CheckBox1")
 Next i
 DlgProc = 1 'Don't close the dialog box.
 End If
 ElseIf Action% = 1 Then
 'Set initial state upon startup
 For i = 3 to 5
 DlgEnable i,DlgValue("CheckBox1")
 Next i
 End If
End Function

Sub Main()
 Begin Dialog UserDialog ,,180,96,"Untitled",.DlgProc
 OKButton 132,8,40,14
 CancelButton 132,28,40,14
 CheckBox 24,16,72,8,"Click Here",.CheckBox1
 CheckBox 36,32,60,8,"Sub Option 1",.CheckBox2
 CheckBox 36,44,72,8,"Sub Option 2",.CheckBox3
 CheckBox 36,56,60,8,"Sub Option 3",.CheckBox4
 CheckBox 24,72,76,8,"Main Option 2",.CheckBox5
 End Dialog
 Dim d As UserDialog
 Dialog d
End Sub

See Also DlgEnable (page 284) (function); DlgEnable (page 285) (statement); DlgFocus (page 286) (function);
DlgFocus (page 287) (statement); DlgListBoxArray (page 287) (function); DlgListBoxArray (page
288) (statement); DlgSetPicture (page 291) (statement); DlgText (page 292) (statement); DlgText$
(page 293) (function); DlgValue (page 294) (function); DlgValue (page 295) (statement); DlgVisible
(page 296) (statement); DlgVisible (page 296) (function).

DlgEnable (function)

Syntax DlgEnable (ControlName$ | ControlIndex)

Description Returns True if the specified control is enabled; returns False otherwise.

Comments Disabled controls are dimmed and cannot receive keyboard or mouse input. The ControlName$
parameter contains the name of the .Identifier parameter associated with a control in the dialog box
template. A case-insensitive comparison is used to locate the specific control within the template.
Alternatively, by specifying the ControlIndex parameter, a control can be referred to using its index in the
dialog box template (0 is the first control in the template, 1 is the second, and so on). You cannot disable
the control with the focus.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 285

Example This example checks the status of a checkbox at the end of the dialog procedure and notifies the user
accordingly.

Function DlgProc(ControlName$,Action%,SuppValue%) As Integer
 If Action% = 2 Then
 'Enable the next three controls.
 If DlgControlId(ControlName$) = 2 Then
 For i = 3 to 5
 DlgEnable i,DlgValue("CheckBox1")
 Next i
 DlgProc = 1 'Don't close the dialog box.
 End If
 ElseIf Action% = 1 Then
 'Set initial state upon startup
 For i = 3 to 5
 DlgEnable i,DlgValue("CheckBox1")
 Next i
 End If

 If DlgEnable(i) = True Then
 MsgBox "You do not have the required disk space.",ebExclamation,"Insufficient Disk Space"
 End If
End Function

Sub Main()
 Begin Dialog UserDialog ,,180,96,"Untitled",.DlgProc
 OKButton 132,8,40,14
 CancelButton 132,28,40,14
 CheckBox 24,16,72,8,"Click Here",.CheckBox1
 CheckBox 36,32,60,8,"Sub Option 1",.CheckBox2
 CheckBox 36,44,72,8,"Sub Option 2",.CheckBox3
 CheckBox 36,56,60,8,"Sub Option 3",.CheckBox4
 CheckBox 24,72,76,8,"Main Option 2",.CheckBox5
 End Dialog
 Dim d As UserDialog
 Dialog d
End Sub

See Also DlgControl (page 283) (statement); DlgEnable (page 285) (statement); DlgFocus (page 286)
(function); DlgFocus (page 287) (statement); DlgListBoxArray (page 287) (function); DlgListBoxArray
(page 288) (statement); DlgSetPicture (page 291) (statement); DlgText (page 292) (statement);
DlgText$ (page 293) (function); DlgValue (page 294) (function); DlgValue (page 295) (statement);
DlgVisible (page 296) (statement); DlgVisible (page 296) (function).

DlgEnable (statement)

Syntax DlgEnable {ControlName$ | ControlIndex} [,isOn]

Description Enables or disables the specified control.

Comments Disabled controls are dimmed and cannot receive keyboard or mouse input. The isOn parameter is an
Integer specifying the new state of the control. It can be any of the following values: 0 The control is
disabled. 1 The control is enabled. Omitted Toggles the control between enabled and disabled.

Option buttons can be manipulated individually (by specifying an individual option button) or as a group
(by specifying the name of the option group).

The ControlName$ parameter contains the name of the .Identifier parameter associated with a control in
the dialog box template. Alternatively, by specifying the ControlIndex parameter, a control can be referred
to using its index in the dialog box template (0 is the first control in the template, 1 is the second, and so
on).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 286

Example This example uses DlgEnable to turn on/off various dialog options.

Function DlgProc(ControlName$,Action%,SuppValue%) As Integer
 If Action% = 2 Then
 'Enable the next three controls.
 If DlgControlId(ControlName$) = 2 Then
 For i = 3 to 5
 DlgEnable i,DlgValue("CheckBox1")
 Next i
 DlgProc = 1 'Don't close the dialog box.
 End If
 ElseIf Action% = 1 Then
 'Set initial state upon startup
 For i = 3 to 5
 DlgEnable i,DlgValue("CheckBox1")
 Next i
 End If
End Function

Sub Main()
 Begin Dialog UserDialog ,,180,96,"Untitled",.DlgProc
 OKButton 132,8,40,14
 CancelButton 132,28,40,14
 CheckBox 24,16,72,8,"Click Here",.CheckBox1
 CheckBox 36,32,60,8,"Sub Option 1",.CheckBox2
 CheckBox 36,44,72,8,"Sub Option 2",.CheckBox3
 CheckBox 36,56,60,8,"Sub Option 3",.CheckBox4
 CheckBox 24,72,76,8,"Main Option 2",.CheckBox5
 End Dialog
 Dim d As UserDialog
 Dialog d
End Sub

See Also DlgEnable (page 285) (function); DlgFocus (page 286) (function); DlgFocus (page 287) (statement);
DlgListBoxArray (page 287) (function); DlgListBoxArray (page 288) (statement); DlgSetPicture (page
291) (statement); DlgText (page 292) (statement); DlgText$ (page 293) (function); DlgValue (page
294) (function); DlgValue (page 295) (statement); DlgVisible (page 296) (statement); DlgVisible
(page 296) (function).

DlgFocus (function)

Syntax DlgFocus$[()]

Description Returns a String containing the name of the control with the focus.

Comments The name of the control is the .Identifier parameter associated with the control in the dialog box template.

Example This code fragment makes sure that the control being disabled does not currently have the focus
(otherwise, a runtime error would occur).

Sub Main()
 If DlgFocus = "Files" Then 'Does it have the focus?
 DlgFocus "OK" 'Change the focus to another control.
 End If
 DlgEnable "Files",False 'Now we can disable the control.
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 287

See Also DlgEnable (page 284) (function); DlgEnable (page 285) (statement); DlgFocus (page 287)
(statement); DlgListBoxArray (page 287) (function); DlgListBoxArray (page 288) (statement);
DlgSetPicture (page 291) (statement); DlgText (page 292) (statement); DlgText$ (page 293)
(function); DlgValue (page 294) (function); DlgValue (page 295) (statement); DlgVisible (page 296)
(statement); DlgVisible (page 296) (function).

DlgFocus (statement)

Syntax DlgFocus ControlName$ | ControlIndex

Description Sets focus to the specified control.

Comments A runtime error results if the specified control is hidden, disabled, or nonexistent. The ControlName
$ parameter contains the name of the .Identifier parameter associated with a control in the dialog box
template. A case-insensitive comparison is used to locate the specific control within the template.
Alternatively, by specifying the ControlIndex parameter, a control can be referred to using its index in the
dialog box template (0 is the first control in the template, 1 is the second, and so on).

Example This code fragment makes sure the user enters a correct value. If not, the control returns focus back to
the TextBox for correction.

Function DlgProc(ControlName$,Action%,SuppValue%) As Integer
 If Action% = 2 and ControlName$ = "OK" Then
 If IsNumeric(DlgText$("TextBox1")) Then
 Msgbox "Duly Noted."
 Else
 Msgbox "Sorry, you must enter a number."
 DlgFocus "TextBox1"
 DlgProc = 1
 End If
 End If
End Function

Sub Main()
 Dim ListBox1$()
 Begin Dialog UserDialog ,,112,74,"Untitled",.DlgProc
 TextBox 12,20,88,12,.TextBox1
 OKButton 12,44,40,14
 CancelButton 60,44,40,14
 Text 12,11,88,8,"Enter Desired Salary:",.Text1
 End Dialog
 Dim d As UserDialog
 Dialog d
End Sub

See Also DlgEnable (page 284) (function); DlgEnable (page 285) (statement); DlgFocus (page 286) (function);
DlgListBoxArray (page 287) (function); DlgListBoxArray (page 288) (statement); DlgSetPicture (page
291) (statement); DlgText (page 292) (statement); DlgText$ (page 293) (function); DlgValue (page
294) (function); DlgValue (page 295) (statement); DlgVisible (page 296) (statement); DlgVisible
(page 296) (function).

DlgListBoxArray (function)

Syntax DlgListBoxArray ({ControlName$ | ControlIndex}, ArrayVariable)

Description Fills a list box, combo box, or drop list box with the elements of an array, returning an Integer containing
the number of elements that were actually set into the control.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 288

Comments The ControlName$ parameter contains the name of the .Identifier parameter associated with a control
in the dialog box template. A case-insensitive comparison is used to locate the specific control within the
template. Alternatively, by specifying the ControlIndex parameter, a control can be referred to using its
index in the dialog box template (0 is the first control in the template, 1 is the second, and so on).

The ArrayVariable parameter specifies a single-dimensioned array used to initialize the elements of the
control. If this array has no dimensions, then the control will be initialized with no elements. A runtime
error results if the specified array contains more than one dimension. ArrayVariable can specify an array
of any fundamental data type (structures are not allowed). Null and Empty values are treated as zero-
length strings.

Example This dialog function refills an array with files.

Function DlgProc(ControlName$,Action%,SuppValue%) As Integer
 If Action% = 1 Then
 Dim NewFiles$() 'Create a new dynamic array.
 FileList NewFiles$,"c:*.*" 'Fill the array with files.
 r% = DlgListBoxArray("Files",NewFiles$) 'Set items in the list box.
 DlgValue "Files",0 'Set the selection to the first item.
 DlgProc = 1 'Don't close the dialog box.
 End If
End Function

Sub Main()
 Dim ListBox1$()
 Begin Dialog UserDialog ,,180,96,"Untitled",.DlgProc
 OKButton 132,8,40,14
 CancelButton 132,28,40,14
 ListBox 8,12,112,72,ListBox1$,.Files
 End Dialog
 Dim d As UserDialog
 Dialog d
End Sub

See Also DlgEnable (page 284) (function); DlgEnable (page 285) (statement); DlgFocus (page 286) (function);
DlgFocus (page 287) (statement); DlgListBoxArray (page 288) (statement); DlgSetPicture (page
291) (statement); DlgText (page 292) (statement); DlgText$ (page 293) (function); DlgValue (page
294) (function); DlgValue (page 295) (statement); DlgVisible (page 296) (statement); DlgVisible
(page 296) (function).

DlgListBoxArray (statement)

Syntax DlgListBoxArray {ControlName$ | ControlIndex}, ArrayVariable

Description Fills a list box, combo box, or drop list box with the elements of an array.

Comments The ControlName$ parameter contains the name of the .Identifier parameter associated with a control
in the dialog box template. A case-insensitive comparison is used to locate the specific control within the
template. Alternatively, by specifying the ControlIndex parameter, a control can be referred to using its
index in the dialog box template (0 is the first control in the template, 1 is the second, and so on).

The ArrayVariable parameter specifies a single-dimensioned array used to initialize the elements of the
control. If this array has no dimensions, then the control will be initialized with no elements. A runtime
error results if the specified array contains more than one dimension. ArrayVariable can specify an array
of any fundamental data type (structures are not allowed). Null and Empty values are treated as zero-
length strings.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 289

Example This dialog function refills an array with files.

Function DlgProc(ControlName$,Action%,SuppValue%) As Integer
 If Action% = 1 Then
 Dim NewFiles$() 'Create a new dynamic array.
 FileList NewFiles$,"c:*.*" 'Fill the array with files.
 DlgListBoxArray "Files",NewFiles$ 'Set items in the list box.
 DlgValue "Files",0 'Set the selection to the first item.
DlgProc = 1 'Don't close the dialog box.
 End If
End Function

Sub Main()
 Dim ListBox1$()
 Begin Dialog UserDialog ,,180,96,"Untitled",.DlgProc
 OKButton 132,8,40,14
 CancelButton 132,28,40,14
 ListBox 8,12,112,72,ListBox1$,.Files
 End Dialog
 Dim d As UserDialog
 Dialog d
End Sub

See Also DlgEnable (page 284) (function); DlgEnable (page 285) (statement); DlgFocus (page 286) (function);
DlgFocus (page 287) (statement); DlgListBoxArray (page 287) (function); DlgSetPicture (page 291)
(statement); DlgText (page 292) (statement); DlgText$ (page 293) (function); DlgValue (page 294)
(function); DlgValue (page 295) (statement); DlgVisible (page 296) (statement); DlgVisible (page
296) (function).

DlgProc (function)

Syntax Function DlgProc(ControlName$, Action, SuppValue) [As Integer]

Description Describes the syntax, parameters, and return value for dialog functions.

Comments Dialog functions are called by a script during the processing of a custom dialog box. The name of a dialog
function (DlgProc) appears in the Begin Dialog statement as the .DlgProc parameter. Dialog functions
require the following parameters:

Parameter Description

ControlName$ String containing the name of the control associated with Action.

Action Integer containing the action that called the dialog function.

SuppValue Integer of extra information associated with Action. For some actions, this
parameter is not used.

When a script displays a custom dialog box, the user may click on buttons, type text into edit fields, select
items from lists, and perform other actions. When these actions occur, the Basic Control Engine calls the
dialog function, passing it the action, the name of the control on which the action occurred, and any other
relevant information associated with the action. The following table describes the different actions sent to
dialog functions:

Action Description

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 290

1 This action is sent immediately before the dialog box is shown for the first time. This gives the
dialog function a chance to prepare the dialog box for use. When this action is sent, ControlName
$ contains a zero-length string, and SuppValue is 0. The return value from the dialog function
is ignored in this case. Before Showing the Dialog Box After action 1 is sent, the Basic Control
Engine performs additional processing before the dialog box is shown. Specifically, it cycles
though the dialog box controls checking for visible picture or picture button controls. For each
visible picture or picture button control, the Basic Control Engine attempts to load the associated
picture. In addition to checking picture or picture button controls, the Basic Control Engine will
automatically hide any control outside the confines of the visible portion of the dialog box. This
prevents the user from tabbing to controls that cannot be seen. However, it does not prevent you
from showing these controls with the DlgVisible statement in the dialog function.

2 This action is sent when:

• A button is clicked, such as OK, Cancel, or a push button. In this case, ControlName$
contains the name of the button. SuppValue contains 1 if an OK button was clicked and 2 if a
Cancel button was clicked; SuppValue is undefined otherwise.

If the dialog function returns 0 in response to this action, then the dialog box will be closed. Any
other value causes the Basic Control Engine to continue dialog processing.

• A check box's state has been modified. In this case, ControlName$ contains the name of the
check box, and SuppValue contains the new state of the check box (1 if on, 0 if off).

• An option button is selected. In this case, ControlName$ contains the name of the option
button that was clicked, and SuppValue contains the index of the option button within the
option button group (0-based).

• The current selection is changed in a list box, drop list box, or combo box. In this case,
ControlName$ contains the name of the list box, combo box, or drop list box, and SuppValue
contains the index of the new item (0 is the first item, 1 is the second, and so on).

3 This action is sent when the content of a text box or combo box has been changed. This action
is only sent when the control loses focus. When this action is sent, ControlName$ contains the
name of the text box or combo box, and SuppValue contains the length of the new content. The
dialog function's return value is ignored with this action.

4 This action is sent when a control gains the focus. When this action is sent, ControlName$
contains the name of the control gaining the focus, and SuppValue contains the index of the
control that lost the focus (0-based). The dialog function's return value is ignored with this action.

5 This action is sent continuously when the dialog box is idle. If the dialog function returns 1 in
response to this action, then the idle action will continue to be sent. If the dialog function returns
0, then the Basic Control Engine will not send any additional idle actions. When the idle action is
sent, ControlName$ contains a zero-length string, and SuppValue contains the number of times
the idle action has been sent so far. Note: Not returning zero will cause your application to use
all available CPU time and may adversely affect your CIMPLICITY System.

6 This action is sent when the dialog box is moved. The ControlName$ parameter contains a zero-
length string, and SuppValue is 0. The dialog function's return value is ignored with this action.

User-defined dialog boxes cannot be nested. In other words, the dialog function of one dialog box cannot
create another user-defined dialog box. You can, however, invoke any built-in dialog box, such as
MsgBox or InputBox$.

Within dialog functions, you can use the following additional statements and functions. These statements
allow you to manipulate the dialog box controls dynamically.

DlgVisible DlgText$ DlgText
DlgSetPicture DlgListBoxArray DlgFocus
DlgEnable DlgControlId

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 291

The dialog function can optionally be declared to return a Variant . When returning a variable, the
Basic Control Engine will attempt to convert the variant to an Integer . If the returned variant cannot be
converted to an Integer , then 0 is assumed to be returned from the dialog function.

Example This dialog function enables/disables a group of option buttons when a check box is clicked.

Function SampleDlgProc(ControlName$,Action%,SuppValue%)
 If Action% = 2 And ControlName$ = "Printing" Then
 DlgEnable "PrintOptions",SuppValue%
 SampleDlgProc = 1 'Don't close the dialog box.
 End If
End Function
Sub Main()
 Begin Dialog SampleDialogTemplate 34,39,106,45,"Sample",.SampleDlgProc
 OKButton 4,4,40,14
 CancelButton 4,24,40,14
 CheckBox 56,8,38,8,"Printing",.Printing
 OptionGroup .PrintOptions
 OptionButton 56,20,51,8,"Landscape",.Landscape
 OptionButton 56,32,40,8,"Portrait",.Portrait
 End Dialog
 Dim SampleDialog As SampleDialogTemplate
 SampleDialog.Printing = 1
 r% = Dialog(SampleDialog)
End Sub

See Also Begin Dialog (page 231) (statement).

DlgSetPicture (statement)

Syntax DlgSetPicture {ControlName$ | ControlIndex},PictureName$,PictureType

Description Changes the content of the specified picture or picture button control.

Comments The DlgSetPicture statement accepts the following parameters:

Parameter Description

ControlName
$

String containing the name of the .Identifier parameter associated with a control in the
dialog box template. A case-insensitive comparison is used to locate the specified control
within the template. Alternatively, by specifying the ControlIndex parameter, a control
can be referred to using its index in the dialog box template (0 is the first control in the
template, 1 is the second, and so on).

PictureName
$

String containing the name of the picture. If PictureType is 0, then this parameter
specifies the name of the file containing the image. If PictureType is 10, then PictureName
$ specifies the name of the image within the resource of the picture library. If PictureName
$ is empty, then the current picture associated with the specified control will be deleted.
Thus, a technique for conserving memory and resources would involve setting the picture
to empty before hiding a picture control.

PictureType Integer specifying the source for the image. The following sources are supported:

0 The image is contained in a file on disk.

10 The image is contained in the picture library specified by the Begin Dialog
statement. When this type is used, the PictureName$ parameter must be specified
with the Begin Dialog statement.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 292

Example
Sub Main()
 DlgSetPicture "Picture1","\windows\checks.bmp",0 'Set picture from a file.
 DlgSetPicture 27,"FaxReport",10 'Set control 10's image
 'from a library.
End Sub

See Also DlgEnable (page 284) (function); DlgEnable (page 285) (statement); DlgFocus (page 286) (function);
DlgFocus (page 287) (statement); DlgListBoxArray (page 287) (function); DlgListBoxArray (page
288) (statement); DlgText (page 292) (statement); DlgText$ (page 293) (function); DlgValue (page
294) (function); DlgValue (page 295) (statement); DlgVisible (page 296) (statement); DlgVisible
(page 296) (function), Picture (page 438) (statement), PictureButton (page 439) (statement).

Notes Picture controls can contain either bitmaps or WMFs (Windows metafiles). When extracting images from
a picture library, the Basic Control Engine assumes that the resource type for metafiles is 256. Picture
libraries are implemented as DLLs on the Windows and Win32 platforms.

DlgText (statement)

Syntax DlgText {ControlName$ | ControlIndex}, NewText$

Description Changes the text content of the specified control.

Comments The effect of this statement depends on the type of the specified control:

Control
Type

Effect of Dlg Text

Picture Runtime error.

Option
group

Runtime error.

Drop
list box

Sets the current selection to the item matching NewText$. If an exact match cannot be found,
the DlgText statement searches from the first item looking for an item that starts with NewText
$. If no match is found, then the selection is removed.

OK
button

Sets the label of the control to NewText$.

Cancel
button

Sets the label of the control to NewText$.

Push
button

Sets the label of the control to NewText$.

List
box

Sets the current selection to the item matching NewText$. If an exact match cannot be found,
the DlgText statement searches from the first item looking for an item that starts with NewText
$. If no match is found, then the selection is removed.

Combo
box

Sets the content of the edit field of the combo box to NewText$.

Text Sets the label of the control to NewText$.

Text
box

Sets the content of the text box to NewText$.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 293

Group
box

Sets the label of the control to NewText$.

Option
button

Sets the label of the control to NewText$.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a control
in the dialog box template. A case-insensitive comparison is used to locate the specific control within the
template. Alternatively, by specifying the ControlIndex parameter, a control can be referred to using its
index in the dialog box template (0 is the first control in the template, 1 is the second, and so on).

Example
Sub Main()
 DlgText "GroupBox1","Save Options" 'Change text of group box 1.
 If DlgText$(9) = "Save Options" Then
 DlgText 9,"Editing Options" 'Change text to "Editing Options".
 End If
End Sub

See Also DlgEnable (page 284) (function); DlgEnable (page 285) (statement); DlgFocus (page 286) (function);
DlgFocus (page 287) (statement); DlgListBoxArray (page 287) (function); DlgListBoxArray (page
288) (statement); DlgSetPicture (page 291) (statement); DlgText (page 292) (statement); DlgValue
(page 295) (statement); DlgValue (page 294) (function); DlgVisible (page 296) (statement);
DlgVisible (page 296) (function).

DlgText$ (function)

Syntax DlgText$(ControlName$ | ControlIndex)

Description Returns the text content of the specified control.

Comments The text returned depends on the type of the specified control:

Control
Type

Value Returned by DlgText$

Picture No value is returned. A runtime error occurs.

Option
group

No value is returned. A runtime error occurs.

Drop list box Returns the currently selected item. A zero-length string is returned if no item is currently
selected.

OK button Returns the label of the control.

Cancel
button

Returns the label of the control.

Push button Returns the label of the control.

List box Returns the currently selected item. A zero-length string is returned if no item is currently
selected.

Combo box Returns the content of the edit field portion of the combo box.

Text Returns the label of the control.

Text box Returns the content of the control.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 294

Group box Returns the label of the control.

Option
button

Returns the label of the control.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a control
in the dialog box template. A case-insensitive comparison is used to locate the specific control within the
template. Alternatively, by specifying the ControlIndex parameter, a control can be referred to using its
index in the dialog box template (0 is the first control in the template, 1 is the second, and so on).

Example This code fragment makes sure the user enters a correct value. If not, the control returns focus back to
the TextBox for correction.

Function DlgProc(ControlName$,Action%,SuppValue%) As Integer
 If Action% = 2 and ControlName$ = "OK" Then
 If IsNumeric(DlgText$("TextBox1")) Then
 Msgbox "Duly Noted."
 Else
 Msgbox "Sorry, you must enter a number."
 DlgFocus "TextBox1"
 DlgProc = 1
 End If
 End If
End Function
Sub Main()
 Dim ListBox1$()
 Begin Dialog UserDialog ,,112,74,"Untitled",.DlgProc
 TextBox 12,20,88,12,.TextBox1
 OKButton 12,44,40,14
 CancelButton 60,44,40,14
 Text 12,11,88,8,"Enter Desired Salary:",.Text1
 End Dialog
 Dim d As UserDialog
 Dialog d
End Sub

See Also DlgControlId (page 283) (function); DlgEnable (page 284) (function); DlgEnable (page 285)
(statement); DlgFocus (page 286) (function); DlgFocus (page 287) (statement); DlgListBoxArray (page
287) (function); DlgListBoxArray (page 288) (statement); DlgSetPicture (page 291) (statement);
DlgText (page 292) (statement); DlgValue (page 294) (function); DlgValue (page 295) (statement);
DlgVisible (page 296) (statement); DlgVisible (page 296) (function).

DlgValue (function)

Syntax DlgValue (ControlName$ | ControlIndex)

Description Returns an Integer indicating the value of the specified control.

Comments The value of any given control depends on its type, according to the following table:

Control
Type

DlgValue Returns

Option
group

The index of the selected option button within the group (0 is the first option button, 1 is the
second, and so on).

List box The index of the selected item.

Drop list
box

The index of the selected item.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 295

Check
box

1 if the check box is checked; 0 otherwise.

A runtime error is generated if DlgValue is used with controls other than those listed in the above table.
The ControlName$ parameter contains the name of the .Identifier parameter associated with a control in
the dialog box template. Alternatively, by specifying the ControlIndex parameter, a control can be referred
to using its index in the dialog box template (0 is the first control in the template, 1 is the second, and so
on).

Example This code fragment toggles the value of a check box.

Sub Main()
 If DlgValue("MyCheckBox") = 1 Then
 DlgValue "MyCheckBox",0
 Else
 DlgValue "MyCheckBox",1
 End If
End Sub

See Also DlgControlId (page 283) (function); DlgEnable (page 284) (function); DlgEnable (page 285)
(statement); DlgFocus (page 286) (function); DlgFocus (page 287) (statement); DlgListBoxArray (page
287) (function); DlgListBoxArray (page 288) (statement); DlgSetPicture (page 291) (statement);
DlgText (page 292) (statement); DlgText$ (page 293) (function); DlgValue (page 295) (statement);
DlgVisible (page 296) (statement); DlgVisible (page 296) (function).

DlgValue (statement)

Syntax DlgValue {ControlName$ | ControlIndex},Value

Description Changes the value of the given control.

Comments The value of any given control is an Integer and depends on its type, according to the following table:

Control
Type

Description of Value

Option
group

The index of the new selected option button within the group (0 is the first option button, 1 is
the second, and so on).

List box The index of the new selected item.

Drop list
box

The index of the new selected item.

Check
box

1 if the check box is to be checked; 0 if the check is to be removed.

A runtime error is generated if DlgValue is used with controls other than those listed in the above table.

The ControlName$ parameter contains the name of the .Identifier parameter associated with a control
in the dialog box template. A case-insensitive comparison is used to locate the specific control within the
template. Alternatively, by specifying the ControlIndex parameter, a control can be referred to using its
index in the dialog box template (0 is the first control in the template, 1 is the second, and so on).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 296

Example This code fragment toggles the value of a check box.

Sub Main()
 If DlgValue("MyCheckBox") = 1 Then
 DlgValue "MyCheckBox",0
 Else
 DlgValue "MyCheckBox",1
 End If
End Sub

See Also DlgControlId (page 283) (function); DlgEnable (page 284) (function); DlgEnable (page 285)
(statement); DlgFocus (page 286) (function); DlgFocus (page 287) (statement); DlgListBoxArray (page
287) (function); DlgListBoxArray (page 288) (statement); DlgSetPicture (page 291) (statement);
DlgText (page 292) (statement); DlgText$ (page 293) (function); DlgValue (page 294) (function);
DlgVisible (page 296) (statement); DlgVisible (page 296) (function).

DlgVisible (function)

Syntax DlgVisible (ControlName$ | ControlIndex)

Description Returns True if the specified control is visible; returns False otherwise .

The ControlName$ parameter contains the name of the .Identifier parameter associated with a control in
the dialog box template. Alternatively, by specifying the ControlIndex parameter, a control can be referred
to using its index in the template (0 is the first control in the template, 1 is the second, and so on). A
runtime error is generated if DlgVisible is called with no user dialog is active.

Example
Sub Main()
 If DlgVisible("Portrait") Then Beep

 If DlgVisible(10) And DlgVisible(12) Then
 MsgBox "The 10th and 12th controls are visible."
 End If
End Sub

See Also DlgControlId (page 283) (function); DlgEnable (page 284) (function); DlgEnable (page 285)
(statement); DlgFocus (page 286) (function); DlgFocus (page 287) (statement); DlgListBoxArray (page
287) (function); DlgListBoxArray (page 288) (statement); DlgSetPicture (page 291) (statement);
DlgText (page 292) (statement); DlgText$ (page 293) (function); DlgValue (page 295) (statement);
DlgValue (page 295) (statement); DlgVisible (page 296) (function).

DlgVisible (statement)

Syntax DlgVisible {ControlName$ | ControlIndex} [,isOn]

Description Hides or shows the specified control.

Comments Hidden controls cannot be seen in the dialog box and cannot receive the focus using Tab. The isOn
parameter is an Integer specifying the new state of the control. It can be any of the following values:

1 The control is shown.

0 The control is hidden.

Omitted Toggles the visibility of the control. Option buttons can be manipulated individually (by specifying
an individual option button) or as a group (by specifying the name of the option group).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 297

The ControlName$ parameter contains the name of the .Identifier parameter associated with a control
in the dialog box template. A case-insensitive comparison is used to locate the specific control within the
template. Alternatively, by specifying the ControlIndex parameter, a control can be referred to using its
index in the dialog box template (0 is the first control in the template, 1 is the second, and so on).

Picture Caching When the dialog box is first created and before it is shown, the Basic Control Engine
calls the dialog function with action set to 1. At this time, no pictures have been loaded into the picture
controls contained in the dialog box template. After control returns from the dialog function and before the
dialog box is shown, the Basic Control Engine will load the pictures of all visible picture controls. Thus, it
is possible for the dialog function to hide certain picture controls, which prevents the associated pictures
from being loaded and causes the dialog box to load faster. When a picture control is made visible for the
first time, the associated picture will then be loaded.

Example This example creates a dialog box with two panels. The DlgVisible statement is used to show or hide the
controls of the different panels.

Sub EnableGroup(start%,finish%)
 For i = 6 To 13 'Disable all options.
 DlgVisible i,False
 Next i
 For i = start% To finish% 'Enable only the right ones.
 DlgVisible i,True
 Next i
End Sub
Function DlgProc(ControlName$,Action%,SuppValue%)
 If Action% = 1 Then
 DlgValue "WhichOptions",0 'Set to save options.
 EnableGroup 6,8 'Enable the save options.
 End If
 If Action% = 2 And ControlName$ = "SaveOptions" Then
 EnableGroup 6,8 'Enable the save options.
 DlgProc = 1 'Don't close the dialog box.
 End If
 If Action% = 2 And ControlName$ = "EditingOptions" Then
 EnableGroup 9,13 'Enable the editing options.
 DlgProc = 1 'Don't close the dialog box.
 End If
End Function
Sub Main()
 Begin Dialog OptionsTemplate 33,33,171,134,"Options",.DlgProc
 'Background (controls 0-5)
 GroupBox 8,40,152,84,""
 OptionGroup .WhichOptions
 OptionButton 8,8,59,8,"Save Options",.SaveOptions
 OptionButton 8,20,65,8,"Editing Options",.EditingOptions
 OKButton 116,7,44,14
 CancelButton 116,24,44,14

 'Save options (controls 6-8)
 CheckBox 20,56,88,8,"Always create backup",.CheckBox1
 CheckBox 20,68,65,8,"Automatic save",.CheckBox2
 CheckBox 20,80,70,8,"Allow overwriting",.CheckBox3

 'Editing options (controls 9-13)
 CheckBox 20,56,65,8,"Overtype mode",.OvertypeMode
 CheckBox 20,68,69,8,"Uppercase only",.UppercaseOnly
 CheckBox 20,80,105,8,"Automatically check syntax",.AutoCheckSyntax
 CheckBox 20,92,73,8,"Full line selection",.FullLineSelection
 CheckBox 20,104,102,8,"Typing replaces selection",.TypingReplacesText
 End Dialog

 Dim OptionsDialog As OptionsTemplate
 Dialog OptionsDialog
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 298

See Also DlgControlId (page 283) (function); DlgEnable (page 284) (function); DlgEnable (page 285)
(statement); DlgFocus (page 286) (function); DlgFocus (page 287) (statement); DlgListBoxArray (page
287) (function); DlgListBoxArray (page 288) (statement); DlgSetPicture (page 291) (statement);
DlgText (page 292) (statement); DlgText$ (page 293) (function); DlgValue (page 295) (statement);
DlgValue (page 294) (function); DlgVisible (page 296) (statement).

Do...Loop (statement)

Syntax 1 Do {While | Until} condition statements Loop

Syntax 2 Do statements Loop {While | Until} condition

Syntax 3 Do statements Loop

Description Repeats a block of Basic Control Engine statements while a condition is True or until a condition is True
.

Comments If the {While | Until} conditional clause is not specified, then the loop repeats the statements forever
(or until the script encounters an Exit Do statement). The condition parameter specifies any Boolean
expression.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 299

Examples
Sub Main()
 'This first example uses the Do...While statement, which performs
 'the iteration, then checks the condition, and repeats if the
 'condition is True.

 Dim a$(100)
 i% = -1
 Do
 i% = i% + 1
 If i% = 0 Then
 a(i%) = Dir("*")
 Else
 a(i%) = Dir
 End If
 Loop While(a(i%) <> "" And i% <= 99)
 r% = SelectBox(i% & " files found",,a)
End Sub
Sub Main()
 'This second example uses the Do While...Loop, which checks the
 'condition and then repeats if the condition is True.

 Dim a$(100)
 i% = 0
 a(i%) = Dir("*")
 Do While (a(i%) <> "") And (i% <= 99)
 i% = i% + 1
 a(i%) = Dir
 Loop
 r% = SelectBox(i% & " files found",,a)
End Sub
Sub Main()
 'This third example uses the Do Until...Loop, which does the
 'iteration and then checks the condition and repeats if the
 'condition is True.

 Dim a$(100)
 i% = 0
 a(i%) = Dir("*")
 Do Until (a(i%) = "") Or (i% = 100)
 i% = i% + 1
 a(i%) = Dir
 Loop
 r% = SelectBox(i% & " files found",,a)
End Sub
Sub Main()
 'This last example uses the Do...Until Loop, which performs the
 'iteration first, checks the condition, and repeats if the
 'condition is True.

 Dim a$(100)
 i% = -1
 Do
 i% = i% + 1
 If i% = 0 Then
 a(i%) = Dir("*")
 Else
 a(i%) = Dir
 End If
 Loop Until (a(i%) = "") Or (i% = 100)
 r% = SelectBox(i% & " files found",,a)
End Sub

See Also For...Next (page 347) (statement); While ...WEnd (page 522) (statement).

Notes: Due to errors in program logic, you can inadvertently create infinite loops in your code. You can break out
of infinite loops using Ctrl+Break.

DoEvents (function)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 300

Syntax DoEvents[()]

Description Yields control to other applications, returning an Integer 0.

Comments This statement yields control to the operating system, allowing other applications to process mouse,
keyboard, and other messages. If a SendKeys statement is active, this statement waits until all the keys
in the queue have been processed.

Example The following routine explicitly yields to allow other applications to execute and refresh on a regular basis.

Sub Main()
 Open "test.txt" For Output As #1
 For i = 1 To 10000
 Print #1,"This is a test of the system and such."
 r = DoEvents
 Next i
 MsgBox "The DoEvents return value is: " & r
 Close #1
End Sub

See Also DoEvents (page 300) (statement).

DoEvents (statement)

Syntax DoEvents

Description Yields control to other applications.

Comments This statement yields control to the operating system, allowing other applications to process mouse,
keyboard, and other messages. If a SendKeys statement is active, this statement waits until all the keys
in the queue have been processed.

Examples This first example shows a script that takes a long time and hogs the system. The following routine
explicitly yields to allow other applications to execute and refresh on a regular basis.

Sub Main()
 Open "test.txt" For Output As #1
 For i = 1 To 10000
 Print #1,"This is a test of the system and stuff."
 DoEvents
 Next i
 Close #1
End Sub

In this second example, the DoEvents statement is used to wait until the queue has been completely
flushed.

Sub Main()
 id = Shell("notepad.exe",3) 'Start new instance of Notepad.
 SendKeys "This is a test.",False 'Send some keys.
 oEvents 'Wait for the keys to play back.
End Sub

See Also DoEvents (page 300) (statement).

Double (data type)

Syntax Double

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 301

Description A data type used to declare variables capable of holding real numbers with 15–16 digits of precision.

Comments Double variables are used to hold numbers within the following ranges:

Sign Range

Negative – 1.797693134862315E308 <= double <=

-4.94066E-324

Positive 4.94066E-324 <= double <= 1.797693134862315E308

The type-declaration character for Double is #. Storage

• Internally, doubles are 8-byte (64-bit) IEEE values. Thus, when appearing within a structure, doubles
require 8 bytes of storage. When used with binary or random files, 8 bytes of storage are required.

Each Double consists of the following

• A 1-bit sign
• An 11-bit exponent
• A 53-bit significand (mantissa)

See Also Currency (page 259) (data type); Date (page 263) (data type); Integer (page 377) (data type); Long
(page 398) (data type); Object (page 422) (data type); Single (page 479) (data type); String (page
494) (data type); Variant (page 515) (data type); Boolean (page 233) (data type); DefType (page
276) (statement); CDbl (page 237) (function).

DropListBox (statement)

Syntax DropListBox X, Y, width, height, ArrayVariable, .Identifier

Description Creates a drop list box within a dialog box template.

Comments When the dialog box is invoked, the drop list box will be filled with the elements contained in
ArrayVariable. Drop list boxes are similar to combo boxes, with the following exceptions:

• The list box portion of a drop list box is not opened by default. The user must open it by clicking the
down arrow.

• The user cannot type into a drop list box. Only items from the list box may be selected. With combo
boxes, the user can type the name of an item from the list directly or type the name of an item that is
not contained within the combo box.

This statement can only appear within a dialog box template (i.e., between the Begin Dialog and End
Dialog statements). The DropListBox statement requires the following parameters:

Parameter Description

X, Y Integer coordinates specifying the position of the control (in dialog units) static to the
upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog units.

ArrayVariable Single-dimensioned array used to initialize the elements of the drop list box. If this array
has no dimensions, then the drop list box will be initialized with no elements. A runtime
error results if the specified array contains more than one dimension.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 302

ArrayVariable can specify an array of any fundamental data type (structures are not
allowed). Null and Empty values are treated as zero-length strings.

.Identifier Name by which this control can be referenced by statements in a dialog function (such
as DlgFocus and DlgEnable). This parameter also creates an integer variable whose
value corresponds to the index of the drop list box's selection (0 is the first item, 1 is the
second, and so on). This variable can be accessed using the following syntax:

DialogVariable.Identifier

Example This example allows the user to choose a field name from a drop list box.

Sub Main()
 Dim FieldNames$(4)
 FieldNames$(0) = "Last Name"
 FieldNames$(1) = "First Name"
 FieldNames$(2) = "Zip Code"
 FieldNames$(3) = "State"
 FieldNames$(4) = "City"
 Begin Dialog FindTemplate 16,32,168,48,"Find"
 Text 8,8,37,8,"&Find what:"
 DropListBox 48,6,64,80,FieldNames,.WhichField
 OKButton 120,7,40,14
 CancelButton 120,27,40,14
 End Dialog
 Dim FindDialog As FindTemplate
 FindDialog.WhichField = 1
 Dialog FindDialog
End Sub

See Also CancelButton (page 243) (statement); CheckBox (page 240) (statement); ComboBox (page 249)
(statement); Dialog (page 278) (function); Dialog (page 279) (statement); GroupBox (page 361)
(statement); ListBox (page 394) (statement); OKButton (page 426) (statement); OptionButton (page
434) (statement); OptionGroup (page 435) (statement); Picture (page 438) (statement); PushButton
(page 447) (statement); Text (page 502) (statement); TextBox (page 503) (statement); Begin (page
231) Dialog (page 231) (statement), PictureButton (page 439) (statement).

E

E

ebAbort (constant)

ebAbortRetryIgnore (constant)

ebApplicationModal (constant)

ebArchive (constant)

ebBold (constant)

ebBoldItalic (constant)

ebBoolean (constant)

ebCancel (constant)

ebCritical (constant)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 303

ebCurrency (constant)

ebDataObject (constant)

ebDate (constant)

ebDefaultButton1 (constant)

ebDefaultbutton2 (constant)

ebDefaultbutton3 (constant)

ebDirectory (constant)

ebDos (constant)

ebDouble (constant)

ebEmpty (constant)

ebError (constant)

ebExclamation (constant)

ebHidden (constant)

ebIgnore (constant)

ebInformation (constant)

ebInteger (constant)

ebItalic (constant)

ebLong (constant)

ebNo (constant)

ebNone (constant)

ebNormal (constant)

ebNull (constant)

ebObject (constant)

ebOK (constant)

ebOKCancel (constant)

ebOKOnly (constant)

ebQuestion (constant)

ebReadOnly (constant)

ebRegular (constant)

ebRetry (constant)

ebRetryCancel (constant)

ebSingle (constant)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 304

ebString (constant)

ebSystem (constant)

ebSystemModal (constant)

ebVariant (constant)

ebVolume (constant

ebYes (constant)

ebYesNo (constant)

ebYesNoCancel (constant)

Empty (constant)

End (statement)

End Dialog (statement)

Environ, Environ$ (function)

EOF (function)

Eqv (operator)

Erase (statement)

Erl (function)

Err (function) obsolete

Err (statement)

Err.Clear (method)

Err.Description (property)

Err.HelpContext (property)

Err.HelpFile (property)

Err.LastDLLError (property)

Err.Number (property)

Err.Raise (method)

Err.Source (property)

Error (statement)

Error Handling (topic)

Error, Error$ ((functions)

Exit Do (statement)

Exit For (statement)

Exit Function (statement)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 305

Exit Sub (statement)

Exp (function)

Expression Evaluation (topic)

ebAbort (constant)

Description Returned by the MsgBox function when the Abort button is chosen.

Comments This constant is equal to 3.

Example This example displays a dialog box with Abort, Retry, and Ignore buttons.

Sub Main()
Again:
 rc% = MsgBox("Do you want to continue?",ebAbortRetryIgnore)
 If rc% = ebAbort or rc% = ebIgnore Then
 End
 ElseIf rc% = ebRetry Then
 Goto Again
 End If
End Sub

See Also MsgBox (page 409) (function); MsgBox (page 411) (statement).

ebAbortRetryIgnore (constant)

Description Used by the MsgBox statement and function.

Comments This constant is equal to 2.

Example This example displays a dialog box with Abort, Retry, and Ignore buttons.

Sub Main()
Again:
 rc% = MsgBox("Do you want to continue?",ebAbortRetryIgnore)
 If rc% = ebAbort or rc% = ebIgnore Then
 End
 ElseIf rc% = ebRetry Then
 Goto Again
 End If
End Sub

See Also MsgBox (page 409) (function); MsgBox (page 411) (statement).

ebApplicationModal (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 0.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 306

Example This example displays an application-modal dialog box (which is the default).

Sub Main()
 MsgBox "This is application-modal.",ebOKOnly Or ebApplicationModal
End Sub

See Also MsgBox (page 409) (function); MsgBox (page 411) (statement).

ebArchive (constant)

Description Bit position of a file attribute indicating that a file hasn't been backed up.

Comments This constant is equal to 32.

Example This example dimensions an array and fills it with filenames with the Archive bit set.

Sub Main()
 Dim s$()
 FileList s$,"*",ebArchive
 a% = SelectBox("Archived Files", "Choose one", s$)
 If a% >= 0 Then 'If a% is -1, then the user pressed Cancel.
 MsgBox "You selected Archive file: " & s$(a)
 Else
 MsgBox "No selection made."
 End If
End Sub

See Also Dir, Dir$ (page 280) (functions); FileList (page 343) (statement); SetAttr (page 477)
(statement); GetAttr (page 357) (function); FileAttr (page 339) (function).

ebBold (constant)

Description Used with the Text and TextBox statement to specify a bold
font.

Comments This constant is equal to 2.

Example
Sub Main()
 Begin Dialog UserDialog 16,32,232,132,"Bold Font Demo"
 Text 10,10,200,20,"Hello, world.",,"Helv",24,ebBold
 TextBox 10,35,200,20,.Edit,,"Times New Roman",16,ebBold
 OKButton 96,110,40,14
 End Dialog
 Dim a As UserDialog
 Dialog a
End Sub

See Also Text (page 502) (statement), TextBox (page 503) (statement).

ebBoldItalic (constant)

Description Used with the Text and TextBox statement to specify a bold-italic font.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 307

Comments This constant is equal to 6.

Example
Sub Main()
 Begin Dialog UserDialog 16,32,232,132,"Bold-Italic Font Demo"
 Text 10,10,200,20,"Hello, world.",,"Helv",24,ebBoldItalic
 TextBox 10,35,200,20,.Edit,,"Times New Roman",16,ebBoldItalic
 OKButton 96,110,40,14
 End Dialog
 Dim a As UserDialog
 Dialog a
End Sub

See Also Text (page 502) (statement), TextBox (page 503) (statement).

ebBoolean (constant)

Description Number representing the type of a Boolean
variant.

Comments This constant is equal to 11.

Example
Sub Main()
 Dim MyVariant as variant
 MyVariant = True
 If VarType(MyVariant) = ebBoolean Then
 MyVariant = 5.5
 End If
End Sub

See Also VarType (page 516) (function); Variant (page
515) (data type).

ebCancel (constant)

Description Returned by the MsgBox function when the Cancel button is chosen.

Comments This constant is equal to 2.

Example
Sub Main()
 'Invoke MsgBox and check whether the Cancel button was pressed.
 rc% = MsgBox("Are you sure you want to quit?",ebOKCancel)
 If rc% = ebCancel Then
 MsgBox "The user clicked Cancel."
 End If
End Sub

See Also MsgBox (page 409) (function); MsgBox (page 411) (statement).

ebCritical (constant)

Description Used with the MsgBox statement and function.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 308

Comments This constant is equal to 16.

Example
Sub Main()
'Invoke MsgBox with Abort, Retry, and Ignore buttons and a Stop icon.
 rc% = MsgBox("Disk drive door is open.",ebAbortRetryIgnore Or ebCritical)
 If rc% = 3 Then
 'The user selected Abort from the dialog box.
 MsgBox "The user clicked Abort."
 End If
End Sub

See Also MsgBox (page 409) (function); MsgBox (page 411) (statement).

ebCurrency (constant)

Description Number representing the type of a Currency variant.

Comments This constant is equal to 6.

Example This example checks to see whether a variant is of type Currency.

Sub Main()
 Dim MyVariant
 If VarType(MyVariant) = ebCurrency Then
 MsgBox "Variant is Currency."
 End If
End Sub

See Also VarType (page 516) (function); Variant (page 515) (data type).

ebDataObject (constant)

Description Number representing the type of a data object variant.

Comments This constant is equal to 13.

Example This example checks to see whether a variable is a data object.

Sub Main()
 Dim MyVariant as Variant
 If VarType(MyVariant) = ebDataObject Then
 MsgBox "Variant contains a data object."
 End If
End Sub

See Also VarType (page 516) (function); Variant (page 515) (data
type).

ebDate (constant)

Description Number representing the type of a Date variant.

Comments This constant is equal to 7.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 309

Example
Sub Main()
 Dim MyVariant as Variant
 If VarType(MyVariant) = ebDate Then
 MsgBox "This variable is a Date type!"
 Else
 MsgBox "This variable is not a Date type!"
 End If
End Sub

See Also VarType (page 516) (function); Variant (page
515) (data type).

ebDefaultButton1 (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 0.

Example This example invokes MsgBox with the focus on the OK button by default.

Sub Main()
 rc% = MsgBox("Are you sure you want to quit?",ebOKCancel Or ebDefaultButton1)
End Sub

See Also MsgBox (page 409) (function); MsgBox (page 411) (statement).

ebDefaultButton2 (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 256.

Example This example invokes MsgBox with the focus on the Cancel button by default.

Sub Main()
 rc% = MsgBox("Are you sure you want to quit?",ebOKCancel Or ebDefaultButton2)
End Sub

See Also MsgBox (page 409) (function); MsgBox (page 411) (statement).

ebDefaultButton3 (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 512.

Example This example invokes MsgBox with the focus on the Ignore button by default.

Sub Main()
 rc% = MsgBox("Disk drive door open.",ebAbortRetryIgnore Or ebDefaultButton3)
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 310

See Also MsgBox (page 409) (function); MsgBox (page 411) (statement).

ebDirectory (constant)

Description Bit position of a file attribute indicating that a file is a directory entry.

Comments This constant is equal to 16.

Example This example dimensions an array and fills it with directory names using the ebDirectory constant.

Sub Main()
 Dim s$()
 FileList s$,"c:*",ebDirectory
 a% = SelectBox("Directories", "Choose one:", s$)
 If a% >= 0 Then
 MsgBox "You selected directory: " & s(a%)
 Else
 MsgBox "No selection made."
 End If
End Sub

See Also Dir, Dir$ (page 280) (functions); FileList (page 343) (statement); SetAttr (page 477)
(statement); GetAttr (page 357) (function); FileAttr (page 339) (function).

ebDos (constant)

Description Used with the AppType or FileType functions to indicate a DOS
application.

Comments This constant is equal to 1.

Example This example detects whether a DOS program was selected.

Sub Main()
 s$ = OpenFilename$("Run","Programs:*.exe")
 If s$ <> "" Then
 If FileType(s$) = ebDos Then
 MsgBox "You selected a DOS exe file."
 End If
 End If
End Sub

See Also AppType (page 216) (function)

ebDouble (constant)

Description Number representing the type of a Double variant.

Comments This constant is equal to 5.

Example See ebSingle (constant).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 311

See Also MsgBox (page 409) (function); MsgBox (page 411) (statement); VarType
(page 516) (function); Variant (page 515) (data type).

ebEmpty (constant)

Description Number representing the type of an Empty variant.

Comments This constant is equal to 0.

Example
Sub Main()
 Dim MyVariant as Variant
 If VarType(MyVariant) = ebEmpty Then
 MsgBox "This variant has not been assigned a value yet!"
 End If
End Sub

See Also VarType (page 516) (function); Variant (page 515) (data type).

ebError (constant)

Description Number representing the type of an error variant.

Comments This constant is equal to 10.

Example This example checks to see whether a variable is an error.

Function Div(ByVal a As Variant,ByVal b As Variant) As Variant
 On Error Resume Next
 Div = a / b
 If Err <> 0 Then Div = CVErr(Err)
End Function
Sub Main()
 a = InputBox("Please enter 1st number","Division Sample")
 b = InputBox("Please enter 2nd number","Division Sample")
 res = Div(a,b)
 If VarType(res) = ebError Then
 res = CStr(res)
 res = Error(Mid(res,7,Len(res)))
 MsgBox "'" & res & "' occurred"
 Else
 MsgBox "The result of the division is: " & res
 End If
End Sub

See Also VarType (page 516) (function); Variant (page 515) (data type).

ebExclamation (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 48.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 312

Example This example displays a dialog box with an OK button and an exclamation icon.

Sub Main()
 MsgBox "Out of memory saving to disk.",ebOKOnly Or ebExclamation
End Sub

See Also MsgBox (page 409) (function); MsgBox (page 411) (statement).

ebHidden (constant)

Description Bit position of a file attribute indicating that a file is hidden.

Comments This constant is equal to 2.

Example This example dimensions an array and fills it with filenames using the ebHidden attribute.

Sub Main()
 Dim s$()
 FileList s$,"*",ebHidden
 If ArrayDims(s$) = 0 Then
 MsgBox "No hidden files found!"
 End
 End If
 a% = SelectBox("Hidden Files","Choose one", s$)
 If a% >= 0 Then
 MsgBox "You selected hidden file " & s(a%)
 Else
 MsgBox "No selection made."
 End If
End Sub

See Also Dir, Dir$ (page 280) (functions); FileList (page 343) (statement); SetAttr (page 477)
(statement); GetAttr (page 357) (function); FileAttr (page 339) (function).

ebIgnore (constant)

Description Returned by the MsgBox function when the Ignore button is chosen.

Comments This constant is equal to 5.

Example This example displays a critical error dialog box and sees what the user wants to do.

Sub Main()
 rc% = MsgBox("Printer out of paper.",ebAbortRetryIgnore)
 If rc% = ebIgnore Then
 'Continue printing here.
 End If
End Sub

See Also MsgBox (page 409) (function); MsgBox (page 411) (statement).

ebInformation (constant)

Description Used with the MsgBox statement and function.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 313

Comments This constant is equal to 64.

Example This example displays a dialog box with the Information icon.

Sub Main()
 MsgBox "You just deleted your file!",ebOKOnly Or ebInformation
End Sub

See Also MsgBox (page 409) (function); MsgBox (page 411) (statement).

ebInteger (constant)

Description Number representing the type of an Integer variant.

Comments This constant is equal to 2.

Example This example defines a function that returns True if a variant contains an Integer value (either a 16-bit or
32-bit Integer).

Function IsInteger(v As Variant) As Boolean
 If VarType(v) = ebInteger Or VarType(v) = ebLong Then
 IsInteger = True
 Else
 IsInteger = False
 End If
End Function
Sub Main()
 Dim i as Integer
 i = 123
 If IsInteger(i) then
 Msgbox "i is an Integer."
 End If
End Sub

See Also VarType (page 516) (function); Variant (page 515) (data type).

ebItalic (constant)

Description Used with the Text and TextBox statement to specify an italic
font.

Comments This constant is equal to 4.

Example
Sub Main()
 Begin Dialog UserDialog 16,32,232,132,"Italic Font Demo"
 Text 10,10,200,20,"Hello, world.",,"Helv",24,ebItalic
 TextBox 10,35,200,20,.Edit,,"Times New Roman",16,ebItalic
 OKButton 96,110,40,14
 End Dialog
 Dim a As UserDialog
 Dialog a
End Sub

See Also Text (page 502) (statement), TextBox (page 503) (statement).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 314

ebLong (constant)

Description Number representing the type of a Long
variant.

Comments This constant is equal to 3.

Example See ebInteger (constant).

See Also VarType (page 516) (function); Variant (page
515) (data type).

ebNo (constant)

Description Returned by the MsgBox function when the No button is chosen.

Comments This constant is equal to 7.

Example This example asks a question and queries the user's response.

Sub Main()
 rc% = MsgBox("Do you want to update the glossary?",ebYesNo)
 If rc% = ebNo Then
 MsgBox "The user clicked 'No'." 'Don't update glossary.
 End If
End Sub

See Also MsgBox (page 409) (function); MsgBox (page 411) (statement).

ebNone (constant)

Description Bit value used to select files with no other attributes.

Comments This value can be used with the Dir$ and FileList commands. These functions will return only files with
no attributes set when used with this constant. This constant is equal to 64.

Example This example dimensions an array and fills it with filenames with no attributes set.

Sub Main()
 Dim s$()
 FileList s$,"*",ebNone
 If ArrayDims(s$) = 0 Then
 MsgBox "No files found without attributes!"
 End
 End If
 a% = SelectBox("No Attributes", "Choose one", s$)
 If a% >= 0 Then
 MsgBox "You selected file " & s(a%)
 Else
 MsgBox "No selection made."
 End If
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 315

See Also Dir, Dir$ (page 280) (functions); FileList (page 343) (statement); SetAttr (page 477) (statement);
GetAttr (page 357) (function); FileAttr (page 339) (function).

ebNormal (constant)

Description Used to search for normal files.

Comments This value can be used with the Dir$ and FileList commands and will return files with the Archive,
Volume, ReadOnly, or no attributes set. It will not match files with Hidden, System, or Directory attributes.
This constant is equal to 0.

Example This example dimensions an array and fills it with filenames with Normal attributes.

Sub Main()
 Dim s$()
 FileList s$,"*", ebNormal
 If ArrayDims(s$) = 0 Then
 MsgBox "No filesfound!"
 End
 End If
 a% = SelectBox("Normal Files", "Choose one", s$)
 If a% >= 0 Then
 MsgBox "You selected file " & s(a%)
 Else
 MsgBox "No selection made."
 End If
End Sub

See Also Dir, Dir$ (page 280) (functions); FileList (page 343) (statement); SetAttr (page 477) (statement);
GetAttr (page 357) (function); FileAttr (page 339) (function).

ebNull (constant)

Description Number representing the type of a Null
variant.

Comments This constant is equal to 1.

Example
Sub Main()
 Dim MyVariant
 MyVariant = Null
 If VarType(MyVariant) = ebNull Then
 MsgBox "This variant is Null"
 End If
End Sub

See Also VarType (page 516) (function); Variant (page
515) (data type).

ebObject (constant)

Description Number representing the type of an Object variant (an OLE automation
object).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 316

Comments This constant is equal to 9.

Example
Sub Main()
 Dim MyVariant
 If VarType(MyVariant) = ebObject Then
 MsgBox MyVariant.Value
 Else
 MsgBox "'MyVariant' is not an object."
 End If
End Sub

See Also VarType (page 516) (function); Variant (page 515) (data type).

ebOK (constant)

Description Returned by the MsgBox function when the OK button is chosen.

Comments This constant is equal to 1.

Example This example displays a dialog box that allows the user to cancel.

Sub Main()
 rc% = MsgBox("Are you sure you want to exit Windows?",ebOKCancel)
 If rc% = ebOK Then System.Exit
End Sub

See Also MsgBox (page 409) (function); MsgBox (page 411) (statement).

ebOKCancel (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 1.

Example This example displays a dialog box that allows the user to cancel.

Sub Main()
 rc% = MsgBox("Are you sure you want to exit Windows?",ebOKCancel)
 If rc% = ebOK Then System.Exit
End Sub

See Also MsgBox (page 409) (function); MsgBox (page 411) (statement).

ebOKOnly (constant)

Description Used with the MsgBox statement and function

Comments This constant is equal to 0.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 317

Example This example informs the user of what is going on (no options).

Sub Main()
 MsgBox "The system has been reset.",ebOKOnly
End Sub

See Also MsgBox (page 409) (function); MsgBox (page 411)
(statement)

ebQuestion (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 32.

Example This example displays a dialog box with OK and Cancel buttons and a question icon.

Sub Main()
 rc% = MsgBox("OK to delete file?",ebOKCancel Or ebQuestion)
End Sub

See Also MsgBox (page 409) (function); MsgBox (page 411) (statement)

ebReadOnly (constant)

Description Bit position of a file attribute indicating that a file is read-only.

Comments This constant is equal to 1.

Example This example dimensions an array and fills it with filenames with ReadOnly attributes.

Sub Main()
 Dim s$()
 FileList s$, "*", ebReadOnly
 If ArrayDims(s$) = 0 Then
 MsgBox "No read only files found!"
 End
 End If
 a% = SelectBox("ReadOnly", "Choose one", s$)
 If a% >= 0 Then
 MsgBox "You selected file " & s(a%)
 Else
 MsgBox "No selection made."
 End If
End Sub

See Also Dir, Dir$ (page 280) (functions); FileList (page 343) (statement); SetAttr (page 477)
(statement); GetAttr (page 357) (function); FileAttr (page 339) (function).

ebRegular (constant)

Description Used with the Text and TextBox statement to specify an normal-styled font (i.e., neither bold or
italic).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 318

Comments This constant is equal to 1.

Example
Sub Main()
 Begin Dialog UserDialog 16,32,232,132,"Regular Font Demo"
 Text 10,10,200,20,"Hello, world.",,"Helv",24,ebRegular
 TextBox 10,35,200,20,.Edit,,"Times New Roman",16,ebRegular
 OKButton 96,110,40,14
 End Dialog
 Dim a As UserDialog
 Dialog a
End Sub

See Also Text (page 502) (statement), TextBox (page 503) (statement)

ebRetry (constant)

Description Returned by the MsgBox function when the Retry button is
chosen.

Comments This constant is equal to 4.

Example This example displays a Retry message box.

Sub Main()
 rc% = MsgBox("Unable to open file.",ebRetryCancel)
 If rc% = ebRetry Then
 MsgBox "User selected Retry."
 End If
End Sub

See Also MsgBox (page 409) (function); MsgBox (page 411) (statement)

ebRetryCancel (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 5.

Example This example invokes a dialog box with Retry and Cancel buttons.

Sub Main()
 rc% = MsgBox("Unable to open file.",ebRetryCancel)
End Sub

See Also MsgBox (page 409) (function); MsgBox (page 411)
(statement).

ebSingle (constant)

Description Number representing the type of a Single variant.

Comments This constant is equal to 4.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 319

Example This example defines a function that returns True if the passed variant is a Real number.

Function IsReal(v As Variant) As Boolean
 If VarType(v) = ebSingle Or VarType(v) = ebDouble Then
 IsReal = True
 Else
 IsReal = False
 End If
End Function
Sub Main()
 Dim i as Integer
 i = 123
 If IsReal(i) then
 Msgbox "i is Real."
 End If
End Sub

See Also VarType (page 516) (function); Variant (page 515) (data type).

ebString (constant)

Description Number representing the type of a String
variant.

Comments This constant is equal to 8.

Example
Sub Main()
 Dim MyVariant as variant
 MyVariant = "This is a test."
 If VarType(MyVariant) = ebString Then
 MsgBox "Variant is a string."
 End If
End Sub

See Also VarType (page 516) (function); Variant (page
515) (data type).

ebSystem (constant)

Description Bit position of a file attribute indicating that a file is a system file.

Comments This constant is equal to 4.

Example This example dimensions an array and fills it with filenames with System attributes.

Sub Main()
 Dim s$()
 FileList s$,"*",ebSystem
 a% = SelectBox("System Files", "Choose one", s$)
 If a% >= 0 Then
 MsgBox "You selected file " & s(a%)
 Else
 MsgBox "No selection made."
 End If
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 320

See Also Dir, Dir$ (page 280) (functions); FileList (page 343) (statement); SetAttr (page 477)
(statement); GetAttr (page 357) (function); FileAttr (page 339) (function).

ebSystemModal (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 4096.

Example
Sub Main()
 MsgBox "All applications are halted!",ebSystemModal
End Sub

See Also ebApplicationModal (page 305) (constant); Constants (topic); MsgBox (page 409)
(function); MsgBox (page 411) (statement).

ebVariant (constant)

Description Number representing the type of a Variant .

Comments Currently, it is not possible for variants to use this subtype. This constant is equal to 12.

See Also VarType (page 516) (function); Variant (page 515) (data type).

ebVolume (constant)

Description Bit position of a file attribute indicating that a file is the volume label.

Comments This constant is equal to 8.

Example This example dimensions an array and fills it with filenames with Volume attributes.

Sub Main()
 Dim s$()
 FileList s$, "*", ebVolume
 If ArrayDims(s$) > 0 Then
 MsgBox "The volume name is: " & s(1)
 Else
 MsgBox "No volumes found."
 End If
End Sub

See Also Dir, Dir$ (page 280) (functions); FileList (page 343) (statement); SetAttr (page 477)
(statement); GetAttr (page 357) (function); FileAttr (page 339) (function).

ebYes (constant)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 321

Description Returned by the MsgBox function when the Yes button is
chosen.

Comments This constant is equal to 6.

Example This example queries the user for a response.

Sub Main()
 rc% = MsgBox("Overwrite file?",ebYesNoCancel)
 If rc% = ebYes Then
 MsgBox "You elected to overwrite the file."
 End If
End Sub

See Also MsgBox (page 409) (function); MsgBox (page 411)
(statement).

ebYesNo (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 4.

Example This example displays a dialog box with Yes and No buttons.

Sub Main()
 rc% = MsgBox("Are you sure you want to remove all formatting?",ebYesNo)
End Sub

See Also MsgBox (page 409) (function); MsgBox (page 411) (statement).

ebYesNoCancel (constant)

Description Used with the MsgBox statement and function.

Comments This constant is equal to 3.

Example This example displays a dialog box with Yes, No, and Cancel buttons.

Sub Main()
 rc% = MsgBox("Format drive C:?",ebYesNoCancel)
 If rc% = ebYes Then
 MsgBox "The user chose Yes."
 End If
End Sub

See Also MsgBox (page 409) (function); MsgBox (page 411) (statement).

Empty (constant)

Description Constant representing a variant of type 0.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 322

Comments The Empty value has special meaning indicating that a Variant is uninitialized. When Empty is
assigned to numbers, the value 0 is assigned. When Empty is assigned to a String , the string is
assigned a zero-length string.

Example
Sub Main()
 Dim a As Variant
 a = Empty
 MsgBox "This string is" & a & "concatenated with Empty"
 MsgBox "5 + Empty = " & (5 + a)
End Sub

See Also Null (page 421) (constant); Variant (page 515) (data type); VarType (page 516) (function).

End (statement)

Syntax End

Description Terminates execution of the current script, closing all open files.

Example This example uses the End statement to stop execution.

Sub Main()
 MsgBox "The next line will terminate the script."
 End
End Sub

See Also Close (page 248) (statement); Stop (page 491) (statement); Exit For (page 334) (statement); Exit Do
(page 334) (statement); Exit Function (page 335) (statement); Exit Sub (page 335) (function).

End Dialog (statement)

Syntax Begin Dialog (page 231) DialogName [x],[y],width,height,title$ [,[.DlgProc] [,[PicName$] [,style]]] Dialog
Statements End Dialog

Description Defines the end of the dialog box template for use with the Dialog statement and function.

See Also Begin Dialog (page 231) (statement), CancelButton (page 243) (statement); CheckBox (page 240)
(statement); ComboBox (page 249) (statement); Dialog (page 278) (function); Dialog (page 279)
(statement); DlgProc (page 289) (function); DropListBox (page 301) (statement); GroupBox (page
361) (statement); ListBox (page 394) (statement); OKButton (page 426) (statement); OptionButton
(page 434) (statement); OptionGroup (page 435) (statement); Picture (page 438) (statement;
PictureButton (page 439) (statement); PushButton (page 447) (statement); Text (page 502)
(statement); TextBox (page 503) (statement).

Note Within user dialog boxes, the default font is 8-point MS Sans Serif.

Environ, Environ$ (functions)

Syntax Environ[$](variable$ | VariableNumber)

Description Returns the value of the specified environment variable.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 323

Comments Environ$ returns a String , whereas Environ returns a String variant. If variable$ is specified, then
this function looks for that variable$ in the environment. If the variable$ name cannot be found, then a
zero-length string is returned. If VariableNumber is specified, then this function looks for the Nth variable
within the environment (the first variable being number 1). If there is no such environment variable, then a
zero-length string is returned. Otherwise, the entire entry from the environment is returned in the following
format:

 variable = value

Example This example looks for the DOS Comspec variable and displays the value in a dialog box.

Sub Main()
 Dim a$(1)
 a$(1) = Environ("SITE_Root")
 MsgBox "My CIMPLICITY project directory is: " & a$(1)
End Sub

See Also Command (page 250), Command$ (page 250) (functions).

EOF (function)

Syntax EOF (filenumber)

Description Returns True if the end-of-file has been reached for the given file; returns False otherwise.

Comments The filenumber parameter is an Integer used by the Basic Control Engine to refer to the open file—the
number passed to the Open statement. With sequential files, EOF returns True when the end of the
file has been reached (i.e., the next file read command will result in a runtime error). With Random or
Binary files, EOF returns True after an attempt has been made to read beyond the end of the file.
Thus, EOF will only return True when Get was unable to read the entire record.

Example This example opens the autoexec.bat file and reads lines from the file until the end-of-file is reached.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 file$ = "c:\autoexec.bat"
 Open file$ For Input As #1
 Do While Not EOF(1)
 Line Input #1,newline
 Loop
 Close
 MsgBox "The last line of '" & file$ "' is:" & crlf & crlf & newline
End Sub

See Also Open (page 428) (statement); LOF (page 397) (function).

Eqv (operator)

Syntax Expression1 Eqv expression2

Description Performs a logical or binary equivalence on two expressions.

Comments If both expressions are either Boolean , Boolean variants, or Null variants, then a logical equivalence
is performed as follows:

If the first expression is and the second
expression is

then the result is

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 324

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE TRUE

If either expression is Null , then Null is returned.

Binary Equivalence If the two expressions are Integer, then a binary equivalence is performed, returning
an Integer result. All other numeric types (including Empty variants) are converted to Long and a binary
equivalence is then performed, returning a Long result. Binary equivalence forms a new value based on
a bit-by-bit comparison of the binary representations of the two expressions, according to the following
table:

1 Eqv 1 = 1 Example

0 Eqv 1 = 0 5 01101001

1 Eqv 0 = 0 6 10101010

0 Eqv 0 = 1 Eqv 00101000

Example This example assigns False to A, performs some equivalent operations, and displays a dialog box with the
result. Since A is equivalent to False, and False is equivalent to 0, and by definition, A = 0, then the dialog
box will display "A is False."

Sub Main()
 a = False
 If ((a Eqv False) And (False Eqv 0) And (a = 0)) Then
 MsgBox "a is False."
 Else
 MsgBox "a is True."
 End If
End Sub

See Also Operator Precedence (page 431) (topic); Or (page 435) (operator); Xor (page 532) (operator); Imp
(page 371) (operator); And (page 204) (operator).

Erase (statement)

Syntax Erase array1 [,array2]...

Description Erases the elements of the specified arrays.

Comments For dynamic arrays, the elements are erased, and the array is redimensioned to have no dimensions
(and therefore no elements). For fixed arrays, only the elements are erased; the array dimensions are not
changed.

After a dynamic array is erased, the array will contain no elements and no dimensions. Thus, before the
array can be used by your program, the dimensions must be reestablished using the Redim statement.
Up to 32 parameters can be specified with the Erase statement.

The meaning of erasing an array element depends on the type of the element being erased:

Element Type What Erase Does to That Element

Integer Sets the element to 0.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 325

Boolean Sets the element to FALSE.

Long Sets the element to 0.

Double Sets the element to 0.0.

Date Sets the element to December 30, 1899.

Single Sets the element to 0.0.

String (variable-length) Frees the string, then sets the element to a zero-length string.

String (fixed-length) Sets every character of each element to zero (Chr$(0)).

Object Decrements the reference count and sets the element to Nothing .

Variant Sets the element to Empty .

User-defined type Sets each structure element as a separate variable.

Example This example fills an array with a list of available disk drives, displays the list, erases the array and then
redisplays the list.

Sub Main()
 Dim a$(10) 'Declare an array.
 DiskDrives a 'Fill element 1 with a list of available disk drives.
 r = SelectBox("Array Before Erase",,a)
 Erase a$ 'Erase all elements in the array.
 r = SelectBox("Array After Erase",,a)
End Sub

See Also Redim (page 459) (statement); Arrays (page 218) (topic).

Erl (function)

Syntax Erl[()]

Description Returns the line number of the most recent error.

Comments The first line of the script is 1, the second line is 2, and so on. The internal value of Erl is reset to 0 with
any of the following statements: Resume , Exit Sub , Exit Function . Thus, if you want to use this value
outside an error handler, you must assign it to a variable.

Example This example generates an error and then determines the line on which the error occurred.

Sub Main()
 Dim i As Integer
 On Error Goto Trap1
 i = 32767 'Generate an error--overflow.
 i = i + 1
 Exit Sub
Trap1:
 MsgBox "Error on line: " & Erl
 Exit Sub 'Reset the error handler.
End Sub

See Also Err (page 326) (function); Error, Error$ (page 326) (functions); Error Handling (page 327) (topic).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 326

Err (function)

This function is obsolete.

Refer to Err.Number (property) (page 332) .

Err (statement)

Syntax Err = value

Description Sets the value returned by the Err function to a specific Integer value.

Comments Only positive values less than or equal to 32767 can be used. Setting value to -1 has the side effect of
resetting the error state. This allows you to perform error trapping within an error handler. The ability to
reset the error handler while within an error trap is not standard Basic. Normally, the error handler is reset
only with the Resume , Exit Sub , or Exit Function statement.

Example This example forces error 10, with a subsequent transfer to the TestError label. TestError tests the error
and, if not error 55, resets Err to 999 (user-defined error) and returns to the Main subroutine.

Sub Main()
 On Error Goto TestError
 Error 10
 MsgBox "The returned error is: '" & Err() & " - " & Error$ & "'"
 Exit Sub
TestError:
 If Err = 55 Then 'File already open.
 MsgBox "Cannot copy an open file. Close it and try again."
 Else
 MsgBox "Error '" & Err & "' has occurred."
 Err = 999
 End If
 Resume Next
End Sub

See Also Error (page 327) (statement); Error Handling (page 327) (topic).

Error, Error$ (functions)

Syntax Error[$][(errornumber)]

Description Returns a String containing the text corresponding to the given error number or the most recent error.

Comments Error$ returns a String, whereas Error returns a String variant. The errornumber parameter is an
Integer containing the number of the error message to retrieve. If this parameter is omitted, then the
function returns the text corresponding to the most recent runtime error. If no runtime error has occurred,
then a zero-length string is returned. If the Error statement was used to generate a user-defined runtime
error, then this function will return a zero-length string ("").

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 327

Example This example forces error 10, with a subsequent transfer to the TestError label. TestError tests the error
and, if not error 55, resets Err to 999 (user-defined error) and returns to the Main subroutine.

Sub Main()
 On Error Goto TestError
 Error 10
 MsgBox "The returned error is: '" & Err & " - " & Error & "'"
 Exit Sub
TestError:
 If Err = 55 Then 'File already open.
 MsgBox "Cannot copy an open file. Close it and try again."
 Else
 MsgBox "Error '" & Err & "' has occurred."
 Err = 999
 End If
 Resume Next
End Sub

See Also Erl (page 325) (function); Err (page 326) (function); Error Handling (page 327) (topic).

Error (statement)

Syntax Error errornumber

Description Simulates the occurrence of the given runtime error.

Comments The errornumber parameter is any Integer containing either a built-in error number or a user-defined error
number. The Err function can be used within the error trap handler to determine the value of the error.

Example This example forces error 10, with a subsequent transfer to the TestError label. TestError tests the error
and, if not error 55, resets Err to 999 (user-defined error) and returns to the Main subroutine.

Sub Main()
 On Error Goto TestError
 Error 10
 MsgBox "The returned error is: '" & Err() & " - " & Error$ & "'"
 Exit Sub
TestError:
 If Err = 55 Then 'File already open.
 MsgBox "Cannot copy an open file. Close it and try again."
 Else
 MsgBox "Error '" & Err & "' has occurred."
 Err = 999
 End If
 Resume Next
End Sub

See Also Err (page 326) (statement); Error Handling (page 327) (topic).

Error Handling (topic)

1. Visual Basic–compatible errors: These errors, numbered between 0 and 799, are numbered
and named according to the errors supported by Visual Basic.

2. Basic Control Engine script errors: These errors, numbered from 800 to 999, are unique to the
Basic Control Engine..

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 328

3. User-defined errors: These errors, equal to or greater than 1,000, are available for use by
extensions or by the script itself.

Err.Clear (method)

Syntax Err.Clear

Description Clears the properties of the Err object.

Comments After this method has been called, the properties of the Err object will have the following values:

Property Value

Err.Description ""

Err.HelpContext 0

Err.HelpFile ""

Err.LastDLLError 0

Err.Number 0

Err.Source ""

The properties of the Err object are automatically reset when any of the following statements are
executed:

 Resume Exit Function
 On Error Exit Sub

Example

 'The following script gets input from the user using error
 'checking.
 Sub Main()
 Dim x As Integer
 On Error Resume Next
 x = InputBox("Type in a number")
 If Err.Number <> 0 Then
 Err.Clear
 x = 0
 End If
 MsgBox x
 End Sub

See Also Error Handling (page 327) (topic), Err.Description (page 328) (property), Err.HelpContext (page 329)
(property), Err.HelpFile (page 330) (property), Err.LastDLLError (page 331) (property), Err.Number
(page 332) (property), Err.Source (page 333) (property)

Err.Description (property)

Syntax Err.Description [= stringexpression]

Description Sets or retrieves the description of the error.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 329

Comments For errors generated by BasicScript, the Err.Description property is automatically set. For user-defined
errors, you should set this property to be a description of your error. If you set the Err.Number property
to one of BasicScript’s internal error numbers and you don’t set the Err.Description property, then the
Err.Description property is automatically set when the error is generated (i.e., with Err.Raise).

Example

 'The following script gets input from the user using error
 'checking. When an error occurs, the Err.Description property
 'is displayed to the user and execution continues with a default
 'value.
 Sub Main()
 Dim x As Integer
 On Error Resume Next
 x = InputBox("Type in a number")
 If Err.Number <> 0 Then
 MsgBox "The following error occurred: "
 & Err.Description
 x = 0
 End If
 MsgBox x
 End Sub

See Also Error Handling (page 327) (topic), Err.Clear (page 328) (method), Err.HelpContext (page 329)
(property), Err.HelpFile (page 330) (property), Err.LastDLLError (page 331) (property), Err.Number
(page 332) (property), Err.Source (page 333) (property)

Err.HelpContext (property)

Syntax Err.HelpContext [= contextid]

Description Sets or retrieves the help context ID that identifies the help topic for information on the error.

Comments The Err.HelpContext property, together with the Err.HelpFile property, contain sufficient information to
display help for the error. When BasicScript generates an error, the Err.HelpContext property is set to
0 and the and the Err.HelpFile property is set to ""; the value of the Err.Number property is sufficient for
displaying help in this case. The exception is with errors generated by an OLE automation server; both the
Err.HelpFile and Err.HelpContext properties are set by the server to values appropriate for the generated
error. When generating your own user-define errors, you should set the Err.HelpContext property and the
Err.HelpFile property appropriately for your error. If these are not set, then BasicScript displays its own
help at an appropriate place.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 330

Example

 'This example defines a replacement for InputBox that deals
 'specifically with Integer values. If an error occurs, the
 'function generates a user-defined error that can be trapped
 'by the caller.
 Function InputInteger(Prompt,Optional Title,Optional Def)
 On Error Resume Next
 Dim x As Integer
 x = InputBox(Prompt,Title,Def)
 If Err.Number Then
 Err.HelpFile = "AZ.HLP"
 Err.HelpContext = 2
 Err.Description = "Integer value expected"
 InputInteger = Null
 Err.Raise 3000
 End If
 InputInteger = x
 End Function
 Sub Main
 Dim x As Integer
 Do
 On Error Resume Next
 x = InputInteger("Enter a number:")
 If Err.Number = 3000 Then
 Msgbox "Invalid number, press ""F1"" to invoke help" _
 ,,,Err.HelpFile,Err.HelpContext
 End If
 Loop Until Err.Number <> 3000
 End Sub

See Also Error Handling (page 327) (topic), Err.Clear (page 328) (method), Err.Description (page 328)
(property), Err.HelpFile (page 330) (property), Err.LastDLLError (page 331) (property), Err.Number
(page 332) (property), Err.Source (page 333) (property)

Err.HelpFile (property)

Syntax Err.HelpFile [= filename]

Description Sets or retrieves the name of the help file associated with the error.

Comments The Err.HelpFile property, together with the Err.HelpContents property, contain sufficient information
to display help for the error. When BasicScript generates an error, the Err.HelpContents property is
set to 0 and the Err.HelpFile property is set to ""; the value of the Err.Number property is sufficient for
displaying help in this case. The exception is with errors generated by an OLE automation server; both the
Err.HelpFile and Err.HelpContext properties are set by the server to values appropriate for the generated
error. When generating your own user-define errors, you should set the Err.HelpContext property and the
Err.HelpFile property appropriately for your error. If these are not set, then BasicScript displays its own
help at an appropriate place.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 331

Example

 'This example defines a replacement for InputBox that deals
 'specifically with Integer values. If an error occurs, the
 'function generates a user-defined error that can be trapped
 'by the caller.
 Function InputInteger(Prompt,Optional Title,Optional Def)
 On Error Resume Next
 Dim x As Integer
 x = InputBox(Prompt,Title,Def)
 If Err.Number Then
 Err.HelpFile = "AZ.HLP"
 Err.HelpContext = 2
 Err.Description = "Integer value expected"
 InputInteger = Null
 Err.Raise 3000
 End If
 InputInteger = x
 End Function
 Sub Main
 Dim x As Integer
 Do
 On Error Resume Next
 x = InputInteger("Enter a number:")
 If Err.Number = 3000 Then
 MsgBox "Invalid number, press ""F1"" to invoke help" _
 ,,, Err.HelpFile,Err.HelpContext
 End If
 Loop Until Err.Number <> 3000
 End Sub

See Also Error Handling (page 327) (topic)m Err.Clear (page 328) (method), Err.HelpContext (page 329)
(property), Err.Description ((page 328)(property), Err.LastDLLError (page 331) (property), Err.Number
(page 332) (property), Err.Source (page 333) (property)

Note The Err.HelpFile property can be set to any valid Windows help file (i.e., a file with a .HLP extension
compatible with the WINHELP help engine).

Err.LastDLLError (property)

Syntax Err.LastDLLError

Description Returns the last error generated by an external call, i.e. a call to a routine declared with the Declare
statement that resides in an external module.

Comments The Err.LastDLLError property is automatically set when calling a routine defined in an external module. If
no error occurs within the external call this property will automatically be set to 0.

Example
'The following script calls the GetCurrentDirectoryA. If an
'error occurs, this Win32 function sets the Err.LastDLLError
'property which can be checked for.
Declare Sub GetCurrentDirectoryA Lib "kernel32" (ByVal DestLen _
As Integer,ByVal lpDest As String)
Sub Main()
 Dim dest As String * 256
 Err.Clear
 GetCurrentDirectoryA len(dest),dest
 If Err.LastDLLError <> 0 Then
 MsgBox "Error " & Err.LastDLLError & " occurred."
 Else
 MsgBox "Current directory is " & dest
 End If
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 332

See Also Error Handling (page 327) (topic), Err.Clear (page 328) (method), Err.HelpContext (page 329)
(property), Err.Description (page 328) (property), Err.HelpFile (page 330) (property), Err.Number
(page 332) (property), Err.Source (page 333) (property)

Note This property is set by DLL routines that set the last error using the Win32 function SetLastError().
BasicScript uses the Win32 function GetLastError() to retrieve the value of this property. The value 0 is
returned when calling DLL routines that do not set an error.

Err.Number (property)

Syntax Err.Number [= errornumber]

Description Returns or sets the number of the error.

Comments The Err.Number property is set automatically when an error occurs. This property can be used within an
error trap to determine which error occurred. You can set the Err.Number property to any Long value. The
Number property is the default property of the Err object. This allows you to use older style syntax such as
those shown below: Err = 6 If Err = 6 Then MsgBox "Overflow" The Err function can only be used while
within an error trap. The internal value of the Err.Number property is reset to 0 with any of the following
statements: Resume, Exit Sub, Exit Function. Thus, if you want to use this value outside an error handler,
you must assign it to a variable. Setting Err.Number to –1 has the side effect of resetting the error state.
This allows you to perform error trapping within an error handler. The ability to reset the error handler
while within an error trap is not standard Basic. Normally, the error handler is reset only with the Resume,
Exit Sub, Exit Function, End Function, or End Sub statements.

Example

 'This example forces error 10, with a subsequent transfer to
 'the TestError label. TestError tests the error and, if not
 'error 55, resets Err to 999 (user-defined error) and returns
 'to the Main subroutine.
 Sub Main()
 On Error Goto TestError
 Error 10
 MsgBox "The returned error is: '" & Err() & " - " & _
 Error$ & "'"
 Exit Sub
 TestError:
 If Err = 55 Then 'File already open.
 MsgBox "Cannot copy an open file. Close it and try again."
 Else
 MsgBox "Error '" & Err & "' has occurred!"
 Err = 999
 End If
 Resume Next
 End Sub

See Also Error Handling (page 327) (topic)

Err.Raise (method)

Syntax Err.Raise number [,[source] [,[description] [,[helpfile] [,helpcontext]]]]

Description Generates a runtime error, setting the specified properties of the Err object.

Comments The Err.Raise method has the following named parameters:

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 333

Parameter Description

number A Long value indicating the error number to be generated. This parameter is required.
Errors predefined by BasicScript are in the range between 0 and 1000.

source An optional String expression specifying the source of the error—i.e., the object or module
that generated the error. If omitted, then BasicScript uses the name of the currently
executing script.

description An optional String expression describing the error. If omitted and number maps to a
predefined BasicScript error number, then the corresponding predefined description is used.
Otherwise, the error "Application-defined or object-define error" is used.

helpfile An optional String expression specifying the name of the help file containing context-
sensitive help for this error. If omitted and number maps to a predefined BasicScript error
number, then the default help file is assumed.

helpcontext An optional Long value specifying the topic within helpfile containing context-sensitive help
for this error. If some arguments are omitted, then the current property values of the Err
object are used. This method can be used in place of the Error statement for generating
errors. Using the Err.Raise method gives you the opportunity to set the desired properties
of the Err object in one statement.

Example

 'The following example uses the Err.Raise method to generate
 'a user-defined error.
 Sub Main()
 Dim x As Variant
 On Error Goto TRAP
 x = InputBox("Enter a number:")
 If Not IsNumber(x) Then
 Err.Raise 3000,,"Invalid number specified","WIDGET.HLP",30
 End If
 MsgBox x
 Exit Sub
 TRAP:
 MsgBox Err.Description
 End Sub

See Also Error (page 327) (statement), Error Handling (page 327) (topic), Err.Clear (page 328) (method),
Err.HelpContext (page 329) (property), Err.Description (page 328) (property), Err.HelpFile (page
330) (property), Err.Number (page 332) (property), Err.Source (page 333) (property)

Err.Source (property)

Syntax Err.Source [= stringexpression]

Description Sets or retrieves the source of a runtime error.

Comments For OLE automation errors generated by the OLE server, the Err.Source property is set to the name of
the object that generated the error. For all other errors generated by BasicScript, the Err.Source property
is automatically set to be the name of the script that generated the error. For user-defined errors, the
Err.Source property can be set to any valid String expression indicating the source of the error. If the
Err.Source property is not explicitly set for user-defined errors, the BasicScript sets the value to be the
name of the script in which the error was generated.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 334

Example

 'The following script generates an error, setting the source
 'to the specific location where the error was generated.
 Function InputInteger(Prompt,Optional Title,Optional Def)
 On Error Resume Next
 Dim x As Integer
 x = InputBox(Prompt,Title,Def)
 If Err.Number Then
 Err.Source = "InputInteger"
 Err.Description = "Integer value expected"
 InputInteger = Null
 Err.Raise 3000
 End If
 InputInteger = x
 End Function
 Sub Main
 On Error Resume Next
 x = InputInteger("Enter a number:")
 If Err.Number Then MsgBox Err.Source & ":" & Err.Description
 End Sub

See Also Error Handling (page 327) (topic), Err.Clear (page 328) (method), Err.HelpContext (page 329)
(property), Err.Description (page 328) (property), Err.HelpFile (page 330) (property), Err.Number
(page 332) (property), Err.LastDLLError (page 331) (property)

Exit Do (statement)

Syntax Exit Do

Description Causes execution to continue on the statement following the Loop clause.

Comments This statement can only appear within a Do...Loop statement.

Example This example will load an array with directory entries unless there are more than ten entries-in which
case, the Exit Do terminates the loop.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 Dim a$(5)
 Do
 i% = i% + 1
 If i% = 1 Then
 a(i%) = Dir("*")
 Else
 a(i%) = Dir
 End If
 If i% >= 5 Then Exit Do
 Loop While (a(i%) <> "")
 If i% = 5 Then
 MsgBox i% & " directory entries processed!"
 Else
 MsgBox "Less than " & i% & " entries processed!"
 End If
End Sub

See Also Stop (page 491) (statement); Exit For (page 334) (statement); Exit Function (page 335) (statement);
Exit Sub (page 335) (statement); End (page 322) (statement); Do...Loop (page 298) (statement).

Exit For (statement)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 335

Syntax Exit For

Description Causes execution to exit the innermost For loop, continuing execution on the line following the Next
statement.

Comments This statement can only appear within a For...Next block.

Example This example enters a large user-defined cycle, performs a calculation and exits the For...Next loop when
the result exceeds a certain value.

Const critical_level = 500
Sub Main()
 num = InputBox("Please enter the number of cycles","Cycles")
 For i = 1 To Val(num)
 newpressure = i * 2
 If newpressure >= critical_level Then Exit For
 Next i
 MsgBox "The valve pressure is: " & newpressure
End Sub

See Also Stop (page 491) (statement); Exit Do (page 334) (statement); Exit Function (page 335) (statement);
Exit Sub (page 335) (statement); End (page 322) (statement); Do...Loop (page 298) (statement).

Exit Function (statement)

Syntax Exit Function

Description Causes execution to exit the current function, continuing execution on the statement following the call to
this function.

Comments This statement can only appear within a function.

Example This function displays a message and then terminates with Exit Function.

Function Test_Exit() As Integer
 MsgBox "Testing function exit, returning to Main()."
 Test_Exit = 0
 Exit Function
 MsgBox "This line should never execute."
End Function
Sub Main()
 a% = Test_Exit()
 MsgBox "This is the last line of Main()."
End Sub

See Also Stop (page 491) (statement); Exit For (page 334) (statement); Exit Do (page 334) (statement); Exit
Sub (page 335) (statement); End (page 322) (statement); Do...Loop (page 298) (statement).

Exit Sub (statement)

Syntax Exit Sub

Description Causes execution to exit the current subroutine, continuing execution on the statement following the call
to this subroutine.

Comments This statement can appear anywhere within a subroutine. It cannot appear within a function.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 336

Example This example displays a dialog box and then exits. The last line should never execute because of the Exit
Sub statement.

Sub Main()
 MsgBox "Terminating Main()."
 Exit Sub
 MsgBox "Still here in Main()."
End Sub

See Also Stop (page 491) (statement); Exit For (page 334) (statement); Exit Function (page 335) (statement);
Exit Do (page 334) (statement); End (page 322) (statement); Do...Loop (page 298) (statement).

Exp (function)

Syntax Exp (value)

Description Returns the value of e raised to the power of value.

Comments The value parameter is a Double within the following range:

 0 <= value <= 709.782712893.

A runtime error is generated if value is out of the range specified above. The value of e is 2.71828
.

Example This example assigns a to e raised to the 12.4 power and displays it in a dialog box.

Sub Main()
 a# = Exp(12.4)
 MsgBox "e to the 12.4 power is: " & a#
End Sub

See Also Log (page 398) (function).

Expression Evaluation (topic)

Basic Control Engine scripts allows expressions to involve data of different types. When this occurs,
the two arguments are converted to be of the same type by promoting the less precise operand to
the same type as the more precise operand. For example, the Basic Control Engine will promote the
value of i% to a Double in the following expression:

 result# = i% * d#

In some cases, the data type to which each operand is promoted is different than that of the most
precise operand. This is dependent on the operator and the data types of the two operands and is
noted in the description of each operator.

If an operation is performed between a numeric expression and a String expression, then the String
expression is usually converted to be of the same type as the numeric expression. For example,
the following expression converts the String expression to an Integer before performing the
multiplication:

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 337

 result = 10 * "2" 'Result is equal to 20.

There are exceptions to this rule as noted in the description of the individual operators.

Type Coercion

The Basic Control Engine performs numeric type conversion automatically. Automatic conversions
sometimes result in overflow errors, as shown in the following example:

 d# = 45354
 i% = d#

In this example, an overflow error is generated because the value contained in d# is larger than the
maximum size of an Integer.

Rounding

When floating-point values (Single or Double) are converted to integer values (Integer or Long), the
fractional part of the floating-point number is lost, rounding to the nearest integer value. The Basic
Control Engine uses Baker's rounding:

• If the fractional part is larger than .5, the number is rounded up.
• If the fractional part is smaller than .5, the number is rounded down.
• If the fractional part is equal to .5, then the number is rounded up if it is odd and down if it is

even.

The following table shows sample values before and after rounding:

Before Rounding After Rounding to Whole Number

2.1 2

4.6 5

2.5 2

3.5 4

Default Properties

When an OLE object variable or an Object variant is used with numerical operators such as addition
or subtraction, then the default property of that object is automatically retrieved. For example,
consider the following:

 Dim Excel As Object
 Set Excel = GetObject(,"Excel.Application")
 MsgBox "This application is " & Excel

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 338

The above example displays This application is Microsoft Excel in a dialog box. When the variable
Excel is used within the expression, the default property is automatically retrieved, which, in this
case, is the string Microsoft Excel. Considering that the default property of the Excel object is
.Value, then the following two statements are equivalent:

 MsgBox "This application is " & Excel
 MsgBox "This application is " & Excel.Value

F

F

False (constant)

FileAttr (function)

FileCopy (statement)

FileDateTime (function)

FileDirs (statement)

FileExists (function)

FileLen (function)

FileList (statement)

FileParse$ (function)

Fix (function)

For Each...Next (statement)

For...Next (statement)

Format, Format$ (function)

FreeFile (function)

Function...End Function (statement)

Fv Function...End Function (statement)

False (constant)

Description Boolean constant whose value is False.

Comments Used in conditionals and Boolean expressions.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 339

Example This example assigns False to a, performs some equivalent operations, and displays a dialog box with the
result. Since a is equivalent to False, and False is equivalent to 0, and by definition, a = 0, then the dialog
box will display "a is False."

Sub Main()
 a = False
 If ((a = False) And (False Eqv 0) And (a = 0)) Then
 MsgBox "a is False."
 Else
 MsgBox "a is True."
 End If
End Sub

See Also True (page 507) (constant); Constants (topic); Boolean (page 233) (data type).

FileAttr (function)

Syntax FileAttr (filenumber, attribute)

Description Returns an Integer specifying the file mode (if attribute is 1) or the operating system file handle (if
attribute is 2).

Comments The FileAttr function takes the following parameters:

Parameter Description

Filenumber Integer value used by Basic Control Engine to refer to the open file; the
number passed to the Open statement.

Attribute Integer specifying the type of value to be returned. If attribute is 1, then
one of the following values is returned:

1 Input

2 Output

4 Random

8 Append

32 Binary

If attribute is 2, then the operating system file handle is returned. On most
systems, this is a special Integer value identifying the file.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 340

Example This example opens a file for input, reads the file attributes, and determines the file mode for which it was
opened. The result is displayed in a dialog box.

Sub Main()
 Open "c:\autoexec.bat" For Input As #1
 a% = FileAttr(1,1)
 Select Case a%
 Case 1
 MsgBox "Opened for input."
 Case 2
 MsgBox "Opened for output."
 Case 4
 MsgBox "Opened for random."
 Case 8
 MsgBox "Opened for append."
 Case 32
 MsgBox "Opened for binary."
 Case Else
 MsgBox "Unknown file mode."
 End Select
 a% = FileAttr(1,2)
 MsgBox "File handle is: " & a%
 Close
End Sub

See Also FileLen (page 342) (function); GetAttr (page 357) (function); FileExists (page 342) (function); Open
(page 428) (statement); SetAttr (page 477) (statement).

FileCopy (statement)

Syntax FileCopy source$, destination$

Description Copies a source$ file to a destination$ file.

Comments The FileCopy function takes the following parameters:

Parameter Description

source$ String containing the name of a single file to copy. The source$ parameter cannot contain
wildcards (? or *) but may contain path information.

destination
$

String containing a single, unique destination file, which may contain a drive and path
specification.

The file will be copied and renamed if the source$ and destination$ filenames are not the same. Some
platforms do not support drive letters and may not support dots to indicate current and parent directories.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 341

Example This example copies the autoexec.bat file to "autoexec.sav", then opens the copied file and tries to copy it
again--which generates an error.

Sub Main()
 On Error Goto ErrHandler
 FileCopy "c:\autoexec.bat","c:\autoexec.sav"
 Open "c:\autoexec.sav" For Input As # 1
 FileCopy "c:\autoexec.sav","c:\autoexec.sv2"
 Close
 Exit Sub
ErrHandler:
 If Err = 55 Then 'File already open.
 MsgBox "Cannot copy an open file. Close it and try again."
 Else
 MsgBox "An unspecified file copy error has occurred."
 End If
 Resume Next
End Sub

See Also Kill (page 385) (statement); Name (page 412) (statement).

FileDateTime (function)

Syntax FileDateTime (filename$)

Description Returns a Date variant representing the date and time of the last modification of a file.

Comments This function retrieves the date and time of the last modification of the file specified by filename$
(wildcards are not allowed). A runtime error results if the file does not exist. The value returned can be
used with the date/time functions (i.e., Year , Month , Day , Weekday , Minute , Second , Hour) to
extract the individual elements.

Example This example gets the file date/time of the autoexec.bat file and displays it in a dialog box.

Sub Main()
 If FileExists("c:\autoexec.bat") Then
 a# = FileDateTime("c:\autoexec.bat")
 MsgBox "The date/time information for the file is: " & Year(a#) & "-" & Month(a#) & "-" &
 Day(a#)
 Else
 MsgBox "The file does not exist."
 End If
End Sub

See Also FileLen (page 342) (function); GetAttr (page 357) (function); FileAttr (page 339) (function); FileExists
(page 342) (function).

Notes: The Win32 operating system stores the file creation date, last modification date, and the date the file was
last written to. The FileDateTime function only returns the last modification date.

FileDirs (statement)

Syntax FileDirs array() [,dirspec$]

Description Fills a String or Variant array with directory names from disk.

Comments The FileDirs statement takes the following parameters:

Parameter Description

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 342

Array() Either a zero- or a one-dimensioned array of strings or variants. The array can be either
dynamic or fixed. If array() is dynamic, then it will be redimensioned to exactly hold the
new number of elements. If there are no elements, then the array will be redimensioned
to contain no dimensions. You can use the LBound, UBound, and ArrayDims functions to
determine the number and size of the new array's dimensions. If the array is fixed, each
array element is first erased, then the new elements are placed into the array. If there are
fewer elements than will fit in the array, then the remaining elements are initialized to zero-
length strings (for String arrays) or Empty (for Variant arrays). A runtime error results if
the array is too small to hold the new elements.

Dirspec$ String containing the file search mask, such as:

 t*. c:*

If this parameter is omitted, then * is used, which fills the array with all the subdirectory
names within the current directory.

Example This example fills an array with directory entries and displays the first one.

Sub Main()
 Dim a$()
 FileDirs a$,"c:*"
 MsgBox "The first directory is: " & a$(0)
End Sub

See Also FileList (page 343) (statement); Dir, Dir$ (page 280) (functions); CurDir, CurDir$ (page 259)
(functions); ChDir (page 239) (statement).

FileExists (function)

Syntax FileExists (filename$)

Description Returns True if filename$ exists; returns False otherwise.

Comments This function determines whether a given filename$ is valid. This function will return False if filename$
specifies a subdirectory.

Example This example checks to see whether there is an autoexec.bat file in the root directory of the C drive, then
displays either its creation date and time or the fact that it does not exist.

Sub Main()
 If FileExists("c:\autoexec.bat") Then
 Msgbox "This file exists!"
 Else
 MsgBox "File does not exist."
 End If
End Sub

See Also FileLen (page 342) (function); GetAttr (page 357) (function); FileAttr (page 339) (function); FileParse
$ (page 344) (function).

FileLen (function)

Syntax FileLen (filename$)

Description Returns a Long representing the length of filename$ in bytes.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 343

Comments This function is used in place of the LOF function to retrieve the length of a file without first opening the
file. A runtime error results if the file does not exist.

Example This example checks to see whether there is a c:\autoexec.bat file and, if there is, displays the length of
the file.

Sub Main()
 file$ = "c:\autoexec.bat"
 If FileExists(file$) And FileLen(file$) <> 0) Then
 b% = FileLen(file$)
 MsgBox "'" & file$ & "' is " & b% & " bytes."
 Else
 MsgBox "'" & file$ & "' does not exist."
 End If
End Sub

See Also GetAttr (page 357) (function); FileAttr (page 339) (function); FileParse$ (page 344) (function);
FileExists (page 342) (function); Loc (page 395) (function).

FileList (statement)

Syntax FileList array() [,[filespec$] [,[include_attr] [,exclude_attr]]]

Description Fills a String or Variant array with filenames from disk.

Comments The FileList function takes the following parameters:

Parameter Description

Array() Either a zero- or a one-dimensioned array of strings or variants. The array can be either
dynamic or fixed. If array() is dynamic, then it will be redimensioned to exactly hold the
new number of elements. If there are no elements, then the array will be redimensioned to
contain no dimensions. You can use the LBound , UBound , and ArrayDims functions
to determine the number and size of the new array's dimensions. If the array is fixed, each
array element is first erased, then the new elements are placed into the array. If there are
fewer elements than will fit in the array, then the remaining elements are initialized to zero-
length strings (for String arrays) or Empty (for Variant arrays). A runtime error results
if the array is too small to hold the new elements.

Filespec$ String specifying which filenames are to be included in the list. The filespec$ parameter
can include wildcards, such as * and ? . If this parameter is omitted, then * is used.

Include_attr Integer specifying attributes of files you want included in the list. It can be any combination
of the attributes listed below. If this parameter is omitted, then the value 97 is used (
ebReadOnly Or ebArchive Or ebNone).

Exclude_attr Integer specifying attributes of files you want excluded from the list. It can be any
combination of the attributes listed below. If this parameter is omitted, then the value 18
is used (ebHidden Or ebDirectory). In other words, hidden files and subdirectories are
excluded from the list.

Wildcards The * character matches any sequence of zero or more characters, whereas the ? character
matches any single character. Multiple *'s and ?'s can appear within the expression to form complete
searching patterns. The following table shows some examples:

This Pattern Matches These Files Douesn't Match These Files

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 344

S.TXT SAMPLE.TXT
GOOSE.TXT
SAMS.TXT

SAMPLE
SAMPLE.DAT

C*T.TXT CAT.TXT CAP.TXT
ACATS.TXT

C*T CAT
CAP.TXT

CAT.DOC

C?T CAT
CUT

CAT.TXT
CAPIT
CT

*
(All files)

File Attributes These numbers can be any combination of the following:

Constant Value Includes

EbNormal 0 Read-only, archive, subdir, none

EbReadOnly 1 Read-only files

EbHidden 2 Hidden files

EbSystem 4 System files

EbVolume 8 Volume label

EbDirectory 16 DOS subdirectories

EbArchive 32 Files that have changed since the last backup

EbNone 64 Files with no attributes

Example This example fills an array a with the directory of the current drive for all files that have normal or no
attributes and excludes those with system attributes. The dialog box displays four filenames from the
array.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 Dim a$()
 FileList a$,"*.*",(ebNormal + ebNone),ebSystem
 If ArrayDims(a$) > 0 Then
 r = SelectBox("FileList","The files you filtered are:",a$)
 Else
 MsgBox "No files found."
 End If
End Sub

See Also FileDirs (page 341) (statement); Dir, Dir$ (page 280) (functions).

FileParse$ (function)

Syntax FileParse$ (filename$[, operation])

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 345

Description Returns a String containing a portion of filename$ such as the path, drive, or file extension.

Comments The filename$ parameter can specify any valid filename (it does not have to exist). For example:

 ..\test.dat
 c:\sheets\test.dat
 test.dat

A runtime error is generated if filename$ is a zero-length string. The optional operation parameter is an
Integer specifying which portion of the filename$ to extract. It can be any of the following values.

Value Meaning Example

0 Full name c:\sheets\test.dat

1 Drive c

2 Path c:\sheets

3 Name test.dat

4 Root test

5 Extension dat

If operation is not specified, then the full name is returned. A runtime error will result if operation is not one
of the above values. A runtime error results if filename$ is empty.

Example This example parses the file string c:\temp\autoexec.bat into its component parts and displays them in
a dialog box.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 Dim a$(5)
 file$ = "c:\temp\autoexec.bat"
 For i = 1 To 5
 a$(i) = FileParse$(file$,i)
 Next i
 msg1 = "The breakdown of '" & file$ & "' is:" & crlf & crlf
 msg1 = msg & a$(1) & crlf & a$(2) & crlf & a$(3) & crlf & a$(4) & crlf & a$(5)
 MsgBox msg1
End Sub

See Also FileLen (page 342) (function); GetAttr (page 357) (function); FileAttr (page 339) (function); FileExists
(page 342) (function).

Note The backslash and forward slash can be used interchangeably. For example, c:\test.dat is the same as c:/
test.dat.

Fix (function)

Syntax Fix (number)

Description Returns the integer part of number.

Comments This function returns the integer part of the given value by removing the fractional part. The sign is
preserved. The Fix function returns the same type as number, with the following exceptions:

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 346

• If number is Empty , then an Integer variant of value 0 is returned.
• If number is a String , then a Double variant is returned.
• If number contains no valid data, then a Null variant is returned.

Example This example returns the fixed part of a number and assigns it to b, then displays the result in a dialog
box.

Sub Main()
 a# = -19923.45
 b% = Fix(a#)
 MsgBox "The fixed portion of -19923.45 is: " & b%
End Sub

See Also Int (page 376) (function); CInt (page 243) (function).

For Each...Next (statement)

Syntax For Each member in group [statements] [Exit For] [statements] Next [member]

Description Repeats a block of statements for each element in a collection or array.

Comments The For Each...Nextstatement takes the following parameters:

Parameter Description

member Name of the variable used for each iteration of the loop. If group is an array, then member
must be a Variant variable. If group is a collection, then member must be an Object variable,
an explicit OLE automation object, or a Variant.

group Name of a collection or array.

statements Any number of BasicScript statements.

BasicScript supports iteration through the elements of OLE collections or arrays, unless the arrays
contain user-defined types or fixed-length strings. The iteration variable is a copy of the collection or array
element in the sense that change to the value of member within the loop has no effect on the collection
or array. The For Each...Next statement traverses array elements in the same order the elements are
stored in memory. For example, the array elements contained in the array defined by the statement
Dim a(1 To 2,3 To 4) are traversed in the following order: (1,3), (1,4), (2,3), (2,4). The order in which the
elements are traversed should not be relevant to the correct operation of the script. The For Each...Next
statement continues executing until there are no more elements in group or until an Exit For statement
is encountered. For Each...Next statements can be nested. In such a case, the Next [member] statement
applies to the innermost For Each...Next or For...Next statement. Each member variable of nested For
Each...Next statements must be unique. A Next statement appearing by itself (with no member variable)
matches the innermost For Each...Next or For...Next loop.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 347

Example

 ’The following subroutine iterates through the elements
 ’of an array using For Each...Next.
 Sub Main()
 Dim a(3 To 10) As Single
 Dim i As Variant
 Dim s As String
 For i = 3 To 10
 a(i) = Rnd()
 Next i
 For Each i In a
 i = i + 1
 Next i
 s = ""
 For Each i In a
 If s <> "" Then s = s & ","
 s = s & i
 Next i
 MsgBox s
 End Sub
 ’The following subroutine displays the names of each worksheet
 ’in an Excel workbook.
 Sub Main()
 Dim Excel As Object
 Dim Sheets As Object
 Set Excel = CreateObject("Excel.Application")
 Excel.Visible = 1
 Excel.Workbooks.Add
 Set Sheets = Excel.Worksheets
 For Each a In Sheets
 MsgBox a.Name
 Next a
End Sub

See Also Do...Loop (page 298) (statement), While...Wend (page 522) (statement), For...Next (page 347)
(statement)

Note Due to errors in program logic, you can inadvertently create infinite loops in your code. Under Windows
and Win32, you can break out of infinite loops using Ctrl+Break.

For...Next (statement)

Syntax For counter = start To end [Step increment] [statements] [Exit For] [statements] Next [counter
[,nextcounter]...]

Description Repeats a block of statements a specified number of times, incrementing a loop counter by a given
increment each time through the loop.

Comments The For statement takes the following parameters:

Parameter Description

counter Name of a numeric variable. Variables of the following types can be used: Integer, Long,
Single, Double, Variant.

start Initial value for counter. The first time through the loop, counter is assigned this value.

end Final value for counter. The statements will continue executing until counter is equal to end.

increment Amount added to counter each time through the loop. If end is greater than start, then
increment must be positive. If end is less than start, then increment must be negative.
If increment is not specified, then 1 is assumed. The expression given as increment is
evaluated only once. Changing the step during execution of the loop will have no effect.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 348

statements Any number of Basic Control Engine statements.

The For...Next statement continues executing until an Exit For statement is encountered when
counter is greater than end. For...Next statements can be nested. In such a case, the Next [counter
] statement applies to the innermost For...Next . The Next clause can be optimized for nested next
loops by separating each counter with a comma. The ordering of the counters must be consistent with the
nesting order (innermost counter appearing before outermost counter). The following example shows two
equivalent For statements:

 For i = 1 To 10 For i = 1 To 10
 For j = 1 To 10 For j = 1 To 10
 Next j Next j,i
 Next I

A Next clause appearing by itself (with no counter variable) matches the innermost For loop. The
counter variable can be changed within the loop but will have no effect on the number of times the loop
will execute.

Example
Sub Main()
 'This example constructs a truth table for the OR statement 'using nested For...Next loops.
 Msg1 = "Logic table for Or:" & crlf & crlf
 For x = -1 To 0
 For y = -1 To 0
 z = x Or y
 msg1 = msg1 & CBool(x) & " Or "
 msg1 = msg1 & CBool(y) & " = "
 msg1 = msg1 & CBool(z) & Basic.Eoln$
 Next y
 Next x
 MsgBox msg1
End Sub

See Also Do...Loop (page 298) (statement); While...Wend (page 522) (statement).

Notes Due to errors in program logic, you can inadvertently create infinite loops in your code. You can use Ctrl
+Break to break out of infinite loops.

Format, Format$ (functions)

Syntax Format[$](expression [,Userformat$])

Description Returns a String formatted to user specification.

Comments Format$ returns a String , whereas Format returns a String variant. The Format$/Format
functions take the following parameters:

Parameter Description

expression String or numeric expression to be formatted.

Userformat
$

Format expression that can be either one of the built-in Basic Control Engine formats or
a user-defined format consisting of characters that specify how the expression should be
displayed. String, numeric, and date/time formats cannot be mixed in a single Userformat$
expression.

If Userformat$ is omitted and the expression is numeric, then these functions perform the same function
as the Str$ or Str statements, except that they do not preserve a leading space for positive values. If
expression is Null , then a zero-length string is returned.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 349

Built-In Formats To format numeric expressions, you can specify one of the built-in formats. There are two
categories of built-in formats: one deals with numeric expressions and the other with date/time values.
The following tables list the built-in numeric and date/time format strings, followed by an explanation of
what each does.

Numeric Formats

Format Description

General
number

Display the numeric expression as is, with no additional formatting.

Currency Displays the numeric expression as currency, with thousands separator if necessary.

Fixed Displays at least one digit to the left of the decimal separator and two digits to the right.

Standard Displays the numeric expression with thousands separator if necessary. Displays at least
one digit to the left of the decimal separator and two digits to the right.

Percent Displays the numeric expression multiplied by 100. A percent sign (%) will appear at the
right of the formatted output. Two digits are displayed to the right of the decimal separator.

Scientific Displays the number using scientific notation. One digit appears before the decimal
separator and two after.

Yes/No Displays No if the numeric expression is 0. Displays Yes for all other values.

True/False Displays False if the numeric expression is 0. Displays True for all other values.

On/Off Displays Off if the numeric expression is 0. Displays On for all other values.

Date/Time Formats

Format Description

General
date

Displays the date and time. If there is no fractional part in the numeric expression, then only
the date is displayed. If there is no integral part in the numeric expression, then only the time
is displayed. Output is in the following form: 1/1/95 01:00:00 AM.

Long date Displays a long date.

Medium
date

Displays a medium date—prints out only the abbreviated name of the month.

Short date Displays a short date.

Long time Displays the long time. The default is: h:mm:ss.

Medium
time

Displays the time using a 12-hour clock. Hours and minutes are displayed, and the AM/PM
designator is at the end.

Short time Displays the time using a 24-hour clock. Hours and minutes are displayed.

User-Defined Formats In addition to the built-in formats, you can specify a user-defined format by using
characters that have special meaning when used in a format expression. The following tables list the
characters you can use for numeric, string, and date/time formats and explain their functions.

Numeric Formats

Character Meaning

Empty
string

Displays the numeric expression as is, with no additional formatting.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 350

0 This is a digit placeholder.

Displays a number or a 0. If a number exists in the numeric expression in the position where
the 0 appears, the number will be displayed. Otherwise, a 0 will be displayed. If there are
more 0s in the format string than there are digits, the leading and trailing 0s are displayed
without modification.

This is a digit placeholder.

Displays a number or nothing. If a number exists in the numeric expression in the position
where the number sign appears, the number will be displayed. Otherwise, nothing will be
displayed. Leading and trailing 0s are not displayed.

. This is the decimal placeholder.

Designates the number of digits to the left of the decimal and the number of digits to the
right. The character used in the formatted string depends on the decimal placeholder, as
specified by your locale.

% This is the percentage operator.

The numeric expression is multiplied by 100, and the percent character is inserted in the
same position as it appears in the user-defined format string.

, This is the thousand separator.

The common use for the thousands separator is to separate thousands from hundreds.
To specify this use, the thousands separator must be surrounded by digit placeholders.
Commas appearing before any digit placeholders are specified are just displayed. Adjacent
commas with no digit placeholders specified between them and the decimal mean that
the number should be divided by 1,000 for each adjacent comma in the format string. A
comma immediately to the left of the decimal has the same function. The actual thousands
separator character used depends on the character specified by your locale.

:E- E+ e- e
+

These are the scientific notation operators, which display the number in scientific notation.
At least one digit placeholder must exist to the left of E- , E+ , e- , or e+ . Any digit
placeholders displayed to the left of E- , E+ , e- , or e+ determine the number of digits
displayed in the exponent. Using E+ or e+ places a + in front of positive exponents and a
– in front of negative exponents. Using E- or e- places a – in front of negative exponents
and nothing in front of positive exponents.

: This is the time separator.

Separates hours, minutes, and seconds when time values are being formatted. The actual
character used depends on the character specified by your locale.

/ This is the date separator.

Separates months, days, and years when date values are being formatted. The actual
character used depends on the character specified by your locale.

:- + $ ()
space

These are the literal characters you can display. To display any other character, you should
precede it with a backslash or enclose it in quotes.

\ This designates the next character as a displayed character.

To display characters, precede them with a backslash. To display a backslash, use two
backslashes. Double quotation marks can also be used to display characters. Numeric
formatting characters, date/time formatting characters, and string formatting characters
cannot be displayed without a preceding backslash.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 351

:"ABC" Displays the text between the quotation marks, but not the quotation marks. To designate a
double quotation mark within a format string, use two adjacent double quotation marks.

* This will display the next character as the fill character.

Any empty space in a field will be filled with the specified fill character.

Numeric formats can contain one to three parts. Each part is separated by a semicolon. If you specify
one format, it applies to all values. If you specify two formats, the first applies to positive values and the
second to negative values. If you specify three formats, the first applies to positive values, the second to
negative values, and the third to 0s. If you include semicolons with no format between them, the format for
positive values is used.

String Formats

Character Meaning

@ This is a character placeholder. Displays a character if one exists in the expression in the
same position; otherwise, displays a space. Placeholders are filled from right to left unless
the format string specifies left to right.

& This is a character placeholder. Displays a character if one exists in the expression in the
same position; otherwise, displays nothing. Placeholders are filled from right to left unless
the format string specifies left to right.

< This character forces lowercase. Displays all characters in the expression in lowercase.

> This character forces uppercase. Displays all characters in the expression in uppercase.

! This character forces placeholders to be filled from left to right. The default is right to left.

Date/Time Formats

Character Meaning

c Displays the date as ddddd and the time as ttttt . Only the date is displayed if no
fractional part exists in the numeric expression. Only the time is displayed if no integral
portion exists in the numeric expression.

d Displays the day without a leading 0 (1–31).

dd Displays the day with a leading 0 (01–31).

ddd Displays the day of the week abbreviated (Sun–Sat).

dddd Displays the day of the week (Sunday–Saturday).

ddddd Displays the date as a short date.

dddddd Displays the date as a long date.

w Displays the number of the day of the week (1–7). Sunday is 1; Saturday is 7.

ww Displays the week of the year (1–53).

m Displays the month without a leading 0 (1–12). If m immediately follows h or hh, m is treated
as minutes (0–59).

mm Displays the month with a leading 0 (01–12). If mm immediately follows h or hh, mm is
treated as minutes with a leading 0 (00–59).

mmm Displays the month abbreviated (Jan–Dec).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 352

mmmm Displays the month (January–December).

q Displays the quarter of the year (1–4).

y Displays the day of the year (1–366).

yy Displays the year, not the century (00–99).

yyyy Displays the year (1000–9999).

h Displays the hour without a leading 0 (0–24).

hh Displays the hour with a leading 0 (00–24).

n Displays the minute without a leading 0 (0–59).

nn Displays the minute with a leading 0 (00–59).

s Displays the second without a leading 0 (0–59).

ss Displays the second with a leading 0 (00–59).

ttttt Displays the time. A leading 0 is displayed if specified by your locale.

AM/PM Displays the time using a 12-hour clock. Displays an uppercase AM for time values before
12 noon. Displays an uppercase PM for time values after 12 noon and before 12 midnight.

am/pm Displays the time using a 12-hour clock. Displays a lowercase am or pm at the end.

A/P Displays the time using a 12-hour clock. Displays an uppercase A or P at the end.

a/p Displays the time using a 12-hour clock. Displays a lowercase a or p at the end.

AMPM Displays the time using a 12-hour clock. Displays the string s1159 for values before 12
noon and s2359 for values after 12 noon and before 12 midnight.

Example
Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 a# = 1199.234
 msg1 = "Some general formats for '" & a# & "' are:" & crlf & crlf
 msg1 = msg1 & Format(a#,"General Number") & crlf
 msg1 = msg1 & Format(a#,"Currency") & crlf
 msg1 = msg1 & Format(a#,"Standard") & crlf
 msg1 = msg1 & Format(a#,"Fixed") & crlf
 msg1 = msg1 & Format(a#,"Percent") & crlf
 msg1 = msg1 & Format(a#,"Scientific") & crlf
 g1 = msg1 & Format(True,"Yes/No") & crlf
 msg1 = msg1 & Format(True,"True/False") & crlf
 msg1 = msg1 & Format(True,"On/Off") & crlf
 msg1 = msg1 & Format(a#,"0,0.00") & crlf
 msg1 = msg1 & Format(a#,"##,###,###.###") & crlf
 MsgBox msg1
 da$ = Date$
 msg1 = "Some date formats for '" & da$ & "' are:" & crlf & crlf
 msg1 = msg1 & Format(da$,"General Date") & crlf
 msg1 = msg1 & Format(da$,"Long Date") & crlf
 msg1 = msg1 & Format(da$,"Medium Date") & crlf
 msg1 = msg1 & Format(da$,"Short Date") & crlf
 MsgBox msg1
 ti$ = Time$
 msg1 = "Some time formats for '" & ti$ & "' are:" & crlf & crlf
 msg1 = msg1 & Format(ti$,"Long Time") & crlf
 msg1 = msg1 & Format(ti$,"Medium Time") & crlf
 msg1 = msg1 & Format(ti$,"Short Time") & crlf
 MsgBox msg1
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 353

See Also Str, Str$ (page 495) (functions); CStr (page 258) (function).

Note The default date/time formats are read from the [Intl] section of the win.ini file.

FreeFile (function)

Syntax FreeFile[()]

Description Returns an Integer containing the next available file number.

Comments The number returned is suitable for use in the Open statement and will always be between 1 and 255
inclusive.

Example This example assigns A to the next free file number and displays it in a dialog box.

Sub Main()
 a = FreeFile
 MsgBox "The next free file number is: " & a
End Sub

See Also FileAttr (page 339) (function); Open (page 428) (statement).

Function...End Function (statement)

1. Must start with a letter.

2. May contain letters, digits, and the underscore character (_). Punctuation and type-declaration
characters are not allowed.
The exclamation point (!) can appear within the name as long as it is not the last character, in
which case it is interpreted as a type-declaration character.

3. Must not exceed 80 characters in length.

4. The call cannot end with a comma. For instance, using the above example, the following is not
valid:

 a = Test(1,,)

5. The call must contain the minimum number of parameters as required by the called function.
For instance, using the above example, the following are invalid:

 a = Test(,1) 'Only passes two out of three required parameters.
 a = Test(1,2) 'Only passes two out of three required parameters.

Fv (function)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 354

Syntax Fv (Rate, Nper, Pmt,Pv,Due)

Description Calculates the future value of an annuity based on periodic fixed payments and a constant rate of interest.

Comments An annuity is a series of fixed payments made to an insurance company or other investment company
over a period of time. Examples of annuities are mortgages and monthly savings plans. The Fv function
requires the following parameters:

Parameter Description

Rate Double representing the interest rate per period. Make sure that annual rates are normalized
for monthly periods (divided by 12).

NPer Double representing the total number of payments (periods) in the annuity.

Pmt Double representing the amount of each payment per period. Payments are entered as
negative values, whereas receipts are entered as positive values.

Pv Double representing the present value of your annuity. In the case of a loan, the present
value would be the amount of the loan, whereas in the case of a retirement annuity, the
present value would be the amount of the fund.

Due Integer indicating when payments are due for each payment period. A 0 specifies payment
at the end of each period, whereas a 1 indicates payment at the start of each period.

Rate and NPer values must be expressed in the same units. If Rate is expressed as a percentage per
month, then NPer must also be expressed in months. If Rate is an annual rate, then the NPer must also
be given in years. Positive numbers represent cash received, whereas negative numbers represent cash
paid out.

Example This example calculates the future value of 100 dollars paid periodically for a period of 10 years (120
months) at a rate of 10% per year (or .10/12 per month) with payments made on the first of the month.
The value is displayed in a dialog box. Note that payments are negative values.

Sub Main()
 a# = Fv((.10/12),120,-100.00,0,1)
 MsgBox "Future value is: " & Format(a#,"Currency")
End Sub

See Also IRR (page 378) (function); MIRR (page 404) (function); Npv (page 420) (function); Pv (page 450)
(function).

G

G

Get (statement)

GetAllSettings (function)

GetAttr (function)

GetObject (function)

GetSetting (function)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 355

Global (statement)

GoSub (statement)

Goto (statement)

GroupBox (statement)

Get (statement)

Syntax Get [#] filenumber, [recordnumber], variable

Description Retrieves data from a random or binary file and stores that data into the specified variable.

Comments The Get statement accepts the following parameters:

Parameter Description

filenumber Integer used by the Basic Control Engine to identify the file. This is the same number
passed to the Open statement.

recordnumber Long specifying which record is to be read from the file. For binary files, this number
represents the first byte to be read starting with the beginning of the file (the first byte
is 1). For random files, this number represents the record number starting with the
beginning of the file (the first record is 1). This value ranges from 1 to 2147483647. If the
recordnumber parameter is omitted, the next record is read from the file (if no records
have been read yet, then the first record in the file is read). When this parameter is
omitted, the commas must still appear, as in the following example:

 Get #1,,recvar

If recordnumber is specified, it overrides any previous change in file position specified
with the Seek statement.

variable Variable into which data will be read. The type of the variable determines how the data is
read from the file, as described below.

With random files, a runtime error will occur if the length of the data being read exceeds the reclen
parameter specified with the Open statement. If the length of the data being read is less than the record
length, the file pointer is advanced to the start of the next record. With binary files, the data elements
being read are contiguous¾ the file pointer is never advanced.

Variable Types The type of the variable parameter determines how data will be read from the file. It can
be any of the following types:

Variable Type File Storage Description

Integer 2 bytes are read from the file.

Long 4 bytes are read from the file.

String (variable-length) In binary files, variable-length strings are read by first determining the
specified string variable's length and then reading that many bytes from the
file. For example, to read a string of eight characters:

 s$ = String(8," ") Get #1,,s$

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 356

In random files, variable-length strings are read by first reading a 2-byte
length and then reading that many characters from the file.

String (fixed-length) Fixed-length strings are read by reading a fixed number of characters from
the file equal to the string's declared length.

Double 8 bytes are read from the file (IEEE format).

Single 4 bytes are read from the file (IEEE format).

Date 8 bytes are read from the file (IEEE double format).

Boolean 2 bytes are read from the file. Nonzero values are True, and zero values
are False .

Variant A 2-byte VarType is read from the file, which determines the format
of the data that follows. Once the VarType is known, the data is read
individually, as described above. With user-defined errors, after the 2-byte
VarType , a 2-byte unsigned integer is read and assigned as the value of
the user-defined error, followed by 2 additional bytes of information about
the error. The exception is with strings, which are always preceded by a 2-
byte string length.

User-defined types Each member of a user-defined data type is read individually In binary files,
variable-length strings within user-defined types are read by first reading
a 2-byte length followed by the string's content. This storage is different
from variable-length strings outside of user-defined types. When reading
user-defined types, the record length must be greater than or equal to the
combined size of each element within the data type.

Arrays Arrays cannot be read from a file using the Get statement.

Objects Object variables cannot be read from a file using the Get statement.

Example This example opens a file for random write, then writes ten records into the file with the values 10...50.
Then the file is closed and reopened in random mode for read, and the records are read with the Get
statement. The result is displayed in a message box.

Sub Main()
 Open "test.dat" For Random Access Write As #1
 For x = 1 to 10
 y = x * 10
 Put #1,x,y
 Next x
 Close
 Open "test.dat" For Random Access Read As #1
 msg1 = ""
 For y = 1 to 5
 Get #1,y,x
 msg1 = msg1 & "Record " & y & ": " & x & Basic.Eoln$
 Next y
 Close

 MsgBox msg1
End Sub

See Also Open (page 428) (statement); Put (page 448) (statement); Input# (page 372) (statement); Line
Input# (page 392) (statement); Input, Input$ (page 373) (functions)

GetAllSettings (function)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 357

Syntax GetAllSettings(appname [,section])

Description Returns all of the keys within the specified section, or all of the sections within the specified application
from the system registry.

Comments The GetAllSettings function takes the following named parameters:

Parameter Description

appname A String expression specifying the name of the application from which settings or keys will be
returned.

section A String expression specifying the name of the section from which keys will be returned. If
omitted, then all of the section names within appname will be returned.

The GetAllSettings function returns a Variant containing an array of strings.

Example

 Sub Main()
 Dim NewAppSettings() As Variant
 SaveSetting appname := "NewApp", section := "Startup", _
 key := "Height", setting := 200
 SaveSetting appname := "NewApp", section := "Startup _
 ", key := "Width", setting := 320
 GetAllSettings appname := "NewApp", _
 section := "Startup ", resultarray := NewAppSettings
 For i = LBound(NewAppSettings) To UBound(NewAppSettings)
 NewAppSettings(i) = NewAppSettings(i) & "=" & _
 GetSetting("NewApp", "Startup", NewAppSettings(i))
 Next i
 r = SelectBox("Registry Settings","", NewAppSettings)
 End Sub

See Also GetSetting (page 359) (function), DeleteSetting (page 277) (statement), SaveSetting (page 468)
(statement)

Notes Under Win32, this statement operates on the system registry. All settings are read from the following entry
in the system registry: HKEY_CURRENT_USER\Software\BasicScript Program Settings\appname\section

GetAttr (function)

Syntax GetAttr (filename$)

Description Returns an Integer containing the attributes of the specified file.

Comments The attribute value returned is the sum of the attributes set for the file. The value of each attribute is as
follows:

Constant Value Includes

EbNormal 0 Read-only files, archive files, subdirectories, and files with no attributes.

EbReadOnly 1 Read-only files

EbHidden 2 Hidden files

EbSystem 4 System files

EbVolume 8 Volume label

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 358

EbDirectory 16 DOS subdirectories

EbArchive 32 Files that have changed since the last backup

EbNone 64 Files with no attributes

To determine whether a particular attribute is set, you can And the values shown above with the value
returned by GetAttr . If the result is True , the attribute is set, as shown below:

Sub Main()
 Dim w As Integer
 w = GetAttr("sample.txt")
 If w And ebReadOnly Then MsgBox "This file is read-only."
End Sub

Example This example tests to see whether the file test.dat exists. If it does not, then it creates the file. The file
attributes are then retrieved with the GetAttr function, and the result is displayed.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
 Dim a()
 FileList a,"*.*"
Again:
 msg1 = ""
 r = SelectBox("Attribute Checker","Select File:",a)
 If r = -1 Then
 End
 Else
 y% = GetAttr(a(r))
 End If
 If y% = 0 Then msg1 = msg1 & "This file has no special attributes." & crlf
 If y% And ebReadOnly Then msg1 = msg1 & "The read-only bit is set." & crlf
 If y% And ebHidden Then msg1 = msg1 & "The hidden bit is set." & crlf
 If y% And ebSystem Then msg1 = msg1 & "The system bit is set." & crlf
 If y% And ebVolume Then msg1 = msg1 & "The volume bit is set." & crlf
 If y% And ebDirectory Then msg1 = msg1 & "The directory bit is set." & crlf
 If y% And ebArchive Then msg1 = msg1 & "The archive bit is set."
 MsgBox msg1
 Goto Again
End Sub

See Also SetAttr (page 477) (statement); FileAttr (page 339) (function).

GetObject (function)

Syntax GetObject (filename$ [,class$])

Description Returns the object specified by filename$ or returns a previously instantiated object of the given class$.

Comments This function is used to retrieve an existing OLE automation object, either one that comes from a file or
one that has previously been instantiated.

The filename$ argument specifies the full pathname of the file containing the object to be activated. The
application associated with the file is determined by OLE at runtime. For example, suppose that a file
called c:\docs\resume.doc was created by a word processor called wordproc.exe . The following
statement would invoke wordproc.exe , load the file called c:\docs\resume.doc , and assign that object
to a variable:

 Dim doc As Object
 Set doc = GetObject("c:\docs\resume.doc")

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 359

To activate a part of an object, add an exclamation point to the filename followed by a string representing
the part of the object that you want to activate. For example, to activate the first three pages of the
document in the previous example:

 Dim doc As Object
 Set doc = GetObject("c:\docs\resume.doc!P1-P3")

The GetObject function behaves differently depending on whether the first parameter is omitted. The
following table summarizes the different behaviors of GetObject :

Filename
$

Class$ GetObject Returns

Omitted Specified Reference to an existing instance of the specified object. A runtime error results if
the object is not already loaded.

"" Specified Reference to a new object (as specified by class$). A runtime error occurs if an
object of the specified class cannot be found. This is the same as CreateObject .

Specified Omitted Default object from filename$. The application to activate is determined by OLE
based on the given filename.

Specified Specified Object given by class$ from the file given by filename$. A runtime error occurs if
an object of the given class cannot be found in the given file.

Example This first example instantiates the existing copy of Excel.

Sub Main()
 Dim Excel As Object
 Set Excel = GetObject(,"Excel.Application")

This second example loads the OLE server associated with a document.

 Dim MyObject As Object
 Set MyObject = GetObject("c:\documents\resume.doc")
End Sub

See Also CreateObject (page 245) (function); Object (page 422) (data type).

GetSetting (function)

Syntax GetSetting([appname], section, key[, default])

Description Retrieves an specific setting from the system registry.

Comments The GetSetting function has the following named parameters:

Parameter Description

appname String expression specifying the name of the application from which the setting will be read.

section String expression specifying the name of the section within appname to be read.

key String expression specifying the name of the key within section to be read.

default An optional String expression specifying the default value to be returned if the desired key
does not exist in the system registry. If omitted, then an empty string is returned if the key
doesn’t exist.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 360

Example

 Sub Main()
 SaveSetting appname := "NewApp", section := "Startup", _
 key := "Height", setting := 200
 SaveSetting appname := "NewApp", section := "Startup", _
 key := "Width", setting := 320
 MsgBox GetSetting(appname := "NewApp", section := "Startup", _
 key := "Height", default := "50")
 DeleteSetting "NewApp" ' Delete the NewApp key
 End Sub

See Also GetAllSettings (page 356) (function), DeleteSetting (page 277) (statement), SaveSetting (page 468)
(statement)

Note Under Win32, this statement operates on the system registry. All settings are read from the following entry
in the system registry: HKEY_CURRENT_USER\Software\BasicScript Program Settings\appname\section\key
On this platform, the appname parameter is not optional.

Global (statement)

Description See Public (page 446)
(statement).

GoSub (statement)

Syntax GoSub label

Description Causes execution to continue at the specified label.

Comments Execution can later be returned to the statement following the GoSub by using the Return statement.
The label parameter must be a label within the current function or subroutine. GoSub outside the context
of the current function or subroutine is not allowed.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 361

Example This example gets a name from the user and then branches to a subroutine to check the input. If the user
clicks Cancel or enters a blank name, the program terminates; otherwise, the name is set to MICHAEL,
and a message is displayed.

Sub Main()
 uname$ = Ucase$(InputBox$("Enter your name:","Enter Name"))
 GoSub CheckName
 MsgBox "I'm looking for MICHAEL, not " & uname$
 Exit Sub
CheckName:
 If (uname$ = "") Then
 GoSub BlankName
 ElseIf uname$ = "MICHAEL" Then
 GoSub RightName
 Else
 GoSub OtherName
 End If
 Return
BlankName:
 MsgBox "No name? Clicked Cancel? I'm shutting down."
 Exit Sub
RightName:
 Msgbox "Hey, MIKE where have you been?"
 End
OtherName:
 Return
End Sub

See Also Goto (page 361) (statement); Return (page 461) (statement).

Goto (statement)

The compiler will produce an error if label does not exist.The label must appear within the same
subroutine or function as the Goto .Labels are identifiers that follow these rules:

1. Must begin with a letter.

2. May contain letters, digits, and the underscore character.

3. Must not exceed 80 characters in length.

4. Must be followed by a colon (:).
Labels are not case-sensitive.

GroupBox (statement)

Syntax GroupBox X,Y,width,height,title$ [,.Identifier]

Description Defines a group box within a dialog box template.

Comments This statement can only appear within a dialog box template (that is., between the Begin Dialog and
End Dialog statements). The group box control is used for static display only¾the user cannot interact
with a group box control. Separator lines can be created using group box controls. This is accomplished
by creating a group box that is wider than the width of the dialog box and extends below the bottom of the
dialog box; three sides of the group box are not visible.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 362

If title$ is a zero-length string, then the group box is drawn as a solid rectangle with no title. The GroupBox
statement requires the following parameters:

Parameter Description

X, Y Integer coordinates specifying the position of the control (in dialog units) static to the upper
left corner of the dialog box.

width,
height

Integer coordinates specifying the dimensions of the control in dialog units.

title$ String containing the label of the group box. If title$ is a zero-length string, then no title will
appear.

.Identifier Optional parameter that specifies the name by which this control can be referenced by
statements in a dialog function (such as DlgFocus and DlgEnable). If omitted, then the
first two words of title$ are used.

Example This example shows the GroupBox statement being used both for grouping and as a separator line.

Sub Main()
 Begin Dialog OptionsTemplate 16,32,128,84,"Options"
 GroupBox 4,4,116,40,"Window Options"
 CheckBox 12,16,60,8,"Show &Toolbar",.ShowToolbar
 CheckBox 12,28,68,8,"Show &Status Bar",.ShowStatusBar
 GroupBox -12,52,152,48," ",.SeparatorLine
 OKButton 16,64,40,14,.OK
 CancelButton 68,64,40,14,.Cancel
 End Dialog
 Dim OptionsDialog As OptionsTemplate
 Dialog OptionsDialog
End Sub

See Also CancelButton (page 243) (statement); CheckBox (page 240) (statement); ComboBox (page 249)
(statement); Dialog (page 278) (function); Dialog (page 279) (statement); DropListBox (page 301)
(statement); ListBox (page 394) (statement); OKButton (page 426) (statement); OptionButton (page
434) (statement); OptionGroup (page 435) (statement); Picture (page 438) (statement); PushButton
(page 447) (statement); Text (page 502) (statement); TextBox (page 503) (statement); Begin (page
231) Dialog (page 231) (statement), PictureButton (page 439) (statement).

H

H

HelpButton (statement)

Hex, Hex$ (function)

HLine (statement)

Hour (function)

HPage (statement)

HScroll (statement)

HWND (object)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 363

HWND.Value (property)

HelpButton (statement)

Syntax HelpButton x,y,width,height,HelpFileName$,HelpContext, [,.Identifier]

Description Defines a help button within a dialog template.

Comments This statement can only appear within a dialog box template (i.e., between the Begin Dialog and End
Dialog statements). The HelpButton statement takes the following parameters:

Parameter Description

x,y Integer position of the control (in dialog units) static to the upper left corner of the dialog
box.

width,height Integer dimensions of the control in dialog units.

HelpFileName
$

String expression specifying the name of the help file to be invoked when the button is
selected.

HelpContext Long expression specifying the ID of the topic within HelpFileName$ containing context-
sensitive help.

.Identifier Name by which this control can be referenced by statements in a dialog function (such as
DlgFocus and DlgEnable).

When the user selects a help button, the associated help file is located at the indicated topic. Selecting
a help button does not remove the dialog. Similarly, no actions are sent to the dialog procedure when a
help button is selected. When a help button is present within a dialog, it can be automatically selected by
pressing the help key (F1 on most platforms).

Example

 Sub Main()
 Begin Dialog HelpDialogTemplate ,,180,96,"Untitled"
 OKButton 132,8,40,14
 CancelButton 132,28,40,14
 HelpButton 132,48,40,14,"", 10
 Text 16,12,88,12,"Please click ""Help"".",.Text1
 End Dialog
 Dim HelpDialog As HelpDialogTemplate
 Dialog HelpDialog
 End Sub

See Also CancelButton (page 243) (statement), CheckBox (page 240) (statement), ComboBox (page 249)
(statement), Dialog (page 278) (function), Dialog (page 279) (statement), DropListBox (page 301)
(statement), GroupBox (page 361) (statement), ListBox (page 394) (statement), OKButton (page
426) (statement), OptionButton (page 434) (statement), OptionGroup (page 435) (statement),
Picture (page 438) (statement), PushButton (page 447) (statement), Text (page 502) (statement),
Begin Dialog (page 231) (statement), PictureButton (page 439) (statement)

Hex, Hex$ (functions)

Syntax Hex[$] (number)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 364

Description Returns a String containing the hexadecimal equivalent of number.

Comments Hex$ returns a String , whereas Hex returns a String variant. The returned string contains only the
number of hexadecimal digits necessary to represent the number, up to a maximum of eight.

The number parameter can be any type but is rounded to the nearest whole number before converting to
hex. If the passed number is an integer, then a maximum of four digits are returned; otherwise, up to eight
digits can be returned. The number parameter can be any expression convertible to a number. If number
is Null , then Null is returned. Empty is treated as 0.

Example This example accepts a number and displays the decimal and hexadecimal equivalent until the input
number is 0 or invalid.

Sub Main()
 Do
 xs$ = InputBox("Enter a number to convert:","Hex Convert")
 x = Val(xs$)
 If x <> 0 Then
 MsgBox "Decimal: " & x & " Hex: " & Hex(x)
 Else
 MsgBox "Goodbye."
 End If
 Loop While x <> 0
End Sub

See Also Oct, Oct$ (page 426) (functions).

HLine (statement)

Syntax HLine [lines]

Description Scrolls the window with the focus left or right by the specified number of lines.

Comments The lines parameter is an Integer specifying the number of lines to scroll. If this parameter is omitted,
then the window is scrolled right by one line.

Example This example scrolls the Notepad window to the left by three "amounts." Each "amount" is equivalent to
clicking the right arrow of the horizontal scroll bar once.

Sub Main()
 AppActivate "Notepad"
 HLine 3 'Move 3 lines in.
End Sub

See Also HPage (page 365) (statement); HScroll (page 365) (statement).

Hour (function)

Syntax Hour (time)

Description Returns the hour of the day encoded in the specified time parameter.

Comments The value returned is as an Integer between 0 and 23 inclusive. The time parameter is any expression
that converts to a Date .

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 365

Example This example takes the current time; extracts the hour, minute, and second; and displays them as the
current time.

Sub Main()
 Msgbox "It is now hour " & Hour(Time) & " of today."
End Sub

See Also Day (page 269) (function); Minute (page 404) (function); Second (page 471) (function); Month (page
406) (function); Year (page 533) (function); Weekday (page 521) (function); DatePart (page 267)
(function).

HPage (statement)

Syntax HPage [pages]

Description Scrolls the window with the focus left or right by the specified number of pages.

Comments The pages parameter is an Integer specifying the number of pages to scroll. If this parameter is omitted,
then the window is scrolled right by one page.

Example This example scrolls the Notepad window to the left by three "amounts." Each "amount" is equivalent to
clicking within the horizontal scroll bar on the right side of the thumb mark.

Sub Main()
 AppActivate "Notepad"
 HPage 3 'Move 3 pages down.
End Sub

See Also HLine (page 364) (statement); HScroll (page 365) (statement).

HScroll (statement)

Syntax HScroll percentage

Description Sets the thumb mark on the horizontal scroll bar attached to the current window.

Comments The position is given as a percentage of the total range associated with that scroll bar. For example, if the
percentage parameter is 50, then the thumb mark is positioned in the middle of the scroll bar.

Example This example centers the thumb mark on the horizontal scroll bar of the Notepad window.

Sub Main()
 AppActivate "Notepad"
 HScroll 50 'Jump to the middle of the document.
End Sub

See Also HLine (page 364) (statement); HPage (page 365) (statement).

HWND (object)

Syntax Dim name As HWND

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 366

Description A data type used to hold window objects.

Comments This data type is used to hold references to physical windows in the operating environment. The following
commands operate on HWND objects:

WinActivate WinClose WinFind WinList

WinMaximize WinMinimize WinMove WinRestore

WinSize

The above language elements support both string and HWND window specifications.

Example This example activates the "Main" MDI window within Program Manager.

Sub Main()
 Dim ProgramManager As HWND
 Dim ProgramManagerMain As HWND
 Set ProgramManager = WinFind("Program Manager")
 If ProgramManager Is Not Nothing Then
 WinActivate ProgramManager
 WinMaximize ProgramManager
 Set ProgramManagerMain = WinFind("Program Manager|Main")
 If ProgramManagerMain Is Not Nothing Then
 WinActivate ProgramManagerMain
 WinRestore ProgramManagerMain
 Else
 MsgBox "Your Program Manager doesn't have a Main group."
 End If
 Else
 MsgBox "Program Manager is not running."
 End If
End Sub

See Also HWND.Value (page 366) (property); WinFind (page 525) (function); WinActivate (page 523)
(statement).

HWND.Value (property)

Syntax window .Value

Description The default property of an HWND object that returns a Variant containing a HANDLE to the physical
window of an HWND object variable.

Comments The .Value property is used to retrieve the operating environment–specific value of a given HWND
object. The size of this value depends on the operating environment in which the script is executing and
thus should always be placed into a Variant variable. This property is read-only.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 367

Example This example displays a dialog box containing the class name of Program Manager's Main window. It
does so using the .Value property, passing it directly to a Windows external routine.

Declare Sub GetClassName Lib "user" (ByVal Win%,ByVal ClsName$,
 ByVal ClsNameLen%)
Sub Main()
 Dim ProgramManager As HWND
 Set ProgramManager = WinFind("Program Manager")
 ClassName$ = Space(40)
 GetClassName ProgramManager.Value,ClassName$,Len(ClassName$)
 MsgBox "The program classname is: " & ClassName$
End Sub

See Also HWND (page 365) (object).

Notes Under Windows, this value is an Integer .

I

I

If...Then...Else (statement)

IIf (function)

IMEStatus (function)

Imp (operator)

Input# (statement)

Input, Input$, InputB, InputB$ (functions)

InputBox, InputBox$ (functions)

InStr, InStrB (functions)

Int (function)

Integer (data type)

IPmt (function)

IRR (function)

Is (operator)

IsDate (function)

IsEmpty (function)

IsError (function)

IsMissing (function)

IsNull (function)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 368

IsNumeric (function)

IsObject (function)

IsWebSpaceSession (function)

Item$ (function)

ItemCount (function)

If...Then...Else (statement)

Syntax 1 If condition Then statements [Else else_statements]

Syntax 2 If condition Then [statements] [ElseIf else_condition Then [elseif_statements]] [Else
 [else_statements]] End If

Description Conditionally executes a statement or group of statements.

Comments The single-line conditional statement (syntax 1) has the following parameters:

Parameter Description

condition Any expression evaluating to a Boolean value.

statements One or more statements separated with colons. This group of statements is executed
when condition is TRUE.

else_statements One or more statements separated with colons. This group of statements is executed
when condition is FALSE.

The multiline conditional statement (syntax 2) has the following parameters:

Parameter Description

condition Any expression evaluating to a Boolean value.

statements One or more statements to be executed when condition is True .

else_condition Any expression evaluating to a Boolean value. The else_condition is evaluated if
condition is False .

elseif_statements One or more statements to be executed when condition is False and else_condition
is True .

else_statements One or more statements to be executed when both condition and else_condition are
False .

There can be as many ElseIf conditions as required.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 369

Example This example inputs a name from the user and checks to see whether it is MICHAEL or MIKE using three
forms of the If...Then...Else statement. It then branches to a statement that displays a welcome message
depending on the user's name.

Sub Main()
 uname$ = UCase(InputBox("Enter your name:","Enter Name"))
 If uname$ = "MICHAEL" Then GoSub MikeName
 If uname$ = "MIKE" Then
 GoSub MikeName
 Exit Sub
 End If
 If uname$ = "" Then
 MsgBox "Since you don't have a name, I'll call you MIKE!"
 uname$ = "MIKE"
 GoSub MikeName
 ElseIf uname$ = "MICHAEL" Then
 GoSub MikeName
 Else
 GoSub OtherName
 End If
 Exit Sub
MikeName:
 MsgBox "Hello, MICHAEL!"
 Return

OtherName:
 MsgBox "Hello, " & uname$ & "!"
 Return
End Sub

See Also Choose (page 241) (function); Switch (page 496) (function); IIf (page 369) (function); Select...Case
(page 472) (statement).

IIf (function)

Syntax IIf (condition,TrueExpression,FalseExpression)

Description Returns TrueExpression if condition is True ; otherwise, returns FalseExpression.

Comments Both expressions are calculated before IIf returns. The IIf function is shorthand for the following
construct:

 If condition Then
 variable = TrueExpression
 Else
 variable = FalseExpression
 End If

Example
Sub Main()
 s$ = "Car"
 MsgBox "You have a " & IIf(s$ = "Car","nice car.","nice non-car.")
End Sub

See Also Choose (page 241) (function); Switch (page 496) (function); If...Then...Else (page 368) (statement);
Select...Case (page 472) (statement).

IMEStatus (function)

Syntax IMEStatus[()]

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 370

Description Returns the current status of the input method editor.

Comments The IMEStatus function returns one of the following constants for Japanese locales:

Constant Value Description

ebIMENoOp 0 IME not installed.

ebIMEOn 1 IME on.

ebIMEOff 2 IME off.

ebIMEDisabled 3 disabled

ebIMEHiragana 4 Hiragana double-byte character.

ebIMEKatakanaDbl 5 Katakana double-byte characters.

ebIMEKatakanaSng 6 Katakana single-byte characters.

ebIMEAlphaDbl 7 Alphanumeric double-byte characters.

ebIMEAlphaSng 8 Alphanumeric single-byte characters.

For Chinese locales, one of the following constants are returned:

Constant Value Description

ebIMENoOp 0 IME not installed.

ebIMEOn 1 IME on.

ebIMEOff 2 IME off.

For Korean locales, this function returns a value with the first 5 bits having the following meaning:

Bit If not set (or 0) If set (or 1)

Bit 0 IME not installed IME installed

Bit 1 IME disabled IME enabled

Bit 2 English mode Hangeul mode

Bit 3 Banja mode (single-byte) Junja mode (double-byte)

Bit 4 Normal mode Hanja conversion mode

Note: You can test for the different bits using the And operator as follows:

a = IMEStatus() If a And 1 Then ... 'Test for bit 0 If a And 2 Then ... 'Test for bit 1 If a And 4 Then ... 'Test
for bit 2 If a And 8 Then ... 'Test for bit 3 If a And 16 Then ... ’Test for bit 4

This function always returns 0 if no input method editor is installed.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 371

Example

 'This example retrieves the IMEStatus and displays the results.
 Sub Main()
 a = IMEStatus()
 Select case a
 Case 0
 MsgBox "IME not installed."
 Case 1
 MsgBox "IME on."
 Case 2
 Msgbox "IME off."
 End Select
 End Sub

See Also Constants (page 253) (topic)

Imp (operator)

Syntax expression1 Imp expression2

Description Performs a logical or binary implication on two expressions.

Comments If both expressions are either Boolean, Boolean variants, or Null variants, then a logical implication is
performed as follows:

If the first expression is and the second
expression is

then the result is

TRUE TRUE TRUE

TRUE FALSE FALSE

TRUE NULL NULL

FALSE TRUE TRUE

FALSE FALSE TRUE

FALSE NULL TRUE

NULL TRUE TRUE

NULL FALSE NULL

NULL NULL NULL

Binary Implication If the two expressions are Integer, then a binary implication is performed, returning
an Integer result. All other numeric types (including Empty variants) are converted to Long and a binary
implication is then performed, returning a Long result. Binary implication forms a new value based on
a bit-by-bit comparison of the binary representations of the two expressions, according to the following
table:

1 Imp 1 = 1 Example

0 Imp 1 = 1 5 01101001

1 Imp 0 = 0 6 10101010

0 Imp 0 = 1 Imp 10111110

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 372

Example This example compares the result of two expressions to determine whether one implies the other.

Sub Main()
 a = 10 : b = 20 : c = 30 : d = 40
 If (a < b) Imp (c < d) Then
 MsgBox "a is less than b implies that c is less than d."
 Else
 MsgBox "a is less than b does not imply that c is less than d."
 End If
 If (a < b) Imp (c > d) Then
 MsgBox "a is less than b implies that c is greater than d."
 Else
 MsgBox "a is less than b does not imply that c is greater than d."
 End If
End Sub

See Also Operator Precedence (page 431) (topic); Or (page 435) (operator); Xor (page 532) (operator); Eqv
(page 323) (operator); And (operator). (page 204)

Input# (statement)

Each variable must be type-matched to the data in the file. For example, a String variable must be
matched to a string in the file.The following parsing rules are observed while reading each variable in
the variable list:

1. Leading white space is ignored (spaces and tabs).

2. When reading String variables, if the first character on the line is a quotation mark, then
characters are read up to the next quotation mark or the end of the line, whichever comes first.
Blank lines are read as empty strings. If the first character read is not a quotation mark, then
characters are read up to the first comma or the end of the line, whichever comes first. String
delimiters (quotes, comma, end-of-line) are not included in the returned string.

3. When reading numeric variables, scanning of the number stops when the first nonnumber
character (such as a comma, a letter, or any other unexpected character) is encountered.
Numeric errors are ignored while reading numbers from a file. The resultant number is
automatically converted to the same type as the variable into which the value will be placed. If
there is an error in conversion, then 0 is stored into the variable.
 octaldigits [!|#|%|&|@] After reading the number, input is skipped up to the next
delimiter—a comma, an end-of-line, or an end-of-file.Numbers must adhere to any of the
following syntaxes: [-|+]digits[.digits][E[-|+]digits][!|#|%|&|@] &Hhexdigits[!|#|%|
&] &[O]

4. When reading Boolean variables, the first character must be #; otherwise, a runtime error
occurs. If the first character is #, then input is scanned up to the next delimiter (a comma, an
end-of-line, or an end-of-file). If the input matches #FALSE#, then FALSE is stored in the
Boolean ; otherwise TRUE is stored.

5. When reading Date variables, the first character must be #; otherwise, a runtime error occurs.
If the first character is #, then the input is scanned up to the next delimiter (a comma, an end-

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 373

of-line, or an end-of-file). If the input ends in a # and the text between the #'s can be correctly
interpreted as a date, then the date is stored; otherwise, December 31, 1899, is stored.
Normally, dates that follow the universal date format are input from sequential files. These
dates use this syntax: #YYYY-MM-DD HH:MM:SS#where YYYY is a year between 100 and
9999, MM is a month between 1 and 12, DD is a day between 1 and 31, HH is an hour between
0 and 23, MM is a minute between 0 and 59, and SS is a second between 0 and 59.

6. When reading Variant variables, if the data begins with a quotation mark, then a string is read
consisting of the characters between the opening quotation mark and the closing quotation mark,
end-of-line, or end-of-file.
If the input does not begin with a quotation mark, then input is scanned up to the next comma,
end-of-line, or end-of-file and a determination is made as to what data is being represented. If
the data cannot be represented as a number, Date , Error , Boolean , or Null , then it is read
as a string.The following table describes how special data is interpreted as variants:

7. End-of-line is interpreted as either a single line feed, a single carriage return, or a carriage-
return/line-feed pair. Thus, text files from any platform can be interpreted using this command.
The filenumber parameter is a number that is used by The Basic Control Engine to refer to
the open file, the number passed to the Open statement.The filenumber must reference a file
opened in Input mode. It is good practice to use the Write statement to write date elements
to files read with the Input statement to ensure that the variable list is consistent between the
input and output routines.

Input, Input$, InputB, InputB$ (functions)

Syntax Input[$](numchars,[#]filenumber) InputB[$](numbytes,[#]filenumber)

Description Returns a specified number of characters or bytes read from a given sequential file.

Comments The functions return the following.

Functions Return

Input$ and
InputB$

String

Input and
InputB

String variant.

The following parameters are required:

Parameter Description

numchars Integer containing the number of characters to be read from the file.

numbytes Integer containing the number of bytes to be read from the file.

filenumber Integer referencing a file opened in either Input or Binary mode. This is the same number
passed to the Open statement.

Functions are used to read the following.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 374

Functions Used to read:

InputB and
InputB$

Byte data from a file.

Input and Input
$

All characters, including spaces and end-of-lines. Null characters are ignored.

Example

 'This example opens the autoexec.bat file and displays it in a
 'dialog box.
 Const crlf = Chr$(13) & Chr$(10)
 Sub Main()
 x& = FileLen("c:\autoexec.bat")
 If x& > 0 Then
 Open "c:\autoexec.bat" For Input As #1
 Else
 MsgBox "File not found or empty."
 Exit Sub
 End If
 If x& > 80 Then
 ins = Input(80,#1)
 Else
 ins = Input(x,#1)
 End If
 Close
 MsgBox "File length: " & x& & crlf & ins
 End Sub

See Also Open (page 428) (statement); Get (page 355) (statement); Input# (page 372) (statement); Line
Input# (page 392) (statement).

InputBox, InputBox$ (functions)

Syntax InputBox[$](prompt [, [title] [, [default] [,[xpos],[ypos] [,helpfile,context]]]])

Description Displays a dialog box with a text box into which the user can type.

Comments The content of the text box is returned as a String (in the case of InputBox$) or as a String variant (in
the case of InputBox). A zero-length string is returned if the user selects Cancel. The InputBox/InputBox$
functions take the following named parameters:

Parameter Description

prompt Text to be displayed above the text box. The prompt parameter can contain multiple lines,
each separated with an end-of-line (a carriage return, line feed, or carriage-return/line-feed
pair). A runtime error is generated if prompt is Null.

title Caption of the dialog box. If this parameter is omitted, then no title appears as the dialog
box's caption. A runtime error is generated if title is Null.

default Default response. This string is initially displayed in the text box. A runtime error is generated
if default is Null.

xpos,
ypos

Integer coordinates, given in twips (twentieths of a point), specifying the upper left corner of
the dialog box static to the upper left corner of the screen. If the position is omitted, then the
dialog box is positioned on or near the application executing the script.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 375

helpfile Name of the file containing context-sensitive help for this dialog. If this parameter is
specified, then context must also be specified.

context Number specifying the ID of the topic within helpfile for this dialog's help. If this parameter is
specified, then helpfile must also be specified.

You can type a maximum of 255 characters into InputBox. If both the helpfile and context parameters
are specified, then a Help button is added in addition to the OK and Cancel buttons. Context-sensitive
help can be invoked by selecting this button or using the help key (F1 on most platforms). Invoking help
does not remove the dialog. When Cancel is selected, an empty string is returned. An empty string is
also returned when the user selects the OK button with no text in the input box. Thus, it is not possible
to determine the difference between these two situations. If you need to determine the difference, you
should create a user-defined dialog or use the AskBox function.

Example

 Sub Main()
 s$ = InputBox$("File to copy:","Copy","sample.txt")
End Sub

See Also MsgBox (page 411) (statement), AskBox, AskBox$ (page 221) (functions), AskPassword,
AskPassword$ (page 222) (functions), OpenFileName$ (page 429) (function), SaveFileName$ (page
467) (function), SelectBox (page 473) (function), AnswerBox (page 205) (function)

InStr, InStrB (functions)

Syntax InStr([start,] search, find [,compare]) InStrB([start,] search, find [,compare])

Description Returns the first character position of string find within string search.

Comments The InStr function takes the following parameters:

Parameter Description

start Integer specifying the character position where searching begins. The start parameter must
be between 1 and 32767. If this parameter is omitted, then the search starts at the beginning
(start = 1).

search Text to search. This can be any expression convertible to a String.

find Text for which to search. This can be any expression convertible to a String.

compare Integer controlling how string comparisons are performed:

0 String comparisons are case-sensitive.

1 String comparisons are case-insensitive.

Any other value A runtime error is produced.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 376

If this parameter is omitted, then string comparisons use the current Option Compare
setting. If no Option Compare statement has been encountered, then Binary is used (i.e.,
string comparisons are case-sensitive).

If the string is found, then its character position within search is returned, with 1 being the character
position of the first character.

The InStr and InStrB functions observe the following additional rules:

• If either search or find is NULL, then NULL is returned.
• If the compare parameter is specified, then start must also be specified. In other words, if there are

three parameters, then it is assumed that these parameters correspond to start, search, and find.
• A runtime error is generated if start is NULL.
• A runtime error is generated if compare is not 0 or 1.
• If search is Empty, then 0 is returned.
• If find is Empty, then start is returned. If start is greater than the length of search, then 0 is returned.
• A runtime error is generated if start is less than or equal to 0.

The InStr and InStrB functions operate on character and byte data respectively. The Instr function
interprets the start parameter as a character, performs a textual comparisons, and returns a character
position. The InStrB function, on the other hand, interprets the start parameter as a byte position,
performs binary comparisons, and returns a byte position. On SBCS platforms, the InStr and InStrB
functions are identical.

Example This example checks to see whether one string is in another and, if it is, then it copies the string to a
variable and displays the result.

Sub Main()
 a$ = "This string contains the name Stuart and other characters."
 x% = InStr(1, a$,"Stuart",1)
 If x% <> 0 Then
 b$ = Mid(a$,x%,6)
 MsgBox b$ & " was found."
 Exit Sub
 Else
 MsgBox "Stuart not found."
 End If
End Sub

See Also Mid, Mid$ (page 402) (functions); Option Compare (page 432) (statement); Item$ (page 383)
(function); Word$ (page 529) (function); Line$ (page 392) (function).

Int (function)

Syntax Int (number)

Description Returns the integer part of number.

Comments This function returns the integer part of a given value by returning the first integer less than the number.
The sign is preserved. The Int function returns the same type as number, with the following exceptions:

• If number is Empty , then an Integer variant of value 0 is returned.
• f number is a String , then a Double variant is returned.
• If number is Null , then a Null variant is returned.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 377

Example This example extracts the integer part of a number.

Sub Main()
 a# = -1234.5224
 b% = Int(a#)
 MsgBox "The integer part of -1234.5224 is: " & b%
End Sub

See Also Fix (page 345) (function); CInt (page 243) (function).

Integer (data type)

Syntax Integer

Description A data type used to declare whole numbers with up to four digits of precision.

Comments Integer variables are used to hold numbers within the following range:

 –32768 <= integer <= 32767

Internally, integers are 2-byte short values. Thus, when appearing within a structure, integers require 2
bytes of storage. When used with binary or random files, 2 bytes of storage are required. When passed to
external routines, Integer values are sign-extended to the size of an integer on that platform (either 16 or
32 bits) before pushing onto the stack. The type-declaration character for Integer is % .

See Also Currency (page 259) (data type); Date (page 263) (data type); Double (page 300) (data type); Long
(page 398) (data type), Object (page 422) (data type), Single (page 479) (data type), String (page
494) (data type), Variant (page 515) (data type), Boolean (page 233) (data type), DefType (page
276) (statement), CInt (page 243) (function).

IPmt (function)

Syntax IPmt (Rate, Per, Nper, Pv, Fv, Due)

Description Returns the interest payment for a given period of an annuity based on periodic, fixed payments and a
fixed interest rate.

Comments An annuity is a series of fixed payments made to an insurance company or other investment company
over a period of time. Examples of annuities are mortgages, monthly savings plans, and retirement plans.
The following table describes the different parameters:

Parameter Description

Rate Double representing the interest rate per period. If the payment periods are monthly, be sure
to divide the annual interest rate by 12 to get the monthly rate.

Per Double representing the payment period for which you are calculating the interest payment.
If you want to know the interest paid or received during period 20 of an annuity, this value
would be 20.

Nper Double representing the total number of payments in the annuity. This is usually expressed
in months, and you should be sure that the interest rate given above is for the same period
that you enter here.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 378

Pv Double representing the present value of your annuity. In the case of a loan, the present
value would be the amount of the loan because that is the amount of cash you have in the
present. In the case of a retirement plan, this value would be the current value of the fund
because you have a set amount of principal in the plan.

Fv Double representing the future value of your annuity. In the case of a loan, the future value
would be zero because you will have paid it off. In the case of a savings plan, the future
value would be the balance of the account after all payments are made.

Due Integer indicating when payments are due. If this parameter is 0, then payments are due at
the end of each period (usually, the end of the month). If this value is 1, then payments are
due at the start of each period (the beginning of the month).

Rate and Nper must be in expressed in the same units. If Rate is expressed in percentage paid per
month, then Nper must also be expressed in months. If Rate is an annual rate, then the period given
in Nper should also be in years or the annual Rate should be divided by 12 to obtain a monthly rate. If
the function returns a negative value, it represents interest you are paying out, whereas a positive value
represents interest paid to you.

Example This example calculates the amount of interest paid on a $1,000.00 loan financed over 36 months with an
annual interest rate of 10%. Payments are due at the beginning of the month. The interest paid during the
first 10 months is displayed in a table.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 msg1 = ""
 For x = 1 to 10
 ipm# = IPmt((.10/12),x,36,1000,0,1)
 msg1 = msg1 & Format(x,"00") & " : " & Format(ipm#," 0,0.00") & crlf
 Next x
 MsgBox msg1
End Sub

See Also NPer (page 420) (function); Pmt (page 440) (function); PPmt (page 441) (function); Rate (page
453) (function).

IRR (function)

Syntax IRR (ValueArray(),Guess)

Description Returns the internal rate of return for a series of periodic payments and receipts.

Comments The internal rate of return is the equivalent rate of interest for an investment consisting of a series of
positive and/or negative cash flows over a period of regular intervals. It is usually used to project the rate
of return on a business investment that requires a capital investment up front and a series of investments
and returns on investment over time. The IRR function requires the following parameters:

Parameter Description

ValueArray() Array of Double numbers that represent payments and receipts. Positive values are
payments, and negative values are receipts. There must be at least one positive and one
negative value to indicate the initial investment (negative value) and the amount earned by
the investment (positive value).

Guess Double containing your guess as to the value that the IRR function will return. The most
common guess is .1 (10 percent).

The value of IRR is found by iteration. It starts with the value of Guess and cycles through the calculation
adjusting Guess until the result is accurate within 0.00001 percent. After 20 tries, if a result cannot be
found, IRR fails, and the user must pick a better guess.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 379

Example This example illustrates the purchase of a lemonade stand for $800 and a series of incomes from the sale
of lemonade over 12 months. The projected incomes for this example are generated in two For...Next
Loops, and then the internal rate of return is calculated and displayed. (Not a bad investment!)

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 Dim valu#(12)
 valu(1) = -800 'Initial investment
 msg1 = valu#(1) & ", "

 'Calculate the second through fifth months' sales.
 For x = 2 To 5
 valu(x) = 100 + (x * 2)
 msg1 = msg1 & valu(x) & ", "
 Next x
 'Calculate the sixth through twelfth months' sales.
 For x = 6 To 12
 valu(x) = 100 + (x * 10)
 msg1 = msg1 & valu(x) & ", "
 Next x

 'Calculate the equivalent investment return rate.
 retrn# = IRR(valu,.1)
 msg1 = "The values: " & crlf & msg1 & crlf & crlf
 MsgBox msg1 & "Return rate: " & Format(retrn#,"Percent")
End Sub

See Also Fv (page 353) (function); MIRR (page 404) (function); Npv (page 420) (function); Pv (page 450)
(function).

Is (operator)

Syntax object Is [object | Nothing]

Description Returns True if the two operands refer to the same object; returns False otherwise.

Comments This operator is used to determine whether two object variables refer to the same object. Both operands
must be object variables of the same type (i.e., the same data object type or both of type Object). The
Nothing constant can be used to determine whether an object variable is uninitialized:

 If MyObject Is Nothing Then MsgBox "MyObject is uninitialized."

Uninitialized object variables reference no object.

Example This function inserts the date into a Microsoft Word document.

Sub InsertDate(ByVal WinWord As Object)
 If WinWord Is Nothing Then
 MsgBox "Object variant is not set."
 Else
 WinWord.Insert Date$
 End If
End Sub
Sub Main()
 Dim WinWord As Object
 On Error Resume Next
 WinWord = CreateObject("word.basic")
 InsertDate WinWord
End Sub

See Also Operator Precedence (page 431) (topic); Like (page 391) (operator).

Platform(s) All.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 380

Notes When comparing OLE automation objects, the Is operator will only return True if the operands
reference the same OLE automation object. This is different from data objects. For example, the following
use of Is (using the object class called excel.application) returns True :

 Dim a As Object
 Dim b As Object
 a = CreateObject("excel.application")
 b = a
 If a Is b Then Beep

The following use of Is will return False , even though the actual objects may be the same:

 Dim a As Object
 Dim b As Object
 a = CreateObject("excel.application")
 b = GetObject(,"excel.application")
 If a Is b Then Beep

The Is operator may return False in the above case because, even though a and b reference the
same object, they may be treated as different objects by OLE 2.0 (this is dependent on the OLE 2.0
server application).

IsDate (function)

Syntax IsDate (expression)

Description Returns True if expression can be legally converted to a date; returns False otherwise.

Example
Sub Main()
 Dim a As Variant
Retry:
 a = InputBox("Enter a date.","Enter Date")
 If IsDate(a) Then
 MsgBox Format(a,"long date")
 Else
 Msgbox "Not quite, please try again!"
 Goto Retry
 End If
End Sub

See Also Variant (page 515) (data type); IsEmpty (page 380) (function); IsError (page 381) (function); IsObject
(page 383) (function); VarType (page 516) (function); IsNull (page 382) (function).

IsEmpty (function)

Syntax IsEmpty (expression)

Description Returns True if expression is a Variant variable that has never been initialized; returns False
otherwise.

Comments The IsEmpty function is the same as the following:

 (VarType(expression) = ebEmpty)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 381

Example
Sub Main()
 Dim a As Variant
 If IsEmpty(a) Then
 a = 1.0# 'Give uninitialized data a Double value 0.0.
 MsgBox "The variable has been initialized to: " & a
 Else
 MsgBox "The variable was already initialized!"
 End If
End Sub

See Also Variant (page 515) (data type); IsDate (page 380) (function); IsError (page 381) (function); IsObject
(page 383) (function); VarType (page 516) (function); IsNull (page 382) (function).

IsError (function)

Syntax IsError (expression)

Description Returns True if expression is a user-defined error value; returns False otherwise.

Example This example creates a function that divides two numbers. If there is an error dividing the numbers, then
a variant of type "error" is returned. Otherwise, the function returns the result of the division. The IsError
function is used to determine whether the function encountered an error.

Function Div(ByVal a,ByVal b) As Variant
 If b = 0 Then
 Div = CVErr(2112) 'Return a special error value.
 Else
 Div = a / b 'Return the division.
 End If
End Function
Sub Main()
 Dim a As Variant
 a = Div(10,12)
 If IsError(a) Then
 MsgBox "The following error occurred: " & CStr(a)
 Else
 MsgBox "The result of the division is: " & a
 End If
End Sub

See Also Variant (page 515) (data type); IsEmpty (page 380) (function); IsDate (page 380) (function); IsObject
(page 383) (function); VarType (page 516) (function); IsNull (page 382) (function).

IsMissing (function)

Syntax IsMissing (variable)

Description Returns True if variable was passed to the current subroutine or function; returns False if omitted.

Comments The IsMissing is used with variant variables passed as optional parameters (using the Optional
keyword) to the current subroutine or function. For non-variant variables or variables that were not
declared with the Optional keyword, IsMissing will always return True .

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 382

Example The following function runs an application and optionally minimizes it. If the optional isMinimize parameter
is not specified by the caller, then the application is not minimized.

Sub Test(AppName As String,Optional isMinimize As Variant)
 app = Shell(AppName)
 If Not IsMissing(isMinimize) Then
 AppMinimize app
 Else
 AppMaximize app
 End If
End Sub
Sub Main
 Test "notepad.exe" 'Maximize this application
 Test "notepad.exe",True 'Minimize this application
End Sub

See Also Declare (page 276) (statement), Sub...End Sub (page 496) (statement), Function...End Function
(statement) (page 353)

IsNull (function)

Syntax IsNull (expression)

Description Returns True if expression is a Variant variable that contains no valid data; returns False otherwise.

Comments The IsNull function is the same as the following:

 (VarType(expression) = ebNull)

Example
Sub Main()
 Dim a As Variant 'Initialized as Empty
 If IsNull(a) Then MsgBox "The variable contains no valid data."
 a = Empty * Null
 If IsNull(a) Then MsgBox "Null propagated through the expression."
End Sub

See Also Empty (page 321) (constant); Variant (page 515) (data type); IsEmpty (page 380) (function); IsDate
(page 380) (function); IsError (page 381) (function); IsObject (page 383) (function); VarType (page
516) (function).

IsNumeric (function)

Syntax IsNumeric (expression)

Description Returns True if expression can be converted to a number; returns False otherwise.

Comments If passed a number or a variant containing a number, then IsNumeric always returns True . If a String
or String variant is passed, then IsNumeric will return True only if the string can be converted to a
number. The following syntaxes are recognized as valid numbers:

 &Hhexdigits[&|%|!|#|@]
 &[O]octaldigits[&|%|!|#|@]
 [-|+]digits[.[digits]][E[-|+]digits][!|%|&|#|@]

If an Object variant is passed, then the default property of that object is retrieved and one of the above
rules is applied. IsNumeric returns False if expression is a Date .

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 383

Example
Sub Main()
 Dim s$ As String
 s$ = InputBox("Enter a number.","Enter Number")
 If IsNumeric(s$) Then
 MsgBox "You did good!"
 Else
 MsgBox "You didn't do so good!"
 End If
End Sub

See Also Variant (page 515) (data type); IsEmpty (page 380) (function); IsDate (page 380) (function); IsError
(page 381) (function); IsObject (page 383) (function); VarType (page 516) (function); IsNull (page
382) (function).

IsObject (function)

Syntax IsObject (expression)

Description Returns True if expression is a Variant variable containing an Object ; returns False otherwise.

Example This example will attempt to find a running copy of Excel and create 'a Excel object that can be referenced
as any other object in the Basic Control Engine.

Sub Main()
 Dim v As Variant
 On Error Resume Next
 Set v = GetObject(,"Excel.Application")
 If IsObject(v) Then
 MsgBox "The default object value is: " & v = v.Value 'Access value property of the
 object.
 Else
 MsgBox "Excel not loaded."
 End If
End Sub

See Also Variant (page 515) (data type); IsEmpty (page 380) (function); IsDate (page 380) (function); IsError
(page 381) (function); VarType (page 516) (function); IsNull (page 382) (function).

IsWebSpaceSession (function)

Syntax IsWebSpaceSession

Description Returns True if CimView is opened in WebSpace session..

Example
Sub Main()

MsgBox "WebSpace Session = " & IsWebSpaceSession

End Sub

Item$ (function)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 384

Syntax Item$ (text$,first,last [,delimiters$])

Description Returns all the items between first and last within the specified formatted text list.

Comments The Item$ function takes the following parameters:

Parameter Description

text$ String containing the text from which a range of items is returned.

first Integer containing the index of the first item to be returned. If first is greater than the number
of items in text$, then a zero-length string is returned.

last Integer containing the index of the last item to be returned. All of the items between first and
last are returned. If last is greater than the number of items in text$, then all items from first
to the end of text are returned.

delimiters
$

String containing different item delimiters. By default, items are separated by commas
and end-of-lines. This can be changed by specifying different delimiters in the delimiters$
parameter.

Example This example creates two delimited lists and extracts a range from each, then displays the result in a
dialog box.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 ilist$ = "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15"
 slist$ = "1/2/3/4/5/6/7/8/9/10/11/12/13/14/15"
 list1$ = Item$(ilist$,5,12)
 list2$ = Item$(slist$,2,9,"/")
 MsgBox "The returned lists are: " & crlf & list1$ & crlf & list2$
End Sub

See Also ItemCount (page 384) (function); Line$ (page 392) (function); LineCount (page 393) (function); Word
$ (page 529) (function); WordCount (page 530) (function).

ItemCount (function)

Syntax ItemCount (text$ [,delimiters$])

Description Returns an Integer containing the number of items in the specified delimited text.

Comments Items are substrings of a delimited text string. Items, by default, are separated by commas and/or end-of-
lines. This can be changed by specifying different delimiters in the delimiters$ parameter. For example, to
parse items using a backslash:

 n = ItemCount(text$,"\")

Example This example creates two delimited lists and then counts the number of items in each. The counts are
displayed in a dialog box.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 ilist$ = "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15"
 slist$ = "1/2/3/4/5/6/7/8/9/10/11/12/13/14/15/16/17/18/19"
 l1% = ItemCount(ilist$)
 l2% = ItemCount(slist$,"/")
 msg1 = "The first lists contains: " & l1% & " items." & crlf
 msg1 = msg1 & "The second list contains: " & l2% & " items."
 MsgBox msg1
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 385

See Also Item$ (page 383) (function); Line$ (page 392) (function); LineCount (page 393) (function); Word$
(page 529) (function); WordCount (page 530) (function).

K

K

Keywords (topic)

Kill (statement)

Keywords (topic)

A keyword is any word or symbol recognized by the Basic Control Engine as part of the language. All of the following
are keywords:

• Built-in subroutine names, such as MsgBox and Print.
• Built-in function names, such as Str$, CDbl, and Mid$.
• Special keywords, such as To, Next, Case, and Binary.
• Names of any extended language elements.

Restrictions All keywords are reserved by the Basic Control Engine , in that you cannot create a variable, function,
constant, or subroutine with the same name as a keyword. However, you are free to use all keywords as the names of
structure members.

Kill (statement)

Syntax Kill filespec$

Description Deletes all files matching filespec$.

Comments The filespec$ argument can include wildcards, such as * and ? . The * character matches any
sequence of zero or more characters, whereas the ? character matches any single character. Multiple
* 's and ? 's can appear within the expression to form complex searching patterns. The following table
shows some examples.

This Pattern Matches these Files Doesn't match these Files

S.TXT SAMPLE.TXT GOOSE.TXT SAMS.TXT SAMPLE SAMPLE.DAT

C*T.TXT CAT.TXT CAP.TXT ACATS.TXT

C*T CAT CAT.DOC CAP.TXT

C?T CAT CUT CAT.TXT CAPIT CT

* (All files)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 386

Example This example looks to see whether file test1.dat exists. If it does not, then it creates both test1.dat and
test2.dat. The existence of the files is tested again; if they exist, a message is generated, and then they
are deleted. The final test looks to see whether they are still there and displays the result.

Sub Main()
 If Not FileExists("test1.dat") Then
 Open "test1.dat" For Output As #1
 Open "test2.dat" For Output As #2
 Close
 End If
 If FileExists ("test1.dat") Then
 MsgBox "File test1.dat exists."
 Kill "test?.dat"
 End If
 If FileExists ("test1.dat") Then
 MsgBox "File test1.dat still exists."
 Else
 MsgBox "test?.dat successfully deleted."
 End If
End Sub

See Also Name (page 412) (statement).

L

L

LBound (function)

LCase, LCase$ (function)

Left, Left$, LeftB, LeftB$ (functions)

Len (function)

Let (statement)

Like (operator)

Line Input# (statement)

Line Numbers (topic)

Line$ (function)

LineCount (function)

ListBox (statement)

Literals (topic)

Loc (function)

Lock (statement)

Lof (function)

Log (function)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 387

Long (data type)

LSet (statement)

LTrim, LTrim$ (functions)

LBound (function)

Syntax LBound (ArrayVariable() [,dimension])

Description Returns an Integer containing the lower bound of the specified dimension of the specified array variable.

Comments The dimension parameter is an integer specifying the desired dimension. If this parameter is not specified,
then the lower bound of the first dimension is returned. The LBound function can be used to find the
lower bound of a dimension of an array returned by an OLE automation method or property:

 LBound(object.property [,dimension])
 LBound(object.method [,dimension])

Examples
Sub Main()
 'This example dimensions two arrays and displays their lower bounds.
 Dim a(5 To 12)
 Dim b(2 To 100,9 To 20)
 lba = LBound(a)
 lbb = LBound(b,2)
 MsgBox "The lower bound of a is: " & lba & " The lower bound of b is: " & lbb

 'This example uses LBound and UBound to dimension a dynamic array to
 'hold a copy of an array redimmed by the FileList statement.
 Dim fl$()
 FileList fl$,"*.*"
 count = UBound(fl$)
 If ArrayDims(a) Then
 Redim nl$(LBound(fl$) To UBound(fl$))
 For x = 1 To count
 nl$(x) = fl$(x)
 Next x
 MsgBox "The last element of the new array is: " & nl$(count)
 End If
End Sub

See Also UBound (page 510) (function); ArrayDims (page 217) (function); Arrays (page 218) (topic).

LCase, LCase$ (functions)

Syntax LCase[$](text)

Description Returns the lowercase equivalent of the specified string.

Comments LCase$ returns a String , whereas LCase returns a String variant. Null is returned if text is Null .

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 388

Example This example shows the LCase function used to change uppercase names to lowercase with an
uppercase first letter.

Sub Main()
 lname$ = "WILLIAMS"
 fl$ = Left(lname$,1)
 rest$ = Mid(lname$,2,Len(lname$))
 lname$ = fl$ & LCase(rest$)
 MsgBox "The converted name is: " & lname$
End Sub

See Also UCase (page 511), UCase$ (page 511) (functions).

Left, Left$, LeftB, LeftB$ (functions)

Syntax Left[$](string, length) LeftB[$](string,length)

Description Functions return the leftmost length characters as follows.

Functions Return the leftmost length characters

Left and Left$ Of bytes

LeftB and LeftB$ From a given string

Left$ and Left functions return the following.

Function Returns

Left$ String

Left String variant.

The length parameter is an Integer value specifying the number of characters to return as
follows.

Length is Returns

0 Zero-length string

Greater than or equal to the number of characters in the
specified string

Entire string

LeftB and LeftB$ functions return the following.

Functions Return

LeftB and LeftB$ Sequence of bytes from a string containing byte data.

length specifies the number of bytes to return as follows.

Length is Returns

Greater than the number of bytes in string Entire string

String is Null. Null

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 389

Comments Left$ returns a String , whereas Left returns a String variant. NumChars is an Integer value
specifying the number of character to return. If NumChars is 0, then a zero-length string is returned. If
NumChars is greater than or equal to the number of characters in the specified string, then the entire
string is returned. NULL is returned if text is NULL.

Example This example shows the Left$ function used to change uppercase names to lowercase with an uppercase
first letter.

Sub Main()
 lname$ = "WILLIAMS"
 fl$ = Left(lname$,1)
 rest$ = Mid(lname$,2,Len(lname$))
 lname$ = fl$ & LCase(rest$)
 MsgBox "The converted name is: " & lname$
End Sub

See Also Right, Right$, RightB, RightB$ (page 462) (functions)

Len (function)

Syntax Len (expression)

Description Returns the number of characters in expression or the number of bytes required to store the specified
variable.

Comments If expression evaluates to a string, then Len returns the number of characters in a given string or 0 if
the string is empty. When used with a Variant variable, the length of the variant when converted to a
String is returned. If expression is a Null , then Len returns a Null variant. If used with a non-String
or non- Variant variable, the function returns the number of bytes occupied by that data element. When
used with user-defined data types, the function returns the combined size of each member within the
structure. Since variable-length strings are stored elsewhere, the size of each variable-length string within
a structure is 2 bytes. The following table describes the sizes of the individual data elements:

Data
Element

Size

Integer 2 bytes

Long 4 bytes

Float 4 bytes

Double 8 bytes.

Currency 8 bytes

String
(variable-
length)

Number of characters in the string.

String
(fixed-
length)

The length of the string as it appears in the string's declaration.

Objects 0 bytes. Both data object variables and variables of type Object are always returned as 0
size.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 390

User-
defined
type

Combined size of each structure member. Variable-length strings within structures require
2 bytes of storage. Arrays within structures are fixed in their dimensions. The elements for
fixed arrays are stored within the structure and therefore require the number of bytes for each
array element multiplied by the size of each array dimension: element_size * dimension1 *
dimension2...

The Len function always returns 0 with object variables or any data object variable.

Example Const crlf = Chr$(13) + Chr$(10)

Sub Main()
 'This example shows the Len function used in a routine to change
 'uppercase names to lowercase with an uppercase first letter.
 lname$ = "WILLIAMS"
 fl$ = Left(lname$,1)
 ln% = Len(lname$)
 rest$ = Mid(lname$,2,ln%)
 nname$ = fl$ & LCase(rest$)
 MsgBox "The proper case for " & lname$ & " is " & nname$ & "."

 'This example returns a table of lengths for standard numeric types.
 Dim lns(4)
 a% = 100 : b& = 200 : c! = 200.22 : d# = 300.22
 lns(1) = Len(a%)
 lns(2) = Len(b&)
 lns(3) = Len(c!)
 lns(4) = Len(d#)
 msg1 = "Lengths (in bytes) of standard types:" & crlf & crlf
 msg1 = msg1 & "Integer: " & lns(1) & crlf
 msg1 = msg1 & "Long: " & lns(2) & crlf
 msg1 = msg1 & "Single: " & lns(3) & crlf
 msg1 = msg1 & "Double: " & lns(4) & crlf
 MsgBox msg1
End Sub

See Also InStr (page 375) (function)

Let (statement)

Syntax [Let] variable = expression

Description Assigns the result of an expression to a variable.

Comments The use of the word Let is supported for compatibility with other implementations of the Basic
Control Engine. Normally, this word is dropped. When assigning expressions to variables, internal type
conversions are performed automatically between any two numeric quantities. Thus, you can freely
assign numeric quantities without regard to type conversions. However, it is possible for an overflow
error to occur when converting from larger to smaller types. This happens when the larger type contains
a numeric quantity that cannot be represented by the smaller type. For example, the following code will
produce a runtime error:

 Dim amount As Long
 im quantity As Integer
 amount = 400123 'Assign a value out of range for int.
 quantity = amount 'Attempt to assign to Integer.

When performing an automatic data conversion, underflow is not an error.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 391

Example
Sub Main()
 Let a$ = "This is a string."
 Let b% = 100
 Let c# = 1213.3443
End Sub

See Also = (page 202) (keyword); Expression Evaluation (page 336) (topic).

Like (operator)

Syntax expression Like pattern

Description Compares two strings and returns TRUE if the expression matches the given pattern; returns FALSE
otherwise.

Comments Case sensitivity is controlled by the Option Compare setting. The pattern expression can contain
special characters that allow more flexible matching:

Character Evaluates to

? Matches a single character.

* Matches one or more characters.

Matches any digit.

[range] Matches if the character in question is within the specified range.

[!range] Matches if the character in question is not within the specified range.

A range specifies a grouping of characters. To specify a match of any of a group of characters, use the
syntax [ABCDE] . To specify a range of characters, use the syntax [A-Z] . Special characters must
appear within brackets, such as []*?# . If expression or pattern is not a string, then both expression and
pattern are converted to String variants and compared, returning a Boolean variant. If either variant is
Null , then Null is returned. The following table shows some examples:

expression TRUE If pattern Is FALSE If pattern is Is

"EBW" "E*W", "E*" "E*B"

"BasicScript" "B*[r-t]icScript" "B[r-t]ic"

"Version" "V[e]?s*n" "V[r]?s*N"

"2.0" "#.#", "#?#" "###", "#?[!0-9]"

"[ABC]" "[[]*]" "[ABC]", "[*]"

Example This example demonstrates various uses of the Like function.

Sub Main()
 a$ = "This is a string variable of 123456 characters"
 b$ = "123.45"
 If a$ Like "[A-Z][g-i]*" Then MsgBox "The first comparison is True."
 If b$ Like "##3.##" Then MsgBox "The second comparison is True."
 If a$ Like "*variable*" Then MsgBox "The third comparison is True."
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 392

See Also Operator Precedence (page 431) (topic); Is (page 379) (operator); Option Compare (page 432)
(statement).

Line Input# (statement)

Syntax Line Input [#] filenumber,variable

Description Reads an entire line into the given variable.

Comments The filenumber parameter is a number that is used to refer to the open file¾the number passed to the
Open statement. The filenumber must reference a file opened in Input mode. The file is read up to the
next end-of-line, but the end-of-line character(s) is (are) not returned in the string. The file pointer is
positioned after the terminating end-of-line.

The variable parameter is any string or variant variable reference. This statement will automatically
declare the variable if the specified variable has not yet been used or dimensioned. This statement
recognizes either a single line feed or a carriage-return/line-feed pair as the end-of-line delimiter.

Example This example reads five lines of the autoexec.bat file and displays them in a dialog box.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 file$ = "c:\autoexec.bat"
 Open file$ For Input As #1
 msg1 = ""
 For x = 1 To 5
 Line Input #1,lin$
 msg1 = msg1 & lin$ & crlf
 Next x
 MsgBox "The first 5 lines of '" & file$ & "' are:" & crlf & crlf & msg1
End Sub

See Also Open (page 428) (statement); Get (page 355) (statement); Input# (page 372) (statement); Input,
Input$ (page 373) (functions).

Line$ (function)

Syntax Line$(text$,first[,last])

Description Returns a String containing a single line or a group of lines between first and last.

Comments Lines are delimited by carriage return, line feed, or carriage-return/line-feed pairs. The Line$ function
takes the following parameters:

Parameter Description

text$ String containing the text from which the lines will be extracted.

first Integer representing the index of the first line to return. If last is omitted, then this line will
be returned. If first is greater than the number of lines in text$, then a zero-length string is
returned.

last Integer representing the index of the last line to return.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 393

Example This example reads five lines of the autoexec.bat file, extracts the third and fourth lines with the Line$
function, and displays them in a dialog box.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 file$ = "c:\autoexec.bat"
 Open file$ For Input As #1
 txt = ""
 For x = 1 To 5
 Line Input #1,lin$
 txt = txt & lin$ & crlf
 Next x
 lines$ = Line$(txt,3,4)
 MsgBox "The 3rd and 4th lines of '" & file$ & "' are:" & crlf_
 & crlf & lines$
End Sub

See Also Item$ (page 383) (function); ItemCount (page 384) (function); LineCount (page 393) (function); Word
$ (page 529) (function); WordCount (page 530) (function).

LineCount (function)

Syntax LineCount (text$)

Description Returns an Integer representing the number of lines in text$.

Comments Lines are delimited by carriage return, line feed, or both.

Example This example reads your autoexec.bat file into a variable and then determines how many lines it is
comprised of.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 file$ = "c:\autoexec.bat"
 Open file$ For Input As #1
 txt = ""
 Do Until Eof(1)
 Line Input #1,lin$
 txt = txt & lin$ & crlf
 Loop
 lines! = LineCount(txt)
 MsgBox "'" & file$ & "' is " & lines! & " lines long!" & crlf_
 & crlf & txt
End Sub

See Also Item$ (page 383) (function); ItemCount (page 384) (function); Line$ (page 392) (function); Word$
(page 529) (function); WordCount (page 530) (function).

 Line Numbers (topic)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 394

Line numbers are not supported by the Basic Control Engine. As an alternative to line numbers, you can use
meaningful labels as targets for absolute jumps, as shown below:

Sub Main()
 Dim i As Integer
 On Error Goto MyErrorTrap
 i = 0
LoopTop:
 i = i + 1
 If i < 10 Then Goto LoopTop
MyErrorTrap:
 MsgBox "An error occurred."
End Sub

ListBox (statement)

Syntax ListBox X,Y,width,height,ArrayVariable,.Identifier

Description Creates a list box within a dialog box template.

Comments When the dialog box is invoked, the list box will be filled with the elements contained in ArrayVariable.
This statement can only appear within a dialog box template (that is, between the Begin Dialog and
End Dialog statements). The ListBox statement requires the following parameters:

Parameter Description

X, Y Integer coordinates specifying the position of the control (in dialog units) static to the
upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog units.

ArrayVariable Specifies a single-dimensioned array of strings used to initialize the elements of the
list box. If this array has no dimensions, then the list box will be initialized with no
elements. A runtime error results if the specified array contains more than one dimension.
ArrayVariable can specify an array of any fundamental data type (structures are not
allowed). Null and Empty values are treated as zero-length strings.

Identifier Name by which this control can be referenced by statements in a dialog function (such
as DlgFocus and DlgEnable). This parameter also creates an integer variable
whose value corresponds to the index of the list box's selection (0 is the first item, 1
is the second, and so on). This variable can be accessed using the following syntax:
DialogVariable . Identifier

Example This example creates a dialog box with two list boxes, one containing files and the other containing
directories.

Sub Main()
 Dim files() As String
 Dim dirs() As String
 Begin Dialog ListBoxTemplate 16,32,184,96,"Sample"
 Text 8,4,24,8,"&Files:"
 ListBox 8,16,60,72,files$,.Files
 Text 76,4,21,8,"&Dirs:"
 ListBox 76,16,56,72,dirs$,.Dirs
 OKButton 140,4,40,14
 CancelButton 140,24,40,14
 End Dialog
 FileList files
 FileDirs dirs

 Dim ListBoxDialog As ListBoxTemplate
 rc% = Dialog(ListBoxDialog)
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 395

See Also CancelButton (page 243) (statement); CheckBox (page 240) (statement); ComboBox (page 249)
(statement); Dialog (page 278) (function); Dialog (page 279) (statement); DropListBox (page 301)
(statement); GroupBox (page 361) (statement); OKButton (page 426) (statement); OptionButton (page
434) (statement); OptionGroup (page 435) (statement); Picture (page 438) (statement); PushButton
(page 439) (statement); Text (page 502) (statement); TextBox (page 503) (statement); Begin (page
231) Dialog (page 231) (statement), PictureButton (page 439) (statement).

Literals (topic)

Literals are values of a specific type. The following table shows the different types of literals
supported by the Basic Control Engine:

Literal Description

10 Integer whose value is 10.

43265 Long whose value is 43,265.

5# Double whose value is 5.0. A number's type can be explicitly set using any of the following type-declaration
characters:

% Integer

& Long

Double

! Single

5.5 Double Value is 5.5. Any number with decimal point is considered a double.

5.4E100 Double Expressed in scientific notation.

&HFF Integer Expressed in hexadecimal.

&O47 Integer Expressed in octal.

&HFF# Double Expressed in hexadecimal.

"hello" String Of five characters: hello.

"""hello""" String Of seven characters: "hello". Quotation marks can be embedded within strings by using two
consecutive quotation marks.

#1/1/1994# Date value whose internal representation is 34335.0. Any valid date can appear with #'s. Date literals are
interpreted at execution time using the locale settings of the host environment. To ensure that date literals
are correctly interpreted for all locales, use the international date format: #YYYY-MM-DD HH:MM:SS#
Constant Folding The Basic Control Engine supports constant folding where constant expressions are
calculated by the compiler at compile time. For example, the expression i% = 10 + 12 is the same as: i
% = 22 Similarly, with strings, the expression s$ = "Hello," + " there" + (46) is the same as: s$ = "Hello,
there."

Loc (function)

Syntax Loc (filenumber)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 396

Description Returns a Long representing the position of the file pointer in the given file.

Comments The filenumber parameter is an Integer used by the Basic Control Engine to refer to the number
passed by the Open statement to the Basic Control Engine . The Loc function returns different values
depending on the mode in which the file was opened:

File Mode Returns

Input Current byte position divided by 128.

Output Current byte position divided by 128.

Append Current byte position divided by 128.

Binary Position of the last byte read or written.

Random Number of the last record read or written.

Example This example reads 5 lines of the autoexec.bat file, determines the current location of the file pointer, and
displays it in a dialog box.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 file$ = "c:\autoexec.bat"
 Open file$ For Input As #1
 For x = 1 To 5
 If Not EOF(1) Then Line Input #1,lin$
 Next x
 lc% = Loc(1)
 Close
 MsgBox "The file byte location is: " & lc%
End Sub

See Also Seek (page 471) (function); Seek (page 472) (statement); FileLen (page 342) (function).

Lock (statement)

Syntax Lock [#] filenumber [,{record | [start] To end}]

Description Locks a section of the specified file, preventing other processes from accessing that section of the file until
the Unlock statement is issued.

Comments The Lock statement requires the following parameters:

Parameter Description

filenumber Integer used by the Basic Control Engine to refer to the open file—the number passed to
the Open statement.

record Long specifying which record to lock.

start Long specifying the first record within a range to be locked.

end Long specifying the last record within a range to be locked.

For sequential files, the record, start, and end parameters are ignored. The entire file is locked. The
section of the file is specified using one of the following:

Syntax Description

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 397

No
parameters

Locks the entire file (no record specification is given).

record Locks the specified record number (for Random files) or byte (for Binary files).

to end Locks from the beginning of the file to the specified record (for Random files) or byte (for
Binary files).

start to end Locks the specified range of records (for Random files) or bytes (for Binary files).

The lock range must be the same as that used to subsequently unlock the file range, and all locked
ranges must be unlocked before the file is closed. Ranges within files are not unlocked automatically by
the Basic Control Engine when your script terminates, which can cause file access problems for other
processes. It is a good idea to group the Lock and Unlock statements close together in the code, both
for readability and so subsequent readers can see that the lock and unlock are performed on the same
range. This practice also reduces errors in file locks.

Example This example creates test.dat and fills it with ten string variable records. These are displayed in a dialog
box. The file is then reopened for read/write, and each record is locked, modified, rewritten, and unlocked.
The new records are then displayed in a dialog box.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 a$ = "This is record number: "
 b$ = "0"
 rec$ = ""
 msg1 = ""
 Open "test.dat" For Random Access Write Shared As #1
 For x = 1 To 10
 rec$ = a$ & x
 Lock #1,x
 Put #1,,rec$
 Unlock #1,x
 msg1 = msg1 & rec$ & crlf
 Next x
 Close
 MsgBox "The records are:" & crlf & msg1
 msg1 = ""
 Open "test.dat" For Random Access Read Write Shared As #1
 For x = 1 To 10
 rec$ = Mid(rec$,1,23) & (11 - x)
 Lock #1,x
 Put #1,x,rec$
 Unlock #1,x
 msg1 = msg1 & rec$ & crlf
 Next x
 MsgBox "The records are: " & crlf & msg1
 Close

 Kill "test.dat"
End Sub

See Also Unlock (page 511) (statement); Open (page 428) (statement).

Lof (function)

Syntax Lof (filenumber)

Description Returns a Long representing the number of bytes in the given file.

Comments The filenumber parameter is an Integer used by the Basic Control Engine to refer to the open file, the
number passed to the Open statement. The file must currently be open.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 398

Example This example creates a test file, writes ten records into it, then finds the length of the file and displays it in
a message box.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 a$ = "This is record number: "

 Open "test.dat" For Random Access Write Shared As #1
 msg1 = ""
 For x = 1 To 10
 rec$ = a$ & x
 put #1,,rec$
 msg1 = msg1 & rec$ & crlf
 Next x
 Close
 Open "test.dat" For Random Access Read Write Shared As #1
 r% = Lof(1)
 Close
 MsgBox "The length of 'test.dat' is: " & r%
End Sub

See Also Loc (page 395) (function); Open (page 428) (statement); FileLen (page 342) (function).

Log (function)

Syntax Log (number)

Description Returns a Double representing the natural logarithm of a given number.

Comments The value of number must be a Double greater than 0. The value of e is
2.71828.

Example This example calculates the natural log of 100 and displays it in a message box.

Sub Main()
 x# = Log(100)
 MsgBox "The natural logarithm of 100 is: " & x#
End Sub

See Also Exp (page 336) (function).

Long (data type)

Syntax Long

Description Long variables are used to hold numbers (with up to ten digits of precision) within the following range:

 –2,147,483,648 <= Long <= 2,147,483,647

Internally, longs are 4-byte values. Thus, when appearing within a structure, longs require 4 bytes of
storage. When used with binary or random files, 4 bytes of storage are required. The type-declaration
character for Long is & .

See Also Currency (page 259) (data type); Date (page 263) (data type); Double (page 300) (data type);
Integer (page 377) (data type); Object (page 422) (data type); Single (page 479) (data type); String
(page 494) (data type); Variant (page 515) (data type); Boolean (page 233) (data type); DefType
(page 276) (statement); CLng (page 248) (function).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 399

LSet (statement)

Syntax 1
LSet dest = source

Syntax 2
LSet dest_variable = source_variable

Description Left-aligns the source string in the destination string or copies one user-defined type to another.

Comments Syntax 1 The LSet statement copies the source string source into the destination string dest. The
dest parameter must be the name of either a String or Variant variable. The source parameter is any
expression convertible to a string. If source is shorter in length than dest, then the string is left-aligned
within dest, and the remaining characters are padded with spaces. If source$ is longer in length than
dest, then source is truncated, copying only the leftmost number of characters that will fit in dest. The
destvariable parameter specifies a String or Variant variable. If destvariable is a Variant containing
Empty, then no characters are copied. If destvariable is not convertible to a String, then a runtime error
occurs. A runtime error results if destvariable is Null . Syntax 2 The source structure is copied byte for
byte into the destination structure. This is useful for copying structures of different types. Only the number
of bytes of the smaller of the two structures is copied. Neither the source structure nor the destination
structure can contain strings.

Example This example replaces a 40-character string of asterisks (*) with an RSet and LSet string and then
displays the result.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 Dim msg,tmpstr$
 tmpstr$ = String(40,"*")
 msg1 = "Here are two strings that have been right-" + crlf
 msg1 = msg1 & "and left-justified in a 40-character string."
 Msg1 = msg1 & crlf & crlf
 Rset tmpstr$ = "Right|"
 msg1 = msg1 & tmpstr$ & crlf
 LSet tmpstr$ = "|Left"
 msg1 = msg1 & tmpstr$ & crlf
 MsgBox msg1
End Sub

See Also RSet (page 464) (function).

LTrim, LTrim$ (functions)

Syntax
LTrim[$](text)

Description Returns text with the leading spaces removed.

Comments LTrim$ returns a String , whereas LTrim returns a String variant. Null is returned if text is
Null .

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 400

Example This example displays a right-justified string and its LTrim result. Const crlf = Chr$(13) + Chr$(10)

Sub Main()
 txt$ = " This is text "
 tr$ = LTrim(txt$)
 MsgBox "Original ->" & txt$ & "<-" & crlf & "Left Trimmed ->" & tr$ & "<-"
End Sub

See Also RTrim, RTrim$ (page 464) (functions); Trim, Trim$ (page 506) (functions).

M

M

Main (statement)

MCI (function)

Mid, Mid$, MidB, MidB$ (functions)

Mid, Mid$, MidB, MidB$ (statements)

Minute (function)

MIRR (function)

MkDir (statement)

Mod (operator)

Month (function)

Msg.Close (method)

Msg.Open (method)

Msg.Text (property)

Msg.Thermometer (property)

MsgBox (function)

MsgBox (statement)

Main (statement)

Syntax
Sub Main()
End Sub

Description Defines the subroutine where execution begins.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 401

Example
Sub Main()
 MsgBox "This is the Main() subroutine and entry point."
End Sub

MCI (function)

Syntax Mci (command$,result$ [,error$])

Description Executes an Mci command, returning an Integer indicating whether the command was successful.

Comments The Mci function takes the following parameters:

Parameter Description

command
$

String containing the command to be executed.

result$ String variable into which the result is placed. If the command doesn't return anything, then
a zero-length string is returned. To ignore the returned string, pass a zero-length string, such
as. r% = Mci("open chimes.wav type waveaudio","")

error$ Optional String variable into which an error string will be placed. A zero-length string will be
returned if the function is successful.

Example 1 This first example plays a wave file. The wave file is played to completion before execution can continue.

Sub Main()
 Dim result As String
 Dim ErrorMessage As String
 Dim Filename As String
 Dim rc As Integer
 'Establish name of file in the Windows directory.
 Filename = FileParse$(System.WindowsDirectory$ + "\" + "chimes.wav")
 'Open the file and driver.
 rc = Mci("open " & Filename & " type waveaudio alias CoolSound","",ErrorMessage)
 If (rc) Then
 'Error occurred--display error message to user.
 MsgBox ErrorMessage
 Exit Sub
 End If
 rc = Mci("play CoolSound wait","","") 'Wait for sound to finish.
 rc = Mci("close CoolSound","","") 'Close driver and file.
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 402

Example 2 This next example shows how to query an Mci device and play an MIDI file in the background.

Sub Main()
 Dim result As String
 Dim ErrMsg As String
 Dim Filename As String
 Dim rc As Integer
 'Check to see whether MIDI device can play for us.
 rc = Mci("capability sequencer can play",result,ErrorMessage)
 'Check for error.
 If rc Then
 MsgBox ErrorMessage
 Exit Sub
 End If
 'Can it play?
 If result <> "true" Then
 MsgBox "MIDI device is not capable of playing."
 Exit Sub
 End If
 'Assemble a filename from the Windows directory.
 Filename = FileParse$(System.WindowsDirectory$ & "\" & "canyon.mid")

 'Open the driver and file.
 rc = Mci("open " & Filename & " type sequencer alias song",result$,ErrMsg)
 If rc Then
 MsgBox ErrMsg
 xit Sub
 End If
 rc = Mci("play song","","") 'Play in the background.
 MsgBox "Press OK to stop the music.",ebOKOnly
 rc = Mci("close song","","")
End Sub

See Also Beep (page 231) (statement)

Mid, Mid$, MidB, MidB$ (functions)

Syntax Mid[$](string, start [,length]) MidB[$](string, start [,length])

Description Returns a sub-string of the specified string, beginning with start, for length characters (for Mid and Mid$) or
bytes (for MidB and MidB$).

Comments The functions start and length are:

Functions Start and Length of Return

Mid and
Mid$

Sub-string starting at character position start and will be length characters long

MidB and
MidB$

Sub-string starting at byte position start and will be length bytes long.

The functions return the following.

Functions Return

Mid$ and
MidB

String

Mid and
MidB

String variant

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 403

The returned sub-string starts at character position start and will be length characters long. Mid$
returns a String , whereas Mid returns a String variant. The Mid/Mid$ functions take the following
parameters:

Parameter Description

string Any String expression containing the text from which data is returned.

start Integer specifying the position where the sub-string begins. If start is greater than the length
of string, then a zero-length string is returned.

length Integer specifying the number of characters or bytes to return. If this parameter is omitted,
then the entire string is returned, starting at start.

The Mid function will return Null text is Null . The MidB and MidB$ functions are used to return a sub-
string of bytes from a string containing byte data.

Example

 'This example displays a substring from the middle of a
 'string variable using the Mid$ function and replaces the
 'first four characters with "NEW " using the Mid$ statement.
 Const crlf = Chr$(13) + Chr$(10)
 Sub Main()
 a$ = "This is the Main string containing text."
 b$ = Mid$(a$,13,Len(a$))
 Mid$ (b$,1) = NEW "
 MsgBox a$ & crlf & b$
 End Sub

See Also InStr, InStrB (page 375) (functions), Option Compare (page 432) (statement), Mid, Mid$, MidB, MidB$
(page 403) (statements)

Mid, Mid$, MidB, MidB$ (statements)

Syntax Mid[$](variable,start[,length]) = newvalue MidB[$](variable,start[,length]) = newvalue

Description Replaces one part of a string with another.

Comments The Mid/Mid$ statements take the following parameters:

Parameter Description

variable String or Variant variable to be changed.

start Integer specifying the character position (for Mid and Mid$) or byte position (for MidB and MidB
$) within variable where replacement begins. If start is greater than the length of variable,
then variable remains unchanged.

length Integer specifying the number of characters or bytes to change. If this parameter is omitted,
then the entire string is changed, starting at start.

newvalue Expression used as the replacement. This expression must be convertible to a String.

The resultant string is never longer than the original length of variable. With Mid and MidB, variable must
be a Variant variable convertible to a String, and newvalue is any expression convertible to a string. A
runtime error is generated if either variant is NULL. Statements are used to replace the following.

Statement Replaces

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 404

MidB and MidB$ Sub-string of bytes

Mid and Mid$ Sub-string of characters

Example

 'This example displays a substring from the middle of a
 'string variable using the Mid$ function, replacing the
 'first four characters with "NEW " using the Mid$ statement.
 Const crlf = Chr$(13) + Chr$(10)
 Sub Main()
 a$ = "This is the Main string containing text."
 b$ = Mid$(a$,13,Len(a$))
 Mid$(b$,1) = "NEW " End Sub

See Also Mid, Mid$, MidB, MidB$ (page 402) (functions), Option Compare (page 432) (statement)

Minute (function)

Syntax Minute (time)

Description Returns the minute of the day encoded in the specified time parameter.

Comments The value returned is as an Integer between 0 and 59 inclusive. The time parameter is any expression
that converts to a Date .

Example This example takes the current time; extracts the hour, minute, and second; and displays them as the
current time.

Sub Main()
 Msgbox "It is now minute " & Minute(Time) & " of the hour."
End Sub

See Also Day (page 269) (function); Second (page 471) (function); Month (page 406) (function); Year (page
533) (function); Hour (page 364) (function); Weekday (page 521) (function); DatePart (page 267)
(function).

MIRR (function)

Syntax MIRR (ValueArray(),FinanceRate,ReinvestRate)

Description Returns a Double representing the modified internal rate of return for a series of periodic payments and
receipts.

Comments The modified internal rate of return is the equivalent rate of return on an investment in which payments
and receipts are financed at different rates. The interest cost of investment and the rate of interest
received on the returns on investment are both factors in the calculations. The MIRR function requires
the following parameters:

Parameter Description

ValueArray() Array of Double numbers representing the payments and receipts. Positive values are
payments (invested capital), and negative values are receipts (returns on investment).
There must be at least one positive (investment) value and one negative (return) value.

FinanceRate Double representing the interest rate paid on invested monies (paid out).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 405

ReinvestRate Double representing the rate of interest received on incomes from the investment
(receipts).

FinanceRate and ReinvestRate should be expressed as percentages. For example, 11 percent should be
expressed as 0.11. To return the correct value, be sure to order your payments and receipts in the correct
sequence.

Example This example illustrates the purchase of a lemonade stand for $800 financed with money borrowed at
10%. The returns are estimated to accelerate as the stand gains popularity. The proceeds are placed in
a bank at 9 percent interest. The incomes are estimated (generated) over 12 months. This program first
generates the income stream array in two For...Next loops, and then the modified internal rate of return is
calculated and displayed. Notice that the annual rates are normalized to monthly rates by dividing them by
12.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
 Dim valu#(12)
 valu(1) = -800 'Initial investment
 msg1 = valu(1) & ", "
 For x = 2 To 5
 valu(x) = 100 + (x * 2) 'Incomes months 2-5
 msg1 = msg1 & valu(x) & ", "
 Next x
 For x = 6 To 12
 valu(x) = 100 + (x * 10) 'Incomes months 6-12
 msg1 = msg1 & valu(x) & ", "
 Next x
 retrn# = MIRR(valu,.1/12,.09/12) 'Note: normalized annual rates
 msg1 = "The values: " & crlf & msg1 & crlf & crlf
 MsgBox msg1 & "Modified rate: " & Format(retrn#,"Percent")
End Sub

See Also Fv (page 353) (function); IRR (page 378) (function); Npv (page 420) (function); Pv (page 450)
(function).

MkDir (statement)

Syntax MkDir dir$

Description Creates a new directory as specified by dir$.

Example This example creates a new directory on the default drive. If this causes an error, then the error is
displayed and the program terminates. If no error is generated, the directory is removed with the RmDir
statement.

Sub Main()
 On Error Resume Next
 MkDir "testdir"
 If Err <> 0 Then
 MsgBox "The following error occurred: " & Error(Err)
 Else
 MsgBox "Directory 'testdir' was created and is about to be removed."
 RmDir "testdir"
 End If
End Sub

See Also ChDir (page 239) (statement); ChDrive (page 239) (statement); CurDir, CurDir$ (page 259)
(functions); Dir, Dir$ (page 280) (functions); RmDir (page 463) (statement).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 406

Mod (operator)

Syntax Expression1 Mod expression2

Description Returns the remainder of expression1 / expression2 as a whole number.

Comments If both expressions are integers, then the result is an integer. Otherwise, each expression is converted to
a Long before performing the operation, returning a Long . A runtime error occurs if the result overflows
the range of a Long . If either expression is Null , then Null is returned. Empty is treated as 0.

Example This example uses the Mod operator to determine the value of a randomly selected card where card 1
is the ace (1) of clubs and card 52 is the king (13) of spades. Since the values recur in a sequence of 13
cards within 4 suits, we can use the Mod function to determine the value of any given card number.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 cval$ = "Ace,Two,Three,Four,Five,Six,Seven,Eight,Nine,Ten,Jack,Queen,King"
 Randomize
 card% = Random(1,52)
 value = card% Mod 13
 If value = 0 Then value = 13
 CardNum$ = Item$(cval,value)
 If card% < 53 Then suit$ = "Spades"
 If card% < 40 Then suit$ = "Hearts"
 If card% < 27 Then suit$ = "Diamonds"
 If card% < 14 Then suit$ = "Clubs"
 msg1 = "Card number " & card% & " is the "
 msg1 = msg 1& CardNum & " of " & suit$
 MsgBox msg1
End Sub

See Also / (page 198) (operator); \ (page 199) (operator).

Month (function)

Syntax Month (date)

Description Returns the month of the date encoded in the specified date parameter.

Comments The value returned is as an Integer between 1 and 12 inclusive. The date parameter is any expression
that converts to a Date .

Example This example returns the current month in a dialog box.

Sub Main()
 mons$ = "Jan.,Feb.,Mar.,Apr.,May,Jun.,Jul.,Aug.,Sep.,Oct.,Nov.,Dec."
 tdate$ = Date$
 tmonth! = Month(DateValue(tdate$))
 MsgBox "The current month is: " & Item$(mons$,tmonth!)
End Sub

See Also Day (page 269) (function) Minute (page 404) (function); Second (page 471) (function); Year (page
533) (function); Hour (page 364) (function); Weekday (page 521) (function); DatePart (page 267)
(function).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 407

Msg.Close (method)

Syntax Msg.Close

Description Closes the modeless message dialog box.

Comments Nothing will happen if there is no open message dialog box.

Example
Sub Main()
 Msg.Open "Printing. Please wait...",0,True,True
 Sleep 3000
 Msg.Close
End Sub

See Also Msg.Open (page 407) (method); Msg.Thermometer (page 408) (property); Msg.Text (page
408) (property).

Msg.Open (method)

Syntax Msg.Open prompt,timeout,cancel,thermometer [,XPos,YPos]

Description Displays a message in a dialog box with an optional Cancel button and thermometer.

Comments The Msg.Open method takes the following named parameters:

Parameter Description

prompt String containing the text to be displayed. The text can be changed using the Msg.Text
property.

timeout Integer specifying the number of seconds before the dialog box is automatically removed.
The timeout parameter has no effect if its value is 0.

cancel Boolean controlling whether or not a Cancel button appears within the dialog box beneath
the displayed message. If this parameter is True, then a Cancel button appears. If it is not
specified or False, then no Cancel button is created. If a user chooses the Cancel button
at runtime, a trappable runtime error is generated (error number 18). In this manner, a
message dialog box can be displayed and processing can continue as normal, aborting
only when the user cancels the process by choosing the Cancel button.

thermometer Boolean controlling whether the dialog box contains a thermometer. If this parameter
is True, then a thermometer is created between the text and the optional Cancel
button. The thermometer initially indicates 0% complete and can be changed using the
Msg.Thermometer property.

XPos, YPos Integer coordinates specifying the location of the upper left corner of the message box,
in twips (twentieths of a point). If these parameters are not specified, then the window is
centered on top of the application.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 408

Unlike other dialog boxes, a message dialog box remains open until the user selects Cancel, the timeout
has expired, or the Msg.Close method is executed (this is sometimes referred to as modeless). Only a
single message window can be opened at any one time. The message window is removed automatically
when a script terminates. The Cancel button, if present, can be selected using either the mouse or
keyboard. However, these events will never reach the message dialog unless you periodically call
DoEvents from within your script.

Example This example displays several types of message boxes.

Sub Main()
 Msg.Open "Printing. Please wait...",0,True,False
 Sleep 3000
 Msg.Close
 Msg.Open "Printing. Please wait...",0,True,True
 For x = 1 to 100
 Msg.Thermometer = x
 Next x
 Sleep 1000
 Msg.Close
End Sub

See Also Msg.Close (page 407) (method); Msg.Thermometer (page 408) (property); Msg.Text (page 408)
(property).

Msg.Text (property)

Syntax Msg.Text [= newtext$]

Description Changes the text within an open message dialog box (one that was previously opened with the
Msg.Open method).

Comments The message dialog box is not resized to accommodate the new text. A runtime error will result if a
message dialog box is not currently open (using Msg.Open).

Example This example creates a modeless message box, leaving room in the message text for the record number.
This box contains a Cancel button.

Sub Main()
 Msg.Open "Reading Record",0,True,False
 For i = 1 To 100
 'Read a record here.
 'Update the modeless message box.
 Sleep 100
 Msg.Text ="Reading record " & i
 Next i
 Msg.Close
End Sub

See Also Msg.Close (page 407) (method); Msg.Open (page 407) (method); Msg.Thermometer (page 408)
(property).

Msg.Thermometer (property)

Syntax Msg.Thermometer [= percentage]

Description Changes the percentage filled indicated within the thermometer of a message dialog box (one that was
previously opened with the Msg.Open method).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 409

Comments A runtime error will result if a message box is not currently open (using Msg.Open) or if the value of
percentage is not between 0 and 100 inclusive.

Example This example create a modeless message box with a thermometer and a Cancel button. This example
also shows how to process the clicking of the Cancel button.

Sub Main()
 On Error Goto ErrorTrap
 Msg.Open "Reading records from file...",0,True,True
 For i = 1 To 100 'Read a record here.
 'Update the modeless message box.
 Msg.Thermometer =i
 DoEvents
 Sleep 50
 Next i
 Msg.Close
 On Error Goto 0 'Turn error trap off.
 Exit Sub
ErrorTrap:
 If Err = 809 Then
 MsgBox "Cancel was pressed!"
 Exit Sub 'Reset error handler.
 End If
End Sub

See Also Msg.Close (page 407) (method); Msg.Open (page 407) (method); Msg.Text (page 408) (property).

MsgBox (function)

Syntax MsgBox (msg [,[type] [,title]])

Description Displays a message in a dialog box with a set of predefined buttons, returning an Integer representing
which button was selected.

Comments
Important: The message box has an approximate maximum allowed number of characters.

The:

• Message box is limited to 3/5ths of the screen's horizontal resolution.
• Actual message will be truncated if the message box exceeds this width.

It is estimated that on a 1280x800 resolution approximately 128 characters fit in the message box. The
estimation is based on the fact that some letters/numbers/symbols require more than one character space
(e.g. M); some less (e.g. i). Therefore the exact allowed number of characters depends on what numbers/
letters/symbols are used in the message.

The MsgBox function takes the following parameters:

Parameter Description

msg Message to be displayed—any expression convertible to a String. End-of-lines can be
used to separate lines (either a carriage return, line feed, or both). If a given line is too
long, it will be word-wrapped. If msg contains character 0, then only the characters up to
the character 0 will be displayed. The width and height of the dialog box are sized to hold
the entire contents of msg. A runtime error is generated if msg is Null .

type Integer specifying the type of dialog box (see below).

title Caption of the dialog box. This parameter is any expression convertible to a String. If it
is omitted, then the script is used. A runtime error is generated if title is Null .

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 410

The MsgBox function returns one of the following values:

Constant Value The following is clicked

ebOK 1 OK

ebCancel 2 Cancel

ebAbort 3 Abort

ebRetry 4 Retry

ebIgnore 5 Ignore

ebYes 6 Yes

ebNo 7 No

The type parameter is the sub of any of the following values:

Constant Value Displays

ebOKOnly 0 OK button

ebOKCancel 1 OK and Cancel buttons

ebAbortRetryIgnore 2 Abort, Retry and Ignore buttons

ebYesNoCancel 3 Displays Yes, No, and Cancel buttons.

ebYesNo 4 Yes and No buttons.

ebRetryCancel 5 Retry and Cancel buttons

ebCritical 16 Stop icon

ebQuestion 32 Question Mark icon

ebExclamation 48 Exclamation Point icon

ebInformation 64 Information icon

ebDefaultButton1 0 First button is the default button.

ebDefaultButton2 256 Second button is the default button.

ebDefaultButton3 512 Third button is the default button.

ebApplicationModal 0 Application modal; the current application is suspended
until the dialog box is closed.

The default value for type is 0 (display only the OK button, making it the default). Breaking Text across
Lines The msg parameter can contain end-of-line characters, forcing the text that follows to start on a new
line. The following example shows how to display a string on two lines:

 MsgBox "This is on" + Chr(13) + Chr(10) + "two lines."

The carriage-return or line-feed characters can be used by themselves to designate an end-of-line.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 411

r = MsgBox("Hello, World")

r = MsgBox("Hello, World",ebYesNoCancel Or ebDefaultButton1)

r = MsgBox("Hello, World",ebYesNoCancel Or ebDefaultButton1 Or ebCritical)

Example
Sub Main()
 MsgBox "This is a simple message box."
 MsgBox "This is a message box with a title and an icon.",_
 ebExclamation,"Simple"
 MsgBox "This message box has OK and Cancel buttons.",_
 ebOkCancel,"MsgBox"
 MsgBox "This message box has Abort, Retry, and Ignore buttons.",_
 ebAbortRetryIgnore,"MsgBox"
 MsgBox "This message box has Yes, No, and Cancel buttons.",_
 ebYesNoCancel Or ebDefaultButton2,"MsgBox"
 MsgBox "This message box has Yes and No buttons.",ebYesNo,"MsgBox"
 MsgBox "This message box has Retry and Cancel buttons.",_
 ebRetryCancel,"MsgBox"
 MsgBox "This message box is system modal!",ebSystemModal
End Sub

See Also AskBox$ (page 221) (function); AskPassword$ (page 222) (function); InputBox, InputBox$ (page
374) (functions); OpenFilename$ (page 429) (function); SaveFilename$ (page 467) (function);
SelectBox (page 473) (function); AnswerBox (page 205) (function).

Note MsgBox displays all text in its dialog box in 8-point MS Sans Serif.

MsgBox (statement)

Syntax MsgBox msg [,[type] [,title]]

Description This command is the same as the MsgBox function, except that the statement form does not return a
value. See MsgBox (function).

Example
Sub Main()
 MsgBox "This is text displayed in a message box." 'Display text.
 MsgBox "The result is: " & (10 * 45) 'Display a number.
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 412

See Also AskBox$ (page 221) (function); AskPassword$ (page 222) (function); Input, Input$, InputB, InputB$
(page 373) (functions); OpenFilename$ (page 429) (function); SaveFilename$ (page 467) (function);
SelectBox (page 473) (function); AnswerBox (page 205) (function).

N

N

Name (statement)

Named Parameters (topic)

Net.AddCon (method)

Net.Browse$ (method)

Net.CancelCon (method)

Net.GetCaps (method)

Net.GetCon$ (method)

Net.User$ (property)

New (keyword)

Not (operator)

Nothing (constant)

Now (function)

NPer (function)

Npv (function)

Null (constant)

Name (statement)

Syntax Name oldfile$ As newfile$

Description Renames a file.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 413

Comments Each parameter must specify a single filename. Wildcard characters such as * and ? are not allowed.
Some platforms allow naming of files to different directories on the same physical disk volume. For
example, the following rename will work under Windows:

 Name "c:\samples\mydoc.txt" As "c:\backup\doc\mydoc.bak"

You cannot rename files across physical disk volumes. For example, the following will error under
Windows:

 Name "c:\samples\mydoc.txt" As "a:\mydoc.bak" 'This will error!

To rename a file to a different physical disk, you must first copy the file, then erase the original:

 FileCopy "c:\samples\mydoc.txt","a:\mydoc.bak" 'Make a copy
 Kill "c:\samples\mydoc.txt" 'Delete the original

Example This example creates a file called test.dat and then renames it to test2.dat.

Sub Main()
 oldfile$ = "test.dat"
 newfile$ = "test2.dat"
 On Error Resume Next
 If FileExists(oldfile$) Then
 Name oldfile$ As newfile$
 If Err <> 0 Then
 msg1 = "The following error occurred: " & Error(Err)
 Else
 msg1 = "'" & oldfile$ & "' was renamed to '" & newfile$ & "'"
 End If
 Else
 Open oldfile$ For Output As #1
 Close
 Name oldfile$ As newfile$
 If Err <> 0 Then
 msg1 = "'" & oldfile$ & "' not created. The following error occurred: " & Error(Err)
 Else
 msg1 = "'" & oldfile$ & "' was created and renamed to '" & newfile$ & "'"
 End If
 End If
 MsgBox msg1
End Sub

See Also Kill (page 385) (statement), FileCopy (page 340) (statement).

Named Parameters (topic)

Many language elements in BasicScript support named parameters. Named parameters allow you to
specify parameters to a function or subroutine by name rather than in adherence to a predetermined
order. The following table contains examples showing various calls to MsgBox both using parameter
by both name and position.

By Name MsgBox Prompt:= "Hello, world."

By Position MsgBox "Hello, world."

By Name MsgBox Title:="Title", Prompt:="Hello, world."

By Position MsgBox "Hello, world",,"Title"

By Name MsgBox HelpFile:="BASIC.HLP", _

Prompt:="Hello, world.", HelpContext:=10

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 414

By Position MsgBox "Hello, world.",,,"BASIC.HLP",10

Using named parameter makes your code easier to read, while at the same time removes you from
knowing the order of parameter. With function that require many parameters, most of which are
optional (such as MsgBox), code becomes significantly easier to write and maintain.

When supported, the names of the named parameter appear in the description of that language
element.

When using named parameter, you must observe the following rules:

• Named parameter must use the parameter name as specified in the description of that language
element. Unrecognized parameter names cause compiler errors.

• All parameters, whether named or positional, are separated by commas.
• The parameter name and its associated value are separated with :=
• If one parameter is named, then all subsequent parameter must also be named as shown below:

MsgBox "Hello, world", Title:="Title" 'OK
MsgBox Prompt:="Hello, world.",,"Title" 'WRONG!!!

Net.AddCon (method)

Syntax Net.AddCon NetPath,Password,LocalName [,[UserName] [,isPermanent]]

Description Redirects a local device (a disk drive or printer queue) to the specified shared device or remote server.
The new syntax does not affect previously compiled code. If Password is not specified, then the
default password is used. If empty, then no password is used. If LocalName is not specified, then the
a connection is made to the network resource without redirecting the local device. The UserName
parameter specifies the name of the user making the connection. If UserName is not specified, then the
default user for that process is used. The isPermanent parameter specifies whether the connection should
be restored during subsequent logon operations. Only a successful connection will persist in this manner.

Comments The Net.AddCon method takes the following parameters:

Parameter Description

netpath$ String containing the name of the shared device or the name of a remote server. This
parameter can contain the name of a shared printer queue (such as that returned by
Net.Browse[1]) or the name of a network path (such as that returned by Net.Browse[0]).

password
$

String containing the password for the given device or server. This parameter is mainly used
to specify the password on a remote server.

localname
$

String containing the name of the local device being redirected, such as "LPT1" or "D:".

A runtime error will result if no network is present.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 415

Example This example sets N: so that it refers to the network path SYS:\PUBLIC.

Sub Main()
 Net.AddCon "SYS:\PUBLIC","","N:"
End Sub

See Also Net.CancelCon (page 415) (method); Net.GetCon$ (page 417) (method)

Net.Browse$ (method)

Syntax Net.Browse$ (type)

Description Calls the currently installed network's browse dialog box, requesting a particular type of information.

Comments The type parameter is an Integer specifying the type of dialog box to display:

Type Description

0 If type is 0, then this method displays a dialog box that allows the user to browse network volumes
and directories. Choosing OK returns the completed pathname as a String.

1 If type is 1, then this function displays a dialog box that allows the user to browse the network's
printer queues. Choosing OK returns the complete name of that printer queue as a String. This
string is the same format as required by the Net.AddCon method.

2 Display the Disconnect dialog for disk resources.

3 Display the Disconnect dialog for printer resources.

This dialog box differs depending on the type of network installed. A runtime error will result if no network
is present.

Example This example retrieves a valid network path.

Sub Main()
 s$ = Net.Browse$(0)
 If s$ <> "" Then
 MsgBox "The following network path was selected: " & s$
 Else
 MsgBox "Dialog box was canceled."
 End If
End Sub

Net.CancelCon (method)

Syntax Net.CancelCon Connection [,[isForce] [,isPermanent]]

Description The isForce parameter is True if missing or omitted. The isPermanent parameter indicates if the
disconnection should persist to subsequent logon operations. On all platforms, the Connection parameter
specifies what is to be disconnected. If Connection specifies a local device, then only that device is
disconnected. If Connection specifies a remote device, then all local devices attached to that remote
device are disconnected. Cancels a network connection.

Comments The Net.CancelCon method takes the following parameters:

Parameter Description

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 416

connection
$

String containing the name of the device to cancel, such as "LPT1" or "D:".

isForce Boolean specifying whether to force the cancellation of the connection if there are open files
or open print jobs.

• If this parameter is True, then this method will close all open files and open print jobs
before the connection is closed.

• If this parameter is False, this the method will issue a runtime error if there are any open
files or open print jobs.

A runtime error will result if no network is present.

Example This example deletes the drive mapping associated with drive N:.

Sub Main()
 Net.CancelCon "N:"
End Sub

See Also Net.AddCon (page 414) (method); Net.GetCon$ (page 417) (method).

Net.GetCaps (method)

Syntax Net.GetCaps(type [,localname$])

Description Returns an Integer specifying information about the network and its capabilities.

Comments The Net.GetCaps method takes the following parameters:

Parameter Description

type Integer specifying what type of information to retrieve. This parameter is different from
platform to platform.

localname
$

String specifying the name of the local device to which is attached to the network device to
be queried. If this parameter is missing, then information about the first network device is
returned.

A runtime error will result if no network is present.

The type parameter can be any of the following values:

Value Description

1 Always returns 0.

2 Network type:

0 No network is installed.

1 Microsoft Network

2 Microsoft LAN Manager.

3 Novell NetWare.

4 Banyan Vines

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 417

5 10Net

6 Locus

7 SunSoft PC NFS.

8 LanStep

9 9 Titles.

10 Articom Lantastic

11 IBM AS/400

12 FTP Software FTP NFS.

13 DEC Pathworks

Version of the network with the major version in the high byte and the minor version in the low byte: Major
= Net.GetCaps(2) \ 256 Minor = Net.GetCaps(2) And &H00FF

Example

 Sub Main()
 'This example checks the type of network.
 If Net.GetCaps(2) = 768 Then _
 MsgBox "This is a Novell network."
 'This checks whether the net supports retrieval of the
 'user name.
 If Net.GetCaps(4) And 1 Then _
 MsgBox "User name is: " & Net.User$
 'This checks whether this net supports the Browse dialog
 'boxes.
 If Net.GetCaps(6) And &H0010 Then MsgBox Net.Browse$(1)
End Sub

Net.GetCon$ (method)

Syntax Net.GetCon$ (localname$)

Description Returns the name of the network resource associated with the specified redirected local device.

Comments The localname$ parameter specifies the name of the local device, such as "LPT1" or "D:". The function
returns a zero-length string if the specified local device is not redirected. A runtime error will result if no
network is present.

Example This example finds out where drive Z is mapped.

Sub Main()
 NetPath$ = Net.GetCon$("Z:")
 MsgBox "Drive Z is mapped as " & NetPath$
End Sub

See Also Net.CancelCon (page 415) (method); Net.AddCon (page 414) (method).

Net.User$ (property)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 418

Syntax Net.User$ [([LocalName])]

Description Returns the name of the user on the network.

Comments A runtime error is generated if the network is not installed. The LocalName parameter is the name of the
local device that the user has made a connection to. If this parameter is omitted, then the name of the
current user of the process is used. If Localname is a network name and the user is connected to that
resource using different names, the network provider may not be able to resolve which user name to
return. In this case, the provider may make an arbitrary choice from the possible user names.

Example
Sub Main()
 'This example tells the user who he or she is.
 MsgBox "You are " & Net.User$
 'This example makes sure this capability is supported.
 If Net.GetCaps(4) And 1 Then MsgBox "You are " & _
 Net.User$
End Sub

New (keyword)

Syntax 1 Dim ObjectVariable As New ObjectType

Syntax 2 Set ObjectVariable = New ObjectType

Description Creates a new instance of the specified object type, assigning it to the specified object variable.

Comments The New keyword is used to declare a new instance of the specified data object. This keyword can
only be used with data object types. At runtime, the application or extension that defines that object
type is notified that a new object is being defined. The application responds by creating a new physical
object (within the appropriate context) and returning a reference to that object, which is immediately
assigned to the variable being declared. When that variable goes out of scope (that is, the Sub or
Function procedure in which the variable is declared ends), the application is notified. The application
then performs some appropriate action, such as destroying the physical object.

See Also Dim (page 279) (statement); Set (page 476) (statement).

Not (operator)

Syntax Not expression

Description Returns either a logical or binary negation of expression.

Comments The result is determined as shown in the following table:

If the
expression
is

Then the result is

TRUE FALSE

FALSE TRUE

NULL NULL

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 419

Any
numeric
type

A binary negation of the number. If the number is an Integer, then an Integer is returned.
Otherwise, the expression is first converted to a Long, then a binary negation is performed,
returning a Long.

empty Treated as a Long value 0.

Example This example demonstrates the use of the Not operator in comparing logical expressions and for
switching a True/False toggle variable.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 a = False
 b = True
 If (Not a and b) Then msg1 = "a = False, b = True" & crlf

 toggle% = True
 msg1 = msg1 & "toggle% is now " & CBool(toggle%) & crlf
 toggle% = Not toggle%
 msg1 = msg1 & "toggle% is now " & CBool(toggle%) & crlf
 toggle% = Not toggle%
 msg1 = msg1 & "toggle% is now " & CBool(toggle%)
 MsgBox msg1
End Sub

See Also Boolean (page 233) (data type); Comparison Operators (page 250) (topic).

Nothing (constant)

Description A value indicating that an object variable no longer references a valid object.

Example
Sub Main()
 Dim a As Object
 If a Is Nothing Then
 MsgBox "The object variable references no object."
 Else
 MsgBox "The object variable references: " & a.Value
 End If
End Sub

See Also Set (page 476) (statement); Object (page 422) (data type).

Now (function)

Syntax Now[()]

Description Returns a Date variant representing the current date and time.

Example This example shows how the Now function can be used as an elapsed-time counter.

Sub Main()
 t1# = Now
 MsgBox "Wait a while and click OK."
 t2# = Now
 t3# = Second(t2#) - Second(t1#)
 MsgBox "Elapsed time was: " & t3# & " seconds."
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 420

See Also Date, Date$ (page 263) (functions); Time, Time$ (page 504) (functions).

NPer (function)

Syntax NPer (Rate,Pmt,Pv,Fv,Due)

Description Returns the number of periods for an annuity based on periodic fixed payments and a constant rate of
interest.

Comments An annuity is a series of fixed payments paid to or received from an investment over a period of time.
Examples of annuities are mortgages, retirement plans, monthly savings plans, and term loans. The
NPer function requires the following parameters:

Parameter Description

Rate Double representing the interest rate per period. If the periods are monthly, be sure to
normalize annual rates by dividing them by 12.

Pmt Double representing the amount of each payment or income. Income is represented by
positive values, whereas payments are represented by negative values.

Pv Double representing the present value of your annuity. In the case of a loan, the present
value would be the amount of the loan, and the future value (see below) would be zero.

Fv Double representing the future value of your annuity. In the case of a loan, the future value
would be zero, and the present value would be the amount of the loan.

Due Integer indicating when payments are due for each payment period. A 0 specifies payment
at the end of each period, whereas a 1 indicates payment at the start of each period.

Positive numbers represent cash received, whereas negative numbers represent cash paid out.

Example This example calculates the number of $100.00 monthly payments necessary to accumulate $10,000.00
at an annual rate of 10%. Payments are made at the beginning of the month.

Sub Main()
 ag# = NPer((.10/12),100,0,10000,1)
 MsgBox "The number of monthly periods is: " & Format(ag#,"Standard")
End Sub

See Also IPmt (page 377) (function); Pmt (page 440) (function); PPmt (page 441) (function); Rate (page
453) (function).

Npv (function)

Syntax Npv (Rate,ValueArray ())

Description Returns the net present value of an annuity based on periodic payments and receipts, and a discount
rate.

Comments The Npv function requires the following parameters:

Parameter Description

Rate Double that represents the interest rate over the length of the period. If the values are
monthly, annual rates must be divided by 12 to normalize them to monthly rates.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 421

ValueArray() Array of Double numbers representing the payments and receipts. Positive values are
payments, and negative values are receipts. There must be at least one positive and one
negative value.

Positive numbers represent cash received, whereas negative numbers represent cash paid out. For
accurate results, be sure to enter your payments and receipts in the correct order because Npv uses the
order of the array values to interpret the order of the payments and receipts. If your first cash flow occurs
at the beginning of the first period, that value must be added to the return value of the Npv function. It
should not be included in the array of cash flows. Npv differs from the Pv function in that the payments
are due at the end of the period and the cash flows are variable. Pv 's cash flows are constant, and
payment may be made at either the beginning or end of the period.

Example This example illustrates the purchase of a lemonade stand for $800 financed with money borrowed at
10%. The returns are estimated to accelerate as the stand gains popularity. The incomes are estimated
(generated) over 12 months. This program first generates the income stream array in two For...Next
loops, and then the net present value (Npv) is calculated and displayed. Note normalization of the annual
10% rate.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 Dim valu#(12)
 valu(1) = -800 'Initial investment
 msg1 = valu(1) & ", "
 For x = 2 To 5 'Months 2-5
 valu(x) = 100 + (x * 2)
 msg1 = msg1 1& valu(x) & ", "
 Next x
 For x = 6 To 12 'Months 6-12
 valu(x) = 100 + (x * 10) 'Accelerated income
 msg1 = msg1 & valu(x) & ", "
 Next x
 NetVal# = NPV((.10/12),valu)
 msg1 = "The values:" & crlf & msg1 & crlf & crlf
 MsgBox msg1 & "Net present value: " & Format(NetVal#,"Currency")
End Sub

See Also Fv (page 353) (function); IRR (page 378) (function); MIRR (page 404) (function); Pv (page 450)
(function).

Null (constant)

Description Represents a variant of VarType 1.

Comments The Null value has special meaning indicating that a variable contains no data. Most numeric operators
return Null when either of the arguments is Null . This "propagation" of Null makes it especially useful
for returning error values through a complex expression. For example, you can write functions that return
Null when an error occurs, then call this function within an expression. You can then use the IsNull
function to test the final result to see whether an error occurred during calculation. Since variants are
Empty by default, the only way for Null to appear within a variant is for you to explicitly place it there.
Only a few functions return this value.

Example
Sub Main()
 Dim a As Variant
 a = Null
 If IsNull(a) Then MsgBox "The variable is Null."
 MsgBox "The VarType of a is: " & VarType(a) 'Should display 1.
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 422

O

O

Object (data type)

Objects (topic)

Oct, Oct$ (functions)

OKButton (statement)

On Error (statement)

Open (statement)

OpenFilename$ (function)

Operator Precedence (topic)

Operator Precision(topic)

Option Base (statement)

Option Compare (statement)

Option CStrings (statement)

Option Default (statement)

Option Explicit (statement)

OptionButton (statement)

OptionGroup (statement)

Or (operator)

Object (data type)

Syntax Object

Description A data type used to declare OLE automation variables.

Comments The Object type is used to declare variables that reference objects within an application using OLE
automation. Each object is a 4-byte (32-bit) value that references the object internally. The value 0 (or
Nothing) indicates that the variable does not reference a valid object, as is the case when the object
has not yet been given a value. Accessing properties or methods of such Object variables generates a
runtime error.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 423

Using Objects Object variables are declared using the Dim, Public, or Private statement:

 Dim MyApp As Object

Object variables can be assigned values (thereby referencing a real physical object) using the Set
statement:

 Set MyApp = CreateObject("phantom.application")
 Set MyApp = Nothing

Properties of an Object are accessed using the dot (.) separator:

 MyApp.Color = 10
 i% = MyApp.Color

Methods of an Object are also accessed using the dot (.) separator:

 MyApp.Open "sample.txt"
 isSuccess = MyApp.Save("new.txt",15)

Automatic Destruction The Basic Control Engine keeps track of the number of variables that reference a
given object so that the object can be destroyed when there are no longer any references to it:

 Sub Main() 'Number of references to object
 Dim a As Object '0
 Dim b As Object '0
 Set a = CreateObject("phantom.application) '1
 Set b = a '2
 Set a = Nothing '1
 End Sub '0 (object destroyed)

Note An OLE automation object is instructed by the Basic Control Engine to destroy itself when no
variables reference that object. However, it is the responsibility of the OLE automation server to destroy it.
Some servers do not destroy their objects—usually when the objects have a visual component and can be
destroyed manually by the user.

See Also Currency (page 259) (data type); Date (page 263) (data type); Double (page 300) (data type);
Integer (page 377) (data type); Long (page 398) (data type); Single (page 479) (data type); String
(page 494) (data type); Variant (page 515) (data type); Boolean (page 233) (data type); DefType
(page 276) (statement).

Objects (topic)

The Basic Control Engine defines two types of objects: data objects and OLE automation objects.

Syntactically, these are referenced in the same way.

What Is an Object

An object in the Basic Control Engine is an encapsulation of data and routines into a single unit. The
use of objects in the Basic Control Engine has the effect of grouping together a set of functions and
data items that apply only to a specific object type.

Objects expose data items for programmability called properties. For example, a sheet object may
expose an integer called NumColumns. Usually, properties can be both retrieved (get) and modified
(set).

Objects also expose internal routines for programmability called methods. In the Basic Control
Engine, an object method can take the form of a function or a subroutine. For example, a OLE

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 424

automation object called MyApp may contain a method subroutine called Open that takes a single
argument (a filename), as shown below:

 MyApp.Open "c:\files\sample.txt"

Declare Object Variables

In order to gain access to an object, you must first declare an object variable using either Dim,
Public, or Private:

 Dim o As Object 'OLE automation object

Initially, objects are given the value 0 (or Nothing). Before an object can be accessed, it must be
associated with a physical object.

Assign a Value to an Object Variable

An object variable must reference a real physical object before accessing any properties or methods
of that object. To instantiate an object, use the Set statement.

 Dim MyApp As Object
 Set MyApp = CreateObject("Server.Application")

Access Object Properties

Once an object variable has been declared and associated with a physical object, it can be modified
using the Basic Control Engine code. Properties are syntactically accessible using the dot operator,
which separates an object name from the property being accessed:

 MyApp.BackgroundColor = 10
 i% = MyApp.DocumentCount

Properties are set using the Basic Control Engine normal assignment statement:

 MyApp.BackgroundColor = 10

Object properties can be retrieved and used within expressions:

 i% = MyApp.DocumentCount + 10
 MsgBox "Number of documents = " & MyApp.DocumentCount

Access Object Methods

Like properties, methods are accessed via the dot operator. Object methods that do not return values
behave like subroutines in the Basic Control Engine (that is, the arguments are not enclosed within
parentheses):

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 425

 MyApp.Open "c:\files\sample.txt",True,15

Object methods that return a value behave like function calls in the Basic Control Engine. Any
arguments must be enclosed in parentheses:

 If MyApp.DocumentCount = 0 Then MsgBox "No open documents."
 NumDocs = app.count(4,5)

There is no syntactic difference between calling a method function and retrieving a property value, as
shown below:

 variable = object.property(arg1,arg2) variable = object.method(arg1,arg2)

Compare Object Variables

The values used to represent objects are meaningless to the script in which they are used, with the
following exceptions:

• Objects can be compared to each other to determine whether they refer to the same object.
• Objects can be compared with Nothing to determine whether the object variable refers to a valid

object.

Object comparisons are accomplished using the Is operator:

 If a Is b Then MsgBox "a and b are the same object."
 If a Is Nothing Then MsgBox "a is not initialized."
 If b Is Not Nothing Then MsgBox "b is in use."

Collections

A collection is a set of related object variables. Each element in the set is called a member and is
accessed via an index, either numeric or text, as shown below:

 MyApp.Toolbar.Buttons(0)
 MyApp.Toolbar.Buttons("Tuesday")

It is typical for collection indexes to begin with 0.

Each element of a collection is itself an object, as shown in the following examples:

 Dim MyToolbarButton As Object
 Set MyToolbarButton = MyApp.Toolbar.Buttons("Save")
 yAppp.Toolbar.Buttons(1).Caption = "Open"

The collection itself contains properties that provide you with information about the collection and
methods that allow navigation within that collection:

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 426

 Dim MyToolbarButton As Object
 NumButtons% = MyApp.Toolbar.Buttons.Count
 MyApp.Toolbar.Buttons.MoveNext
 MyApp.Toolbar.Buttons.FindNext "Save"
 For i = 1 To MyApp.Toolbar.Buttons.Count
 Set MyToolbarButton = MyApp.Toolbar.Buttons(i)
 MyToolbarButton.Caption = "Copy"
 Next i

Predefined Objects

The Basic Control Engine predefines a few objects for use in all scripts. These are:

Clipboard System HWND
Net Basic Screen

Oct, Oct$ (functions)

Syntax Oct[$] (number)

Description Returns a String containing the octal equivalent of the specified number.

Comments Oct$ returns a String , whereas Oct returns a String variant. The returned string contains only
the number of octal digits necessary to represent the number. The number parameter is any numeric
expression. If this parameter is Null , then Null is returned. Empty is treated as 0. The number
parameter is rounded to the nearest whole number before converting to the octal equivalent.

Example This example accepts a number and displays the decimal and octal 'equivalent until the input number is 0
or invalid.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 Do
 xs$ = InputBox("Enter a number to convert:","Octal Convert")
 x = Val(xs$)
 If x <> 0 Then
 MsgBox "Decimal: " & x & " Octal: " & Oct(x)
 Else
 MsgBox "Goodbye."
 End If
 Loop While x <> 0
End Sub

See Also Hex, Hex$ (page 363) (functions).

OKButton (statement)

Syntax OKButton X,Y,width,height [,.Identifier]

Description Creates an OK button within a dialog box template.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 427

Comments This statement can only appear within a dialog box template (that is, between the Begin Dialog and
End Dialog statements). The OKButton statement accepts the following parameters:

Parameter Description

X, Y Integer coordinates specifying the position of the control (in dialog units) static to the upper
left corner of the dialog box.

width,
height

Integer coordinates specifying the dimensions of the control in dialog units.

Identifier Name by which this control can be referenced by statements in a dialog function (such as
DlgFocus and DlgEnable).

If the DefaultButton parameter is not specified in the Dialog statement, the OK button will be used as the
default button. In this case, the OK button can be selected by pressing Enter on a nonbutton control. A
dialog box template must contain at least one OKButton , CancelButton , or PushButton statement
(otherwise, the dialog box cannot be dismissed).

Example This example shows how to use the OK and Cancel buttons within a dialog box template and how to
detect which one closed the dialog box.

Sub Main()
 Begin Dialog QuitDialogTemplate 16,32,116,64,"Quit"
 Text 4,8,108,8,"Are you sure you want to exit?"
 CheckBox 32,24,63,8,"Save Changes",.SaveChanges
 OKButton 12,40,40,14
 CancelButton 60,40,40,14
 End Dialog
 Dim QuitDialog As QuitDialogTemplate
 rc% = Dialog(QuitDialog)
 Select Case rc%
 Case -1
 MsgBox "OK was pressed!"
 Case 1
 MsgBox "Cancel was pressed!"
 End Select
End Sub

See Also CancelButton (page 243) (statement); CheckBox (page 240) (statement); ComboBox (page 249)
(statement); Dialog (page 278) (function); Dialog (page 279) (statement); DropListBox (page 301)
(statement); GroupBox (page 361) (statement); ListBox (page 394) (statement); OptionButton (page
434) (statement); OptionGroup (page 435) (statement); Picture (page 438) (statement); PushButton
(page 447) (statement); Text (page 502) (statement); TextBox (page 503) (statement); Begin (page
231) Dialog (page 231) (statement), PictureButton (page 439) (statement).

On Error (statement)

Syntax On Error {Goto label | Resume Next | Goto 0}

Description Defines the action taken when a trappable runtime error occurs.

Comments The form O n Error Goto label causes execution to transfer to the specified label when a runtime error
occurs. The form On Error Resume Next causes execution to continue on the line following the line that
caused the error. The form On Error Goto 0 causes any existing error trap to be removed. If an error
trap is in effect when the script ends, then an error will be generated. An error trap is only active within
the subroutine or function in which it appears. Once an error trap has gained control, appropriate action
should be taken, and then control should be resumed using the Resume statement. The Resume
statement resets the error handler and continues execution. If a procedure ends while an error is pending,
then an error will be generated. (The Exit Sub or E xit Function statement also resets the error
handler, allowing a procedure to end without displaying an error message.)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 428

Errors within an Error Handler If an error occurs within the error handler, then the error handler of the
caller (or any procedure in the call stack) will be invoked. If there is no such error handler, then the error
is fatal, causing the script to stop executing. The following statements reset the error state (that is, these
statements turn off the fact that an error occurred):

 Resume
 Err=-1

The Resume statement forces execution to continue either on the same line or on the line following the
line that generated the error. The Err=-1 statement allows explicit resetting of the error state so that the
script can continue normal execution without resuming at the statement that caused the error condition.
The On Error statement will not reset the error. Thus, if an On Error statement occurs within an error
handler, it has the effect of changing the location of a new error handler for any new errors that may occur
once the error has been reset.

Example This example will demonstrate three types of error handling. The first case simply by-passes an expected
error and continues with program operation. The second case creates an error branch that jumps to
a common error handling routine that processes incoming errors, clears the error (with the Resume
statement) and resumes program execution. The third case clears all internal error handling so that
execution will stop when the next error is encountered.

Sub Main()
 Dim x%
 a = 10000
 b = 10000

 On Error Goto Pass 'Branch to this label on error.
 Do
 x% = a * b
 Loop

Pass:
 Err = -1 'Clear error status.
 MsgBox "Cleared error status and continued."
 On Error Goto Overflow 'Branch to new error routine on any
 x% = 1000 'subsequent errors.
 x% = a * b
 x% = a / 0

 On Error Resume Next 'Pass by any following errors until
 x% = 1000 'another On Error statement is
 x% = a * b 'encountered.
 On Error Goto 0 'Clear error branching.
 x% = a * b 'Program will stop here.
 Exit Sub 'Exit before common error routine.
Overflow: 'Beginning of common error routine.
 If Err = 6 then
 MsgBox "Overflow Branch."
 Else
 MsgBox Error(Err)
 End If
 Resume Next
End Sub

See Also Error Handling (page 327) (topic); Error (page 327) (statement); Resume (page 461) (statement).

Open (statement)

1. Read Write
2. Write
3. Read

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 429

Option Default (statement)

Syntax Option Default type

Description Sets the default data type of variables and function return values when not otherwise specified.

Comments By default, the type of implicitly defined variables and function return values is Variant. This statement
is used for backward compatibility with earlier versions of BasicScript where the default data type was
Integer. This statement must appear outside the scope of all functions and subroutines. Currently, type
can only be set to Integer.

Example

 'This script sets the default data type to Integer. This fact
 'is used to declare the function AddIntegers which returns an
 'Integer data type.
Option Default Integer
 Function AddIntegers(a As Integer,b As Integer)
 Foo = a + b
 End Function
 Sub Main
 Dim a,b,result
 a = InputBox("Enter an integer:")
 b = InputBox("Enter an integer:")
 result = AddIntegers(a,b)
 End Sub

See Also DefType (page 276) (statement)

Option Explicit (statement)

Syntax Option Explicit

Description Prevents implicit declaration of variables and externally called procedures.

Comments By default, BasicScript implicitly declares variables that are used but have not been explicitly declared
with Dim, Public, or Private. To avoid typing errors, you may want to use Option Explicit to prevent
this behavior. The Option Explicit statement also enforces explicit declaration of all externally called
procedures. Once specified, all externally called procedures must be explicitly declared with the Declare
statement.

See Also Const (page 252) (statement), Dim (page 279) (statement), Public (page 446) (statement), Private
(page 445) (statement), ReDim (page 459) (statement), Declare (page 276) (statement)

OpenFilename$ (function)

Syntax OpenFilename$ [([title$ [,extensions$]])]

Description Displays a dialog box that prompts the user to select from a list of files, returning the full pathname of the
file the user selects or a zero-length string if the user selects Cancel.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 430

Comments This function displays the standard file open dialog box, which allows the user to select a file. It takes the
following parameters:

Parameter Description

Title$ String specifying the title that appears in the dialog box's title bar. If this parameter is
omitted, then "Open" is used.

Extension$ String specifying the available file types. If this parameter is omitted, then all files are
displayed.

e$ = "All Files:*.BMP,*.WMF;Bitmaps:*.BMP;Metafiles:*.WMF"
f$ = OpenFilename$("Open Picture",e$)

Example This example asks the user for the name of a file, then proceeds to read the first line from that file.

Sub Main
 Dim f As String,s As String
 f$ = OpenFilename$("Open Picture","Text Files:*.TXT")
 If f$ <> "" Then
 Open f$ For Input As #1
 Line Input #1,s$
 Close #1
 MsgBox "First line from " & f$ & " is " & s$
 End If
End Sub

See Also MsgBox (page 411) (statement); AskBox$ (page 221) (function); AskPassword$ (page 222)
(function); InputBox, InputBox$ (page 374) (functions); SaveFilename$ (page 467) (function);
SelectBox (page 473) (function); AnswerBox (page 205) (function).

Notes The extensions$ parameter must be in the following format:

 type:ext[,ext][;type:ext[,ext]]...

Placeholder Description

type Specifies the name of the grouping of files, such as All Files .

ext Specifies a valid file extension, such as *.BAT or *.?F? .

For example, the following are valid extensions$ specifications:

 "All Files:*.*"
 "Documents:*.TXT,*.DOC"
 "All Files:*.*;Documents:*.TXT,*.DOC"

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 431

Operator Precedence (topic)

The following table shows the precedence of the operators supported by the Basic Control Engine.
Operations involving operators of higher precedence occur before operations involving operators of
lower precedence. When operators of equal precedence occur together, they are evaluated from left
to right.

Operator Description Precedence Order

() Parentheses Highest

^ Exponentiation

- Unary minus

/, * Division and multiplication

\ Integer division

Mod Modulo

+, - Addition and subtraction

& String concatenation

=, <>, >, <, <=, >= Relational

Like, Is String and object comparison

Not Logical negation

And Logical or binary conjunction

Or Logical or binary disjunction

Xor, Eqv, Imp Logical or binary operators Lowest

The precedence order can be controlled using parentheses, as shown below:

 a = 4 + 3 * 2 'a becomes 10.
 a = (4 + 3) * 2 'a becomes 14.

Operator Precision (topic)

When numeric, binary, logical or comparison operators are used, the data type of the result is generally the same as the
data type of the more precise operand. For example, adding an Integer and a Long first converts the Integer operand
to a Long, then performs a long addition, overflowing only if the result cannot be contained with a Long. The order of
precision is shown in the following table: Empty Least precise BooleanIntegerLongSingleDateDoubleCurrency Most
precise

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 432

There are exceptions noted in the descriptions of each operator. The rules for operand conversion are further
complicated when an operator is used with variant data. In many cases, an overflow causes automatic promotion of
the result to the next highest precise data type. For example, adding two Integer variants results in an Integer variant
unless it overflows, in which case the result is automatically promoted to a Long variant.

Option Base (statement)

Syntax Option Base {0 | 1}

Description Sets the lower bound for array declarations.

Comments By default, the lower bound used for all array declarations is 0. This statement must appear outside of any
functions or subroutines.

Example
Option Base 1
Sub Main()
 Dim a(10) 'Contains 10 elements (not 11).
 a(1) = "Hello"
 MsgBox "The first element of the array is: " & a(1)
End Sub

See Also Dim (page 279) (statement); Public (page 446) (statement); Private (page 445) (statement).

Option Compare (statement)

Syntax Option Compare [Binary | Text]

Description Controls how strings are compared.

Comments When Option Compare is set to Binary, then string comparisons are case-sensitive (for example, "A"
does not equal "a"). When it is set to Text, string comparisons are case-insensitive (for example, "A" is
equal to "a"). The default value for Option Compare is Binary. The Option Compare statement affects
all string comparisons in any statements that follow the Option Compare statement. Additionally, the
setting affects the default behavior of Instr, StrComp, and the Like operator. The following table shows
the types of string comparisons affected by this setting: > < <> <= >= Instr StrComp Like The Option
Compare statement must appear outside the scope of all subroutines and functions. In other words, it
cannot appear within a Sub or Function block.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 433

Example This example shows the use of Option Compare.

Option Compare Binary
Sub CompareBinary
 a$ = "This String Contains UPPERCASE."
 b$ = "this string contains uppercase."
 If a$ = b$ Then
 MsgBox "The two strings were compared case-insensitive."
 Else
 MsgBox "The two strings were compared case-sensitive."
 End If
End Sub
Option Compare Text
Sub CompareText
 a$ = "This String Contains UPPERCASE."
 b$ = "this string contains uppercase."
 If a$ = b$ Then
 MsgBox "The two strings were compared case-insensitive."
 Else
 MsgBox "The two strings were compared case-sensitive."
 End If
End Sub
Sub Main()
 CompareBinary 'Calls subroutine above.
 CompareText 'Calls subroutine above.
End Sub

See Also Like (page 391) (operator); InStr (page 375) (function); StrComp (page 492) (function); Comparison
Operators (page 250) (topic).

Option CStrings (statement)

Syntax Option CStrings {On | Off}

Description Turns on or off the ability to use C-style escape sequences within strings.

Comments When Option CStrings On is in effect, the compiler treats the backslash character as an escape
character when it appears within strings. An escape character is simply a special character that cannot
otherwise be ordinarily typed by the computer keyboard.

Escape Description Equivalent Expression

\r Carriage return Chr$(13)

\n Line feed Chr$(10)

\a Bell Chr$(7)

\b Backspace Chr$(8)

\f Form feed Chr$(12)

\t Tab Chr$(9)

\v Vertical tab Chr$(11)

\0 Null Chr$(0)

\" Double quotation mark "" or Chr$(34)

\\ Backslash Chr$(92)

\? Question mark ?

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 434

\' Single quotation mark '

\x hh Hexadecimal number Chr$(Val("&Hhh))

\ooo Octal number Chr$(Val("&Oooo"))

\ anycharacter Any character anycharacter

With hexadecimal values, the Basic Control Engine stops scanning for digits when it encounters a
nonhexadecimal digit or two digits, whichever comes first. Similarly, with octal values, the Basic Control
Engine stops scanning when it encounters a nonoctal digit or three digits, whichever comes first. When
Option CStrings Off is in effect, then the backslash character has no special meaning. This is the
default.

Example
Option CStrings On
Sub Main()
 MsgBox "They said, \"Watch out for that clump of grass!\""
 MsgBox "First line.\r\nSecond line."
 MsgBox "Char A: \x41 \r\n Char B: \x42"
End Sub

OptionButton (statement)

Syntax OptionButton X,Y,width,height,title$ [,.Identifier]

Description Defines an option button within a dialog box template.

Comments This statement can only appear within a dialog box template (that is, between the Begin Dialog and
End Dialog statements). The OptionButton statement accepts the following parameters:

Parameter Description

X, Y Integer coordinates specifying the position of the control (in dialog units) static to the upper
left corner of the dialog box.

width,
height

Integer coordinates specifying the dimensions of the control in dialog units.

title$ String containing text that appears within the option button. This text may contain an
ampersand character to denote an accelerator letter, such as "&Portrait" for Portrait ,
which can be selected by pressing the P accelerator.

.Identifier Name by which this control can be referenced by statements in a dialog function (such as
DlgFocus and DlgEnable).

Example This example creates a group of option buttons.

Sub Main()
 Begin Dialog PowerTemplate 16,31,128,65,"Print"
 GroupBox 8,8,64,52,"Amplifier Output",.Junk
 OptionGroup .Orientation
 OptionButton 16,20,51,8,"10 Watts",.Ten
 OptionButton 16,32,51,8,"50 Watts",.Fifty
 OptionButton 16,44,51,8,"100 Watts",.Hundred
 OKButton 80,8,40,14
 End Dialog
 Dim PowerDialog As PowerTemplate
 Dialog PowerDialog
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 435

See Also CancelButton (page 243) (statement); CheckBox (page 240) (statement); ComboBox (page 249)
(statement); Dialog (page 278) (function); Dialog (page 279) (statement); DropListBox (page 301)
(statement); GroupBox (page 361) (statement); ListBox (page 394) (statement); OKButton (page
426) (statement); OptionGroup (page 435) (statement); Picture (page 438) (statement); PushButton
(page 447) (statement); Text (page 502) (statement); TextBox (page 503) (statement); Begin (page
231) Dialog (page 231) (statement), PictureButton (page 439) (statement).

Note Accelerators are underlined, and the accelerator combination Alt+letter is used.

OptionGroup (statement)

Syntax OptionGroup .Identifier

Description Specifies the start of a group of option buttons within a dialog box template.

Comments The .Identifier parameter specifies the name by which the group of option buttons can be referenced by
statements in a dialog function (such as DlgFocus and DlgEnable). This parameter also creates an
integer variable whose value corresponds to the index of the selected option button within the group (0 is
the first option button, 1 is the second option button, and so on). This variable can be accessed using the
following syntax: DialogVariable.Identifier. This statement can only appear within a dialog box template
(that is, between the Begin Dialog and End Dialog statements). When the dialog box is created, the
option button specified by .Identifier will be on; all other option buttons in the group will be off. When the
dialog box is dismissed, the .Identifier will contain the selected option button.

Example This example creates a group of option buttons.

Sub Main()
 Begin Dialog PowerTemplate 16,31,128,65,"Print"
 GroupBox 8,8,64,52,"Amplifier Output",.Junk
 OptionGroup .Orientation
 OptionButton 16,20,51,8,"10 Watts",.Ten
 OptionButton 16,32,51,8,"50 Watts",.Fifty
 OptionButton 16,44,51,8,"100 Watts",.Hundred
 OKButton 80,8,40,14
 End Dialog
 Dim PowerDialog As PowerTemplate
 Dialog PowerDialog
End Sub

See Also CancelButton (page 243) (statement); CheckBox (page 240) (statement); ComboBox (page 249)
(statement); Dialog (page 278) (function); Dialog (page 279) (statement); DropListBox (page 301)
(statement); GroupBox (page 361) (statement); ListBox (page 394) (statement); OKButton (page
426) (statement); OptionButton (page 434) (statement); Picture (page 438) (statement); PushButton
(page 447) (statement); Text (page 502) (statement); TextBox (page 503) (statement); Begin Dialog
(page 231) (statement), PictureButton (page 439) (statement).

Or (operator)

Syntax expression1 Or expression2

Description Performs a logical or binary disjunction on two expressions.

Comments If both expressions are either Boolean , Boolean variants, or Null variants, then a logical disjunction is
performed as follows:

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 436

If the first expresionn
is

and the second expression
is

then: the result is

TRUE TRUE TRUE

TRUE FALSE TRUE

TRUE NULL TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

FALSE NULL NULL

NULL TRUE TRUE

NULL FALSE NULL

NULL NULL NULL

Binary Disjunction If the two expressions are Integer, then a binary disjunction is performed, returning
an Integer result. All other numeric types (including Empty variants) are converted to Long and a binary
disjunction is then performed, returning a Long result. Binary disjunction forms a new value based on a
bit-by-bit comparison of the binary representations of the two expressions according to the following table:

1 Or 1 = 1 Example

0 Or 1 = 1 5 10101001

1 Or 0 = 1 6 01101010

0 Or 0 = 0 Or 11101011

Example 1 This first example shows the use of logical Or.

Sub Main()
 temperature_alert = True
 pressure_alert = False
 If temperature_alert Or pressure_alert Then
 MsgBox "You had better run!",ebExclamation,"Nuclear Disaster Imminent"
 End If
End Sub

Example 2 This second example shows the use of binary Or.

Sub Main()
 Dim w As Integer
TryAgain:
 s$ = InputBox("Enter a hex number (four digits max).","Binary Or Example")
 If Mid(s$,1,1) <> "&" Then
 s$ = "&H" & s$
 End If
 If Not IsNumeric(s$) Then Goto TryAgain
 w = Cint(s$)
 MsgBox "Your number is &H" & Hex(w)
 w = w Or &H8000
 MsgBox "Your number with the high bit set is &H" & Hex(w)
End Sub

See Also Operator Precedence (page 431) (topic); Xor (page 532) (operator); Eqv (page 323) (operator); Imp
(page 371) (operator); And (page 204) (operator).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 437

P

P

Pi (constant)

Picture (statement)

PictureButton (statement)

Pmt (function)

PointSetMultiple (function)

PointSetMultipleEX (function)

PopupMenu (function)

PPmt (function)

Print (statement)

Print# (statement)

Private (statement)

Public (statement)

PushButton (statement)

Put (statement)

Pv (function)

Pi (constant)

Syntax Pi

Description The Double value 3.141592653589793238462643383279 .

Comments Pi can also be determined using the following formula:

 4 * Atn(1)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 438

Example This example illustrates the use of the Pi constant.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 dia = InputBox("Enter a circle diameter to compute.","Compute Circle")
 circ# = Pi * dia
 area# = Pi * ((dia / 2) ^ 2)
 msg1 = "Diameter: " & dia & crlf
 msg1 = msg1 & "Circumference: " & Format(circ#,"Standard") & crlf
 msg1 = msg1 & "Area: " & Format(area#,"Standard")
 MsgBox msg1
End Sub

See Also Tan (page 501) (function); Atn (page 223) (function); Cos (page 257)
(function); Sin (page 479) (function).

Picture (statement)

Syntax Picture X,Y,width,height,PictureName$,PictureType [,[.Identifier] [,style]]

Description Creates a picture control in a dialog box template.

Comments Picture controls are used for the display of graphics images only. The user cannot interact with these
controls. The Picture statement accepts the following parameters:

Parameter Description

X, Y Integer coordinates specifying the position of the control (in dialog units) static to the
upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog units.

PictureName
$

String containing the name of the picture. If PictureType is 0, then this name specifies the
name of the file containing the image. If PictureType is 10, then PictureName$ specifies
the name of the image within the resource of the picture library. If PictureName$ is empty,
then no picture will be associated with the control. A picture can later be placed into the
picture control using the DlgSetPicture statement.

PictureType Integer specifying the source for the image. The following sources are supported:

0 The image is contained in a file on disk.

10 The image is contained in a picture library as specified by the PicName$ parameter
on the Begin Dialog statement.

.Identifier Name by which this control can be referenced by statements in a dialog function (such
as DlgFocus and DlgEnable). If omitted, then the first two words of PictureName$ are
used.

style Specifies whether the picture is drawn within a 3D frame. It can be any of the following
values:

0 Draw the picture control with a normal frame.

1 Draw the picture control with a 3D frame.

If omitted, then the picture control is drawn with a normal frame.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 439

The picture control extracts the actual image from either a disk file or a picture library. In the case of
bitmaps, both 2- and 16-color bitmaps are supported. In the case of WMFs, the Basic Control Engine
supports the Placeable Windows Metafile. If PictureName$ is a zero-length string, then the picture is
removed from the picture control, freeing any memory associated with that picture.

Example 1 This first example shows how to use a picture from a file.

Sub Main()
 Begin Dialog LogoDialogTemplate 16,32,288,76,"Introduction"
 OKButton 240,8,40,14
 Picture 8,8,224,64,"c:\bitmaps\logo.bmp",0,.Logo
 End Dialog
 Dim LogoDialog As LogoDialogTemplate
 Dialog LogoDialog
End Sub

Example 2 This second example shows how to use a picture from a picture library with a 3D frame.

Sub Main()
 Begin Dialog LogoDialogTemplate 16,31,288,76,"Introduction",,"pictures.dll"
 OKButton 240,8,40,14
 Picture 8,8,224,64,"CompanyLogo",10,.Logo,1
 End Dialog
 Dim LogoDialog As LogoDialogTemplate
 Dialog LogoDialog
End Sub

See Also CancelButton (page 243) (statement); CheckBox (page 240) (statement); ComboBox (page 249)
(statement); Dialog (page 278) (function); Dialog (page 279) (statement); DropListBox (page 301)
(statement); GroupBox (page 361) (statement); ListBox (page 394) (statement); OptionButton (page
434) (statement); OptionGroup (page 435) (statement); PushButton (page 447) (statement); Text
(page 502) (statement); TextBox (page 503) (statement); Begin (page 231) Dialog (page 231)
(statement), PictureButton (page 439) (statement); DlgSetPicture (page 291) (statement).

Notes Picture controls can contain either a bitmap or a WMF (Windows metafile). When extracting images from
a picture library, the Basic Control Engine assumes that the resource type for metafiles is 256. Picture
libraries are implemented as DLLs on the Windows and Win32 platforms.

PictureButton (statement)

Syntax PictureButton X,Y,width,height,PictureName$,PictureType [,.Identifier]

Description Creates a picture button control in a dialog box template.

Comments Picture button controls behave very much like a push button controls. Visually, picture buttons are
different than push buttons in that they contain a graphic image imported either from a file or from a
picture library. The PictureButton statement accepts the following parameters:

Parameter Description

X, Y Integer coordinates specifying the position of the control (in dialog units) static to the
upper left corner of the dialog box.

width, height Integer coordinates specifying the dimensions of the control in dialog units.

PictureName
$

String containing the name of the picture. If PictureType is 0, then this name specifies the
name of the file containing the image. If PictureType is 10, then PictureName$ specifies
the name of the image within the resource of the picture library. If PictureName$ is empty,
then no picture will be associated with the control. A picture can later be placed into the
picture control using the DlgSetPicture statement.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 440

PictureType Integer specifying the source for the image. The following sources are supported:

0 The image is contained in a file on disk.

10 The image is contained in a picture library as specified by the PicName$ parameter
on the Begin Dialog statement.

.Identifier Name by which this control can be referenced by statements in a dialog function (such as
DlgFocus and DlgEnable).

The picture button control extracts the actual image from either a disk file or a picture library, depending
on the value of PictureType. The supported picture formats vary from platform to platform. If PictureName
$ is a zero-length string, then the picture is removed from the picture button control, freeing any memory
associated with that picture.

Example 1 This first example shows how to use a picture from a file.

Sub Main()
 Begin Dialog LogoDialogTemplate 16,32,288,76,"Introduction"
 OKButton 240,8,40,14
 PictureButton 8,4,224,64,"c:\bitmaps\logo.bmp",0,.Logo
 End Dialog
 Dim LogoDialog As LogoDialogTemplate
 Dialog LogoDialog
End Sub

Example 2 This second example shows how to use a picture from a picture library.

Sub Main()
 Begin Dialog LogoDialogTemplate 16,31,288,76,"Introduction",,"pictures.dll"
 OKButton 240,8,40,14
 PictureButton 8,4,224,64,"CompanyLogo",10,.Logo
 End Dialog
 Dim LogoDialog As LogoDialogTemplate
 Dialog LogoDialog
End Sub

See Also CancelButton (page 243) (statement); CheckBox (page 240) (statement); ComboBox (page 249)
(statement); Dialog (page 278) (function); Dialog (page 279) (statement); DropListBox (page 301)
(statement); GroupBox (page 361) (statement); ListBox (page 394) (statement); OKButton (page
426) (statement); OptionButton (page 434) (statement); OptionGroup (page 435) (statement);
PushButton (page 447) (statement); Text (page 502) (statement); TextBox (page 503) (statement);
Begin (page 231) Dialog (page 231) (statement), Picture (page 438) (statement); DlgSetPicture
(page 291) (statement).

Notes Picture controls can contain either a bitmap or a WMF (Windows metafile). When extracting images from
a picture library, the Basic Control Engine assumes that the resource type for metafiles is 256. Picture
libraries are implemented as DLLs on the Win32 platforms. Picture controls can contain either bitmaps or
Windows metafiles.

Pmt (function)

Syntax Pmt (Rate,NPer,Pv,Fv,Due)

Description Returns the payment for an annuity based on periodic fixed payments and a constant rate of interest.

Comments An annuity is a series of fixed payments made to an insurance company or other investment company
over a period of time. Examples of annuities are mortgages and monthly savings plans. The Pmt
function requires the following parameters:

Parameter Description

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 441

Rate Double representing the interest rate per period. If the periods are given in months, be sure
to normalize annual rates by dividing them by 12.

NPer Double representing the total number of payments in the annuity.

Pv Double representing the present value of your annuity. In the case of a loan, the present
value would be the amount of the loan.

Fv Double representing the future value of your annuity. In the case of a loan, the future value
would be 0.

Due Integer indicating when payments are due for each payment period. A 0 specifies payment
at the end of each period, whereas a 1 specifies payment at the start of each period.

Rate and NPer must be expressed in the same units. If Rate is expressed in months, then NPer must also
be expressed in months. Positive numbers represent cash received, whereas negative numbers represent
cash paid out.

Example This example calculates the payment necessary to repay a $1,000.00 loan over 36 months at an annual
rate of 10%. Payments are due at the beginning of the period.

Sub Main()
 x = Pmt((.1/12),36,1000.00,0,1)
 msg1 = "The payment to amortize $1,000 over 36 months @ 10% is: "
 MsgBox msg1 & Format(x,"Currency")
End Sub

See Also IPmt (page 377) (function); NPer (page 420) (function); PPmt (page 441) (function); Rate (page
453) (function).

PopupMenu (function)

Syntax PopupMenu (MenuItems$())

Description Displays a pop-up menu containing the specified items, returning an Integer representing the index of
the selected item.

Comments If no item is selected (that is, the pop-up menu is canceled), then a value of 1 less than the lower bound
is returned (normally, –1). This function creates a pop-up menu using the string elements in the given
array. Each array element is used as a menu item. A zero-length string results in a separator bar in the
menu. The pop-up menu is created with the upper left corner at the current mouse position. A runtime
error results if MenuItems$ is not a single-dimension array. Only one pop-up menu can be displayed at a
time. An error will result if another script executes this function while a pop-up menu is visible.

Example
Sub Main()
 Dim a$()
 AppList a$
 w% = PopupMenu(a$)
End Sub

See Also SelectBox (page 473) (function).

PPmt (function)

Syntax PPmt (Rate,Per,NPer,Pv,Fv,Due)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 442

Description Calculates the principal payment for a given period of an annuity based on periodic, fixed payments and a
fixed interest rate.

Comments An annuity is a series of fixed payments made to an insurance company or other investment company
over a period of time. Examples of annuities are mortgages and monthly savings plans. The PPmt
function requires the following parameters:

Parameter Description

Rate Double representing the interest rate per period.

Per Double representing the number of payment periods. Per can be no less than 1 and no
greater than NPer.

NPer Double representing the total number of payments in your annuity.

Pv Double representing the present value of your annuity. In the case of a loan, the present
value would be the amount of the loan.

Fv Double representing the future value of your annuity. In the case of a loan, the future value
would be 0 .

Due Integer indicating when payments are due. If this parameter is 0 , then payments are due at
the end of each period; if it is 1 , then payments are due at the start of each period.

Rate and NPer must be in the same units to calculate correctly. If Rate is expressed in months, then
NPer must also be expressed in months. Negative values represent payments paid out, whereas positive
values represent payments received.

Example This example calculates the principal paid during each year on a loan of $1,000.00 with an annual rate
of 10% for a period of 10 years. The result is displayed as a table containing the following information:
payment, principal payment, principal balance.

Const crlf = Chr$(13) + Chr$(10)
 pay = Pmt(.1,10,1000.00,0,1)
 msg1 = "Amortization table for 1,000" & crlf & "at 10% annually for"
 msg1 = msg1 & " 10 years: " & crlf & crlf
 bal = 1000.00
 For per = 1 to 10
 prn = PPmt(.1,per,10,1000,0,0)
 bal = bal + prn
 msg1 = msg1 & Format(pay,"Currency") & " " & Format$(Prn,"Currency")
 msg1 = msg1 & " " & Format(bal,"Currency") & crlf
 Next per
 MsgBox msg1
End Sub

See Also IPmt (page 377) (function); NPer (page 420) (function); PPmt (page 441) (function); Rate (page
453) (function).

Print (statement)

Syntax Print [[{ Spc (n) | Tab (n)}][expressionlist][{; | ,}]]

Description Prints data to an output device.

Comments The actual output device depends on the platform on which the Basic Control Engine is running. The
following table describes how data of different types is written:

Data
Type

Description

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 443

String Printed in its literal form, with no enclosing quotes.

Any
numeric
type

Printed with an initial space reserved for the sign (space = positive). Additionally, there is a
space following each number.

Boolean Printed as TRUE or FALSE.

Date Printed using the short date format. If either the date or time component is missing, only the
provided portion is printed (this is consistent with the "general date" format understood by the
Format/Format$ functions).

Empty Nothing is printed.

Null Prints NULL.

User-
defined
errors

Printed as "Error code", where code is the value of the user-defined error. The word "Error" is
not translated.

Each expression in expressionlist is separated with either a comma (,) or a semicolon (;). A comma
means that the next expression is output in the next print zone. A semicolon means that the next
expression is output immediately after the current expression. Print zones are defined every 14 spaces. If
the last expression in the list is not followed by a comma or a semicolon, then a carriage return is printed
to the file. If the last expression ends with a semicolon, no carriage return is printed¾the next Print
statement will output information immediately following the expression. If the last expression in the list
ends with a comma, the file pointer is positioned at the start of the next print zone on the current line.
The Tab and Spc functions provide additional control over the column position. The Tab function
moves the file position to the specified column, whereas the Spc function outputs the specified number
of spaces.

Example
Sub Main()
 i% = 10
 s$ = "This is a test."
 Print "The value of i=";i%,"the value of s=";s$
 'This example prints the value of i% in print zone 1 and s$ in print
 'zone 3.
 Print i%,,s$
 'This example prints the value of i% and s$ separated by 10 spaces.
 Print i%;Spc(10);s$
 'This example prints the value of i in column 1 and s$ in column 30.
 Print i%;Tab(30);s$
 'This example prints the value of i% and s$.
 Print i%;s$,
 Print 67
End Sub

Note On Win32, the Print statement prints data to stdout.

Print# (statement)

Syntax Print #filenumber, [[{Spc(n) | Tab(n)}][expressionlist][{;|,}]]

Description Writes data to a sequential disk file.

Comments The filenumber parameter is a number that is used by the Basic Control Engine to refer to the open file,
the number passed to the Open statement. The following table describes how data of different types is
written:

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 444

Data
Type

Description

String Printed in its literal form, with no enclosing quotes.

Any
numeric
type

Printed with an initial space reserved for the sign (space = positive). Additionally, there is a
space following each number.

Boolean Printed as TRUE or FALSE.

Date Printed using the short date format. If either the date or time component is missing, only the
provided portion is printed (this is consistent with the "general date" format understood by the
Format/Format$ functions).

Empty Nothing is printed.

Null Prints NULL.

User-
defined
errors

Printed to files as "Error code", where code is the value of the user-defined error. The word
"Error" is not translated.

Each expression in expressionlist is separated with either a comma (,) or a semicolon (;). A comma
means that the next expression is output in the next print zone. A semicolon means that the next
expression is output immediately after the current expression. Print zones are defined every 14 spaces. If
the last expression in the list is not followed by a comma or a semicolon, then an end-of-line is printed to
the file. If the last expression ends with a semicolon, no end-of-line is printed¾the next Print statement
will output information immediately following the expression. If the last expression in the list ends with a
comma, the file pointer is positioned at the start of the next print zone on the current line.

The Write statement always outputs information ending with an end-of-line. Thus, if a Print statement
is followed by a Write statement, the file pointer is positioned on a new line. The Print statement can
only be used with files that are opened in Output or Append mode. The Tab and Spc functions
provide additional control over the file position. The Tab function moves the file position to the specified
column, whereas the Spc function outputs the specified number of spaces. In order to correctly read the
data using the Input# statement, you should write the data using the Write statement.

Example
Sub Main()
 'This example opens a file and prints some data.
 Open "test.dat" For Output As #1
 i% = 10
 s$ = "This is a test."
 Print #1,"The value of i=";i%,"the value of s=";s$
 'This example prints the value of i% in print zone 1 and s$ in
 'print zone 3.
 Print #1,i%,,s$
 'This example prints the value of i% and s$ separated by ten spaces.
 Print #1,i%;Spc(10);s$
 'This example prints the value of i in column 1 and s$ in column 30.
 Print #1,i%;Tab(30);s$
 'This example prints the value of i% and s$.
 Print #1,i%;s$,
 Print #1,67

 Close #1
 Kill "test.dat"
End Sub

See Also Open (page 428) (statement); Put (page 448) (statement); Write# (page 530) (statement).

Note The end-of-line character can be either the carriage-return/line-feed pair, or the line-feed character.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 445

If you want it to go to a file you need the # otherwise it goes to standard out and uses the first
variable (in thise case f) as the first item to output to standard out. So that print line should be

Print #F, "This is a test"

Private (statement)

Syntax Private name [(subscripts)] [As type] [,name [(subscripts)] [As type]]...

Description Declares a list of private variables and their corresponding types and sizes.

Comments Private variables are global to every Sub and Function within the currently executing script. If a type-
declaration character is used when specifying name (such as % , @ , & , $, or !), the optional [As
type] expression is not allowed. For example, the following are allowed: Private foo As Integer Private
foo% The subscripts parameter allows the declaration of arrays. This parameter uses the following
syntax: [lower To] upper [,[lower To] upper]... The lower and upper parameters are integers specifying
the lower and upper bounds of the array. If lower is not specified, then the lower bound as specified
by Option Base is used (or 1 if no Option Base statement has been encountered). Up to 60 array
dimensions are allowed.

The total size of an array (not counting space for strings) is limited to 64K. Dynamic arrays are declared
by not specifying any bounds: Private a() The type parameter specifies the type of the data item being
declared. It can be any of the following data types: String, Integer, Long, Single, Double, Currency
, Object, data object, built-in data type, or any user-defined data type. If a variable is seen that has not
been explicitly declared with either Dim , Public , or Private , then it will be implicitly declared local to
the routine in which it is used. Fixed-Length Strings Fixed-length strings are declared by adding a length
to the String type-declaration character: Private name As String * length where length is a literal number
specifying the string's length. Initial Values All declared variables are given initial values, as described in
the following table:

Data Type Description

Integer 0

Long 0

Double 0.0

Single 0.0

Currency 0.0

Object Nothing

Date December 31, 1899 00:00:00

Boolean False

Variant Empty

String "" (zero-length string)

User-defined type Each element of the structure is given a default value, as described above.

Arrays Each element of the array is given a default value, as described above.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 446

Example This example sets the value of variable x# in two separate routines to show the behavior of private
variables.

Private x#
Sub Area()
 x# = 10 'Set this copy of x# to 10 and display
 MsgBox x#
End Sub
Sub Main()
 x# = 100 'Set this copy of x# to 100 and display after calling the Area subroutine
 Area
 MsgBox x#
End Sub

See Also Dim (page 279) (statement); Redim (page 459) (statement); Public (page 446) (statement); Option
Base (page 432) (statement).

Public (statement)

Syntax Public name [(subscripts)] [As type] [,name [(subscripts)] [As type]]...

Description Declares a list of public variables and their corresponding types and sizes.

Comments Public variables are global to all Sub s and Function s in all scripts. If a type-declaration character is
used when specifying name (such as % , @ , & , $, or !), the optional [As type] expression is
not allowed. For example, the following are allowed: Public foo As Integer Public foo% The subscripts
parameter allows the declaration of arrays. This parameter uses the following syntax: [lower To] upper [,
[lower To] upper]... The lower and upper parameters are integers specifying the lower and upper bounds
of the array. If lower is not specified, then the lower bound as specified by Option Base is used (or 1 if no
Option Base statement has been encountered). Up to 60 array dimensions are allowed.

The total size of an array (not counting space for strings) is limited to 64K. Dynamic arrays are declared
by not specifying any bounds: Public a() The type parameter specifies the type of the data item being
declared. It can be any of the following data types: String, Integer, Long, Single, Double, Currency,
Object, data object, built-in data type, or any user-defined data type. If a variable is seen that has not
been explicitly declared with either Dim , Public , or Private , then it will be implicitly declared local
to the routine in which it is used. For compatibility, the keyword Global is also supported. It has the
same meaning as Public . Fixed-Length Strings Fixed-length strings are declared by adding a length to
the String type-declaration character: Public name As String * length where length is a literal number
specifying the string's length. Initial Values All declared variables are given initial values, as described in
the following table:

Parameter Description

Integer 0

Long 0

Double 0.0

Single 0.0

Currency 0.0

Date December 31, 1899 00:00:00

Object Nothing

Boolean False

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 447

Variant Empty

String "" (zero-length string)

User-defined type Each element of the structure is given a default value, as described above.

Arrays Each element of the array is given a default value, as described above.

Sharing Variables When sharing variables, you must ensure that the declarations of the shared variables
are the same in each script that uses those variables. If the public variable being shared is a user-defined
structure, then the structure definitions must be exactly the same.

Example This example uses a subroutine to calculate the area of ten circles and displays the result in a dialog box.
The variables R and Ar are declared as Public variables so that they can be used in both Main and Area.

Const crlf = Chr$(13) + Chr$(10)
Public x#,ar#
Sub Area()
 ar# = (x# ^ 2) * Pi
End Sub
Sub Main()
 msg1 = "The area of the ten circles are:" & crlf & crlf
 For x# = 1 To 10
 Area
 msg1 = msg1 & x# & ": " & Format(ar#,"fixed") & Basic.Eoln$
 Next x#
 MsgBox msg1
End Sub

See Also Dim (page 279) (statement); Redim (page 459) (statement); Option Base (page 432) (statement).

PushButton (statement)

Syntax PushButton X,Y,width,height,title$ [,.Identifier]

Description Defines a push button within a dialog box template.

Comments Choosing a push button causes the dialog box to close (unless the dialog function redefines this
behavior). This statement can only appear within a dialog box template (that is, between the Begin Dialog
and End Dialog statements). The PushButton statement accepts the following parameters:

Parameter Description

X, Y Integer coordinates specifying the position of the control (in dialog units) static to the upper
left corner of the dialog box.

width,
height

Integer coordinates specifying the dimensions of the control in dialog units.

title$ String containing the text that appears within the push button. This text may contain an
ampersand character to denote an accelerator letter, such as " &Save " for Save .

.Identifier Name by which this control can be referenced by statements in a dialog function (such as
DlgFocus and DlgEnable).

If a push button is the default button, it can be selected by pressing Enter on a nonbutton control. A
dialog box template must contain at least one OKButton , CancelButton , or PushButton statement
(otherwise, the dialog box cannot be dismissed).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 448

Example This example creates a bunch of push buttons and displays which button was pushed.

Sub Main()
 Begin Dialog ButtonTemplate 17,33,104,84,"Buttons"
 OKButton 8,4,40,14,.OK
 CancelButton 8,24,40,14,.Cancel
 PushButton 8,44,40,14,"1",.Button1
 PushButton 8,64,40,14,"2",.Button2
 PushButton 56,4,40,14,"3",.Button3
 PushButton 56,24,40,14,"4",.Button4
 PushButton 56,44,40,14,"5",.Button5
 PushButton 56,64,40,14,"6",.Button6
 End Dialog
 Dim ButtonDialog As ButtonTemplate
 WhichButton% = Dialog(ButtonDialog)
 MsgBox "You pushed button " & WhichButton%
End Sub

See Also CancelButton (page 243) (statement); CheckBox (page 240) (statement); ComboBox (page 249)
(statement); Dialog (page 278) (function); Dialog (page 279) (statement); DropListBox (page 301)
(statement); GroupBox (page 361) (statement); ListBox (page 394) (statement); OKButton (page
426) (statement); OptionButton (page 434) (statement); OptionGroup (page 435) (statement);
Picture (page 438) (statement); Text (page 502) (statement); TextBox (page 503) (statement); Begin
(page 231) Dialog (page 231) (statement), PictureButton (page 439) (statement); DlgSetPicture
(page 291) (statement).

Note Accelerators are underlined, and the accelerator combination Alt+ letter is used.

Put (statement)

Syntax Put [#] filenumber, [recordnumber], variable

Description Writes data from the specified variable to a Random or Binary file.

Comments The Put statement accepts the following parameters:

Parameter Description

filenumber Integer representing the file to be written to. This is the same value as returned by the
Open statement.

recordnumber Long specifying which record is to be written to the file. For Binary files, this number
represents the first byte to be written starting with the beginning of the file (the first byte
is 1). For Random files, this number represents the record number starting with the
beginning of the file (the first record is 1). This value ranges from 1 to 2147483647. If the
recordnumber parameter is omitted, the next record is written to the file (if no records
have been written yet, then the first record in the file is written). When recordnumber is
omitted, the commas must still appear, as in the following example: Put #1,,recvar If
recordlength is specified, it overrides any previous change in file position specified with
the Seek statement.

The variable parameter is the name of any variable of any of the following types:

Variable Type File Storage Description

Integer 2 bytes are written to the file.

Long 4 bytes are written to the file.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 449

String (variable-length In Binary files, variable-length strings are written by first determining the
specified string variable's length, then writing that many bytes to the file. In
Random files, variable-length strings are written by first writing a 2-byte
length, then writing that many characters to the file.

String (fixed-length) Fixed-length strings are written to Random and Binary files in the same
way: the number of characters equal to the string's declared length are
written.

Double 8 bytes are written to the file (IEEE format).

Single 4 bytes are written to the file (IEEE format).

Date 8 bytes are written to the file (IEEE double format).

Boolean 2 bytes are written to the file (either –1 for TRUE or 0 for FALSE).

Variant A 2-byte VarType is written to the file followed by the data as described
above. With variants of type 10 (user-defined errors), the 2-byte VarType
is followed by a 2-byte unsigned integer (the error value), which is then
followed by 2 additional bytes of information. The exception is with strings,
which are always preceded by a 2-byte string length.

User-defined types Each member of a user-defined data type is written individually. In Binary
files, variable-length strings within user-defined types are written by first
writing a 2-byte length followed by the string's content. This storage is
different than variable-length strings outside of user-defined types. When
writing user-defined types, the record length must be greater than or equal
to the combined size of each element within the data type.

Arrays Arrays cannot be written to a file using the Put statement.

Objects Object variables cannot be written to a file using the Put statement.

With Random files, a runtime error will occur if the length of the data being written exceeds the
record length (specified as the reclen parameter with the Open statement). If the length of the data
being written is less than the record length, the entire record is written along with padding (whatever
data happens to be in the I/O buffer at that time). With Binary files, the data elements are written
contiguously: they are never separated with padding.

Example This example opens a file for random write, then writes ten records into the file with the values 10-50.
Then the file is closed and reopened in random mode for read, and the records are read with the Get
statement. The result is displayed in a dialog box.

Sub Main()
 Open "test.dat" For Random Access Write As #1
 For x = 1 To 10
 r% = x * 10
 Put #1,x,r%
 Next x
 Close
 Open "test.dat" For Random Access Read As #1
 For x = 1 To 10
 Get #1,x,r%
 msg1 = "Record " & x & " is: " & r% & Basic.Eoln$
 Next x

 MsgBox msg1
 Close
 Kill "test.dat"
End Sub

See Also Open (page 428) (statement); Put (page 448) (statement); Write# (page 530) (statement); Print#
(page 443) (statement).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 450

Pv (function)

Syntax Pv (Rate,NPer,Pmt,Fv,Due)

Description Calculates the present value of an annuity based on future periodic fixed payments and a constant rate of
interest.

Comments The Pv function requires the following parameters:

Parameter Description

Rate Double representing the interest rate per period. When used with monthly payments, be
sure to normalize annual percentage rates by dividing them by 12.

NPer Double representing the total number of payments in the annuity.

Pmt Double representing the amount of each payment per period.

Fv Double representing the future value of the annuity after the last payment has been made. In
the case of a loan, the future value would be 0.

Due Integer indicating when the payments are due for each payment period. A 0 specifies
payment at the end of each period, whereas a 1 specifies payment at the start of each
period.

Rate and NPer must be expressed in the same units. If Rate is expressed in months, then NPer must also
be expressed in months. Positive numbers represent cash received, whereas negative numbers represent
cash paid out.

Example This example demonstrates the present value (the amount you'd have to pay now) for a $100,000 annuity
that pays an annual income of $5,000 over 20 years at an annual interest rate of 10%.

Sub Main()
 pval = Pv(.1,20,-5000,100000,1)
 MsgBox "The present value is: " & Format(pval,"Currency")
End Sub

See Also Fv (page 353) (function); IRR (page 378) (function); MIRR (page 404) (function); Npv (page 420)
(function).

Q

QueEmpty (statement)

Syntax QueEmpty

Description Empties the current event queue.

Comments After this statement, QueFlush will do nothing.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 451

Example

 'This code begins a new queue,
 then drags a selection over a
 'range of characters in Notepad.
 Sub Main()
 AppActivate "Notepad"
 QueEmpty 'Make sure the queue
 is empty.
 QueMouseDn
 ebLeftButton,1440,1393
 QueMouseUp
 ebLeftButton,4147,2363
 QueFlush True
 End Sub

R

R

Random (function)

Randomize (statement)

Rate (function)

RCPDownload (statement)

RCPDownloadEx (function

RCPGroupExport (statement)

RCPGroupExportEx (function)

RCPGroupImport (statement)

RCPGroupImportEx (function)

RCPUpload (statement)

RCPUploadEx (function)

ReadIn$ (function)

ReadInSection (statement)

Redim (statement)

Rem (statement)

Reset (statement)

Resume (statement)

Return (statement)

Right, Right$, RightB, RightB$ (functions)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 452

RmDir (statement)

Rnd (function)

RSet (statement)

RTrim, RTrim$ (function)

Random (function)

Syntax Random (min,max)

Description Returns a Long value greater than or equal to min and less than or equal to max.

Comments Both the min and max parameters are rounded to Long . A runtime error is generated if min is greater
than max.

Example This example sets the randomize seed then generates six random numbers between 1 and 54 for the
lottery.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 Dim a%(5)
 Randomize
 For x = 0 To 5
 temp = Random(1,54)
 'Elimininate duplicate numbers.
 For y = 0 To 5
 If a(y) = temp Then found = true
 Next
 If found = false Then a(x) = temp Else x = x - 1
 found = false
 Next
 ArraySort a
 msg1 = ""
 For x = 0 To 5
 msg1 = msg1 & a(x) & crlf
 Next x
 MsgBox "Today's winning lottery numbers are: " & crlf & crlf & msg1
End Sub

See Also Randomize (page 452) (statement); Rnd (page 463) (function).

Randomize (statement)

Syntax Randomize [seed]

Description Initializes the random number generator with a new seed.

Comments If seed is not specified, then the current value of the system clock is used.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 453

Example This example sets the randomize seed then generates six random numbers between 1 and 54 for the
lottery.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 Dim a%(5)
 Randomize 'This sets the random seed.
 'Omitting this line will cause the random numbers to be
 'identical each time the sample is run.
 For x = 0 To 5
 temp = Rnd(1) * 54 + 1
 'Elimininate duplicate numbers.
 For y = 0 To 5
 If a(y) = temp Then found = true
 Next
 If found = false Then a(x) = temp Else x = x - 1
 found = false
 Next
 ArraySort a
 msg1 = ""
 For x = 0 To 5
 msg1 = msg1 & a(x) & crlf
 Next x
 MsgBox "Today's winning lottery numbers are: " & crlf & crlf & msg1
End Sub

See Also Random (page 452) (function); Rnd (page 463) (function).

Rate (function)

Syntax Rate (NPer,Pmt,Pv,Fv,Due,Guess)

Description Returns the rate of interest for each period of an annuity.

Comments An annuity is a series of fixed payments made to an insurance company or other investment company
over a period of time. Examples of annuities are mortgages and monthly savings plans. The Rate
function requires the following parameters:

Parameter Description

NPer Double representing the total number of payments in the annuity.

Pmt Double representing the amount of each payment per period.

Pv Double representing the present value of your annuity. In a loan situation, the present value
would be the amount of the loan.

Fv Double representing the future value of the annuity after the last payment has been made. In
the case of a loan, the future value would be zero.

Due Integer specifying when the payments are due for each payment period. A 0 indicates
payment at the end of each period, whereas a 1 indicates payment at the start of each
period.

Guess Double specifying a guess as to the value the Rate function will return. The most common
guess is .1 (10 percent).

Positive numbers represent cash received, whereas negative values represent cash paid out. The value
of Rate is found by iteration. It starts with the value of Guess and cycles through the calculation adjusting
Guess until the result is accurate within 0.00001 percent. After 20 tries, if a result cannot be found, Rate
fails, and the user must pick a better guess.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 454

Example This example calculates the rate of interest necessary to save $8,000 by paying $200 each year for 48
years. The guess rate is 10%.

Sub Main()
 r# = Rate(48,-200,8000,0,1,.1)
 MsgBox "The rate required is: " & Format(r#,"Percent")
End Sub

See Also IPmt (page 377) (function); NPer (page 420) (function); Pmt (page 440) (function); PPmt (page
441) (function).

RCPDownload (statement)

Syntax RCPDownload filename$[,[recipename$][,[mapname$][, [pointorval$][,ispoint]]]]

Description Downloads the specified Recipe from the specified Recipe Group using the specified Map.

Comments The RCPDownload function takes the following parameters:

Parameter Description

filename$ Required string containing the name of the Recipe Group file where the Recipe is located.
The Recipe Group file must exist

recipename
$

Optional string containing the name of the Recipe to be Downloaded.

mapname$ Optional string containing the name of the Map to be used when Downloading the Recipe.

pointorval$ Optional string containing the Batch Point or Batch ID to be used when Downloading the
Recipe.

ispoint Optional integer, set to 1 if pointorval$ is a Batch Point.

Example
RCPDownload "D:\Bread.rgp", "White", "Line1", "Batch of White Bread", 0

RCPDownloadEx (function)

Syntax RCPDownloadEx (filename$[,[recipename$][,[mapname$][, [pointorval$][,ispoint]]]])

Description Downloads the specified Recipe from the specified Recipe Group using the specified Map.

Comments The RCPDownloadEx function takes the following parameters:

Parameter Description

filename$ Required string containing the name of the Recipe Group file where the
Recipe is located. The Recipe Group file must exist

recipename$ Optional string containing the name of the Recipe to be Downloaded.

mapname$ Optional string containing the name of the Map to be used when
Downloading the Recipe.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 455

pointorval$ Optional string containing the Batch Point or Batch ID to be used when
Downloading the Recipe.

ispoint Optional integer, set to 1 if pointorval$ is a Batch Point.

The value returned is one of the following constants.

RCP_SUCCESS Function was successful.

RCP_PT_UNAVAIL Point in recipe was disabled or does not exist.

RCP_NO_PERMISSION Current user has no setpoint permissions for points in recipe.

RCP_VAL_OUTSIDE_RANGE Value to be written to point in recipe is outside setpoint range.

RCP_FILER_ERR Path or file not found

RCP_OLE_ERR OLE error in execution.

RCP_UNKNOWN Error not covered in one of the above.

Example
RCPDownload ("D:\Bread.rgp", "White", "Line1", "Batch of White Bread", 0)

RCPGroupExport (statement)

Syntax RCPGroupExport groupname$[, filename$]

Description Exports the specified Recipe Group to a CSV file.

Comments The RCPGroupExport function takes the following parameters:

Parameter Description

groupname
$

Required string containing the name of the Recipe Group file. The Recipe Group file must
exist.

filename$ Optional string containing the name of the CSV file.

Example
RCPGroupExport "D:\Bread.rgp"

RCPGroupExportEx (function)

Syntax RCPGroupExportEx (groupname$[, filename$])

Description Exports the specified Recipe Group to a CSV file.

Comments The RCPGroupExportEx function takes the following parameters:

Parameter Description

groupname$ Required string containing the name of the Recipe Group file. The
Recipe Group file must exist.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 456

filename$ Optional string containing the name of the CSV file.

The value returned is one of these constants.

RCP_SUCCESS Function was successful.

RCP_PT_UNAVAIL Point in recipe was disabled or does not exist.

RCP_NO_PERMISSION Current user has no setpoint permissions for points in recipe.

RCP_VAL_OUTSIDE_RANGE Value to be written to point in recipe is outside setpoint range.

RCP_FILER_ERR Path or file not found.

RCP_OLE_ERR OLE error in execution.

RCP_UNKNOWN Error not covered in one of the above.

Example
RCPGroupExport ("D:\Bread.rgp")

RCPGroupImport (statement)

Syntax RCPGroupImport groupname$[, filename$]

Description Imports the specified Recipe Group from a CSV file.

Comments The RCPGroupImport function takes the following parameters:

Parameter Description

groupname$ Required string containing the name of the Recipe Group file.

filename$ Optional string containing the name of the CSV file.

Example
RCPGroupExport "D:\Bread.rgp", "Bread2.csv"

RCPGroupImportEx (function)

Syntax RCPGroupImportEx (groupname$[, filename$])

Description Imports the specified Recipe Group from a CSV file.

Comments The RCPGroupImportEx function takes the following parameters:

Parameter Description

groupname$ Required string containing the name of the Recipe Group file.

filename$ Optional string containing the name of the CSV file.

The value returned is one of these constants.

RCP_SUCCESS Function was successful.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 457

RCP_PT_UNAVAIL Point in recipe was disabled or does not exist.

RCP_NO_PERMISSION Current user has no setpoint permissions for points in recipe.

RCP_VAL_OUTSIDE_RANGE Value to be written to point in recipe is outside setpoint range.

RCP_FILER_ERR Path or file not found.

RCP_OLE_ERR OLE error in execution.

RCP_UNKNOWN Error not covered in one of the above.

Example
RCPGroupExport ("D:\Bread.rgp", "Bread2.csv")

RCPUpload (statement)

Syntax RCPUpload filename$[,[recipename$][,[mapname$] [,newname$]]]

Description Uploads the specified Recipe to the specified Recipe Group using the specified Map.

Comments The RCPUpload function takes the following parameters:

Parameter Description

filename$ Required string containing the name of the Recipe Group file where the Recipe is located.
The Recipe Group file must exist.

recipename
$

Optional string containing the name of the Recipe to be Uploaded.

mapname$ Optional string containing the name of the Map to be used when Uploading the Recipe.

newname$ Optional string containing the name of the Recipe to be uploaded. You may use a new or
existing Recipe name.

Example
RCPUpload "D:\Bread.rgp", "White", "Line1", "NewWhite"

RCPUploadEx (function)

Syntax RCPUploadEx (filename$[,[recipename$][,[mapname$] [,newname$]]])

Description Uploads the specified Recipe to the specified Recipe Group using the specified Map.

Comments The RCPUploadEx function takes the following parameters:

Parameter Description

filename$ Required string containing the name of the Recipe Group file where the
Recipe is located. The Recipe Group file must exist.

recipename$ Optional string containing the name of the Recipe to be Uploaded.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 458

mapname$ Optional string containing the name of the Map to be used when
Uploading the Recipe.

newname$ Optional string containing the name of the Recipe to be uploaded. You
may use a new or existing Recipe name.

The value returned is one of the following constants.

RCP_SUCCESS Function was successful.

RCP_PT_UNAVAIL Point in recipe was disabled or does not exist.

RCP_NO_PERMISSION Current user has no setpoint permissions for points in recipe.

RCP_VAL_OUTSIDE_RANGE Value to be written to point in recipe is outside setpoint range.

RCP_FILER_ERR Path or file not found

RCP_OLE_ERR OLE error in execution.

RCP_UNKNOWN Error not covered in one of the above.

Example
RCPUpload ("D:\Bread.rgp", "White", "Line1", "NewWhite")

ReadIni$ (function)

Syntax ReadIni$ (section$,item$[,filename$])

Description Returns a String containing the specified item from an ini file.

Comments The ReadIni$ function takes the following parameters:

Parameter Description

Section$ String specifying the section that contains the desired variable, such as "windows". Section
names are specified without the enclosing brackets.

Item$ String specifying the item whose value is to be retrieved.

Filename$ String containing the name of the ini file to read.

See Also WriteIni (page 531) (statement); ReadIniSection (page 458) (statement)

Notes If the name of the ini file is not specified, then win.ini is assumed. If the filename$ parameter does not
include a path, then this statement looks for ini files in the Windows directory.

ReadIniSection (statement)

Syntax ReadIniSection section$,ArrayOfItems()[,filename$]

Description Fills an array with the item names from a given section of the specified ini file.

Comments The ReadIniSection statement takes the following parameters:

Parameter Description

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 459

Section$ String specifying the section that contains the desired variables, such as "windows".
Section names are specified without the enclosing brackets.

ArrayOfItems() Specifies either a zero- or a one-dimensioned array of strings or variants. The array can
be either dynamic or fixed. If ArrayOfItems() is dynamic, then it will be redimensioned to
exactly hold the new number of elements. If there are no elements, then the array will be
redimensioned to contain no dimensions. You can use the LBound, UBound, and ArrayDims
functions to determine the number and size of the new array's dimensions. If the array
is fixed, each array element is first erased, then the new elements are placed into the
array. If there are fewer elements than will fit in the array, then the remaining elements
are initialized to zero-length strings (for String arrays) or Empty (for Variant arrays).
A runtime error results if the array is too small to hold the new elements.

Filename$ String containing the name of an ini file.

On return, the ArrayOfItems() parameter will contain one array element for each variable in the specified
ini section.

Example
Sub Main()
 Dim items() As String
 ReadIniSection "Windows",items$
 r% = SelectBox("INI Items",,items$)
End Sub

See Also ReadIni$ (page 458) (function); WriteIni (page 531) (statement)

Note If the name of the ini file is not specified, then win.ini is assumed. If the filename$ parameter does not
include a path, then this statement looks for .ini files in the Windows directory.

Redim (statement)

Syntax Redim [Preserve] variablename (subscriptRange) [As type],...

Description Redimensions an array, specifying a new upper and lower bound for each dimension of the array.

Comments The variablename parameter specifies the name of an existing array (previously declared using the Dim
statement) or the name of a new array variable. If the array variable already exists, then it must previously
have been declared with the Dim statement with no dimensions, as shown in the following example:

 Dim a$() 'Dynamic array of strings (no dimensions yet)

Dynamic arrays can be redimensioned any number of times. The subscriptRange parameter specifies the
new upper and lower bounds for each dimension of the array using the following syntax:

 [lower To] upper [,[lower To] upper]...

If lower is not specified, then 0 is used (or the value set using the Option Base statement). A runtime
error is generated if lower is less than upper. Array dimensions must be within the following range:

 –32768 <= lower <= upper <= 32767

The type parameter can be used to specify the array element type. Arrays can be declared using any
fundamental data type, user-defined data types, and objects. Re-dimensioning an array erases all
elements of that array unless the Preserve keyword is specified. When this keyword is specified,
existing data in the array is preserved where possible. If the number of elements in an array dimension is
increased, the new elements are initialized to 0 (or empty string). If the number of elements in an array
dimension is decreased, then the extra elements will be deleted. If the Preserve keyword is specified,
then the number of dimensions of the array being re-dimensioned must either be zero or the same as the
new number of dimensions.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 460

Example This example uses the FileList statement to re-dim an array and fill it with filename strings. A new array
is then re-dimmed to hold the number of elements found by FileList, and the FileList array is copied into it
and partially displayed.

Sub Main()
 Dim fl$()
 FileList fl$,"*.*"
 count = Ubound(fl$)
 Redim nl$(Lbound(fl$) To Ubound(fl$))
 For x = 1 to count
 nl$(x) = fl(x)
 Next x
 MsgBox "The last element of the new array is: " & nl$(count)
End Sub

See Also Dim (page 279) (statement); Public (page 446) (statement); Private (page 445) (statement);
ArrayDims (page 217) (function); LBound (page 387) (function); UBound (page 510) (function).

Rem (statement)

Syntax Rem text

Description Causes the compiler to skip all characters on that line.

Example
Sub Main()
 em This is a line of comments that serves to illustrate the
 Rem workings of the code. You can insert comments to make it more
 Rem readable and maintainable in the future.
End Sub

See Also ' (page 192) (keyword); Comments (page 260) (topic).

Reset (statement)

Syntax Reset

Description Closes all open files, writing out all I/O buffers.

Example This example opens a file for output, closes it with the Reset statement, then deletes it with the Kill
statement.

Sub Main()
 Open "test.dat" for Output Access Write as # 1
 Reset
 Kill "test.dat"

 If FileExists("test.dat") Then
 MsgBox "The file was not deleted."
 Else
 MsgBox "The file was deleted."
 End If
End Sub

See Also Close (page 248) (statement); Open (page 428) (statement).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 461

Resume (statement)

Syntax Resume {[0] | Next | label}

Description Ends an error handler and continues execution.

Comments The form Resume 0 (or simply Resume by itself) causes execution to continue with the statement that
caused the error. The form Resume Next causes execution to continue with the statement following the
statement that caused the error.

The form Resume label causes execution to continue at the specified label. The Resume statement
resets the error state. This means that, after executing this statement, new errors can be generated and
trapped as normal.

Example This example accepts two integers from the user and attempts to multiply the numbers together. If either
number is larger than an integer, the program processes an error routine and then continues program
execution at a specific section using 'Resume <label>'. Another error trap is then set using 'Resume Next'.
The new error trap will clear any previous error branching and also 'tell' the program to continue execution
of the program even if an error is encountered.

Sub Main()
 Dim a%,b%,x%
Again:
 On Error Goto Overflow
 a% = InputBox("Enter 1st integer to multiply","Enter Number")
 b% = InputBox("Enter 2nd integer to multiply","Enter Number")

 On Error Resume Next 'Continue program execution at next line
 x% = a% * b% 'if an error (integer overflow) occurs.
 If err = 0 Then
 MsgBox a% & " * " & b% & " = " & x%
 Else
 Msgbox a% & " * " & b% & " cause an integer overflow!"
 End If
 Exit Sub
Overflow: 'Error handler.
 MsgBox "You've entered a non-integer value, try again!"
 Resume Again
End Sub

See Also Error Handling (page 327) (topic); On Error (page 427) (statement).

Return (statement)

Syntax Return

Description Transfers execution control to the statement following the most recent GoSub .

Comments A runtime error results if a Return statement is encountered without a corresponding GoSub
statement.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 462

Example This example calls a subroutine and then returns execution to the Main routine by the Return statement.

Sub Main()
 GoSub SubTrue
 MsgBox "The Main routine continues here."
 Exit Sub
SubTrue:
 MsgBox "This message is generated in the subroutine."
 Return
 Exit Sub
End Sub

See Also GoSub (page 360) (statement).

Right, Right$, RightB, RightB$ (functions)

Syntax Right[$](string, length) RightB[$](string, length)

Description Functions return the rightmost length for the following.

Function Returns rightmost length for;

Right and RightB Characters

RightB and RightB$ Bytes

Comments Functions return the following.

Functions Return

Right and RightB String variant

Right$ and RightB$ String

These functions take the following named parameters:

Parameter Description

string String from which characters are returned. A runtime error is generated if string is
NULL.

length Integer specifying the number of characters or bytes to return as follows.

Length is Returns

0 Zero-length string is returned.

Greater than or equal to the length of the
string

String is returned.

The RightB and RightB$ functions are used to return byte data from strings containing
byte data.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 463

Example

 'This example shows the Right$ function used in a routine to
 'change uppercase names to lowercase with an uppercase first
 'letter.
 Sub Main()
 lname$ = "WILLIAMS"
 x = Len(lname$)
 rest$ = Right$(lname$,x - 1)
 fl$ = Left$(lname$,1)
 lname$ = fl$ & LCase$(rest$)
 MsgBox "The converted name is: " & lname$
 End Sub

See Also Left, Left$, LeftB, LeftB$ (page 388) (functions)

RmDir (statement)

Syntax RmDir dir$

Comments Removes the directory specified by the String contained in dir$.

Example This routine creates a directory and then deletes it with RmDir.

Sub Main()
 On Error Goto ErrMake
 MkDir("test01")
 On Error Goto ErrRemove
 RmDir("test01")
ErrMake:
 MsgBox "The directory could not be created."
 Exit Sub

ErrRemove:
 MsgBox "The directory could not be removed."
 Exit Sub
End Sub

See Also ChDir (page 239) (statement); ChDrive (page 239) (statement); CurDir, CurDir$ (page 259)
(functions); Dir, Dir$ (page 280) (functions); MkDir (page 405) (statement).

Rnd (function)

Syntax Rnd [(number)]

Description Returns a random Single number between 0 and 1.

Comments If number is omitted, the next random number is returned. Otherwise, the number parameter has the
following meaning:

If Then

Number < 0 Always returns the same number.

Number = 0 Returns the last number generated.

Number > 0 Returns the next random number.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 464

Example This example sets the randomize seed then generates six random numbers between 1 and 54 for the
lottery.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 Dim a%(5)
 Randomize
 For x = 0 To 5
 temp = Rnd(1) * 54 + 1
 Elimininate duplicate numbers.
 or y = 0 To 5
 If a(y) = temp Then found = true
 Next
 If found = false Then a(x) = temp Else x = x - 1
 found = false
 Next
 ArraySort a
 msg1 = ""
 For x = 0 To 5
 msg1 = msg1 & a(x) & crlf
 Next x
 MsgBox "Today's winning lottery numbers are: " & crlf & crlf & msg1
End Sub

See Also Randomize (page 452) (statement); Random (page 452) (function)

RSet (statement)

Syntax RSet destvariable = source

Description Copies the source string source into the destination string destvariable.

Comments If source is shorter in length than destvariable, then the string is right-aligned within destvariable and the
remaining characters are padded with spaces. If source is longer in length than destvariable, then source
is truncated, copying only the leftmost number of characters that will fit in destvariable. A runtime error
is generated if source is Null . The destvariable parameter specifies a String or Variant variable.
If destvariable is a Variant containing Empty , then no characters are copied. If destvariable is not
convertible to a String , then a runtime error occurs. A runtime error results if destvariable is Null .

Example This example replaces a 40-character string of asterisks (*) with an RSet and LSet string and then
displays the result.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 Dim msg1,tmpstr$
 tmpstr$ = String(40,"*")
 msg1 = "Here are two strings that have been right-" + crlf
 msg1 = msg1 & "and left-justified in a 40-character string."
 msg1 = msg1 & crlf & crlf
 RSet tmpstr$ = "Right|"
 msg1 = msg1 & tmpstr$ & crlf
 LSet tmpstr$ = "|Left"
 msg1 = msg1 & tmpstr$ & crlf
 MsgBox msg1
End Sub

See Also LSet (page 399) (statement).

RTrim, RTrim$ (functions)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 465

Syntax RTrim[$] (text)

Description Returns a string with the trailing spaces removed.

Comments RTrim$ returns a String , whereas RTrim returns a String variant. Null is returned if text
is Null .

Example This example displays a left-justified string and its RTrim result.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 txt$ = " This is text "
 tr$ = RTrim(txt$)
 MsgBox "Original ->" & txt$ & "<-" & crlf & "Right Trimmed ->" & tr$ & "<-"
End Sub

See Also LTrim, LTrim$ (page 399) (functions); Trim, Trim$ (page 506) (functions).

S

S

SaveFilename$ (function)

SaveSetting (statement)

Screen.DlgBaseUnitsX (property)

Screen.DlgBaseUnitsY (property)

Screen.Height (property)

Screen.TwipsPerPixelX (property)

Screen.TwipsPerPixelY (property)

Screen.Width (property)

Second (function)

Seek (function)

Seek (statement)

Select...Case (statement)

SelectBox (function)

SendKeys (statement)

Set (statement)

SetAttr (statement)

Sgn (function)

Shell (function)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 466

Sin (function)

Single (data type)

Sleep (statement)

Sln (function)

Space, Space$ (function)

Spc (function)

SQLBind (function)

SQLClose (function)

SQLError (function)

SQLExecQuery (function)

SQLGetSchema (function)

SQLOpen (function)

SQLQueryTimeout (statement)

SQLRequest (function)

SQLRetrieve (function)

SQLRetrieveToFile (function)

Sqr (function)

Stop (statement)

Str, Str$ (functions)

StrComp (function)

StrConv (function)

String (data type)

String, String$ (functions)

Sub...End Sub (statement)

Switch (function)

SYD (function)

System.Exit (method)

System.FreeMemory (property)

System.FreeResources (property)

System.MouseTrails (method)

System.Restart (method)

System.TotalMemory (property)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 467

System.WindowsDirectory$ (property)

System.WindowsVersion$ (property)

SaveFilename$ (function)

Syntax SaveFilename$ [([title$ [,extensions$]])]

Description Displays a dialog box that prompts the user to select from a list of files and returns a String containing the
full path of the selected file.

Comments The SaveFilename$ function accepts the following parameters:

Parameter Description

title$ String containing the title that appears on the dialog box's caption. If this string is omitted,
then "Save As" is used.

extensions
$

String containing the available file types. Its format depends on the platform on which the
Basic Control Engine is running. If this string is omitted, then all files are used.

The SaveFilename$ function returns a full pathname of the file that the user selects. A zero-length string
is returned if the user selects Cancel. If the file already exists, then the user is prompted to overwrite it.

e$ = "All Files:*.BMP,*.WMF;Bitmaps:*.BMP;Metafiles:*.WMF"
f$ = SaveFilename$("Save Picture",e$)

Example This example creates a save dialog box, giving the user the ability to save to several different file types.

Sub Main()
 e$ = "All Files:*.BMP,*.WMF;Bitmaps:*.BMP;Metafiles:*.WMF"
 f$ = SaveFilename$("Save Picture",e$)
 If Not f$ = "" Then
 Msgbox "User choose to save file as: " + f$
 Else
 Msgbox "User canceled."
 End IF
End Sub

See Also MsgBox (page 411) (statement); AskBox (page 409) (function); AskPassword$ (page 222)
(function); InputBox, InputBox$ (page 374) (functions); OpenFilename$ (page 429) (function);
SelectBox (page 473) (function); AnswerBox (page 205) (function).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 468

Note The extensions$ parameter must be in the following format:

 description:ext[,ext][;description:ext[,ext]]...

Placeholder Description

description Specifies the grouping of files for the user, such as All Files .

ext Specifies a valid file extension, such as *.BAT or *.?F? .

For example, the following are valid extensions$ specifications:

 "All Files:*"
 "Documents:*.TXT,*.DOC"
 "All Files:*;Documents:*.TXT,*.DOC"

SaveSetting (statement)

Syntax SaveSetting appname, section, key, setting

Description Saves the value of the specified key in the system registry. The following table describes the named
parameters to the SaveSetting statement:

Parameter Description

appname String expression indicating the name of the application whose setting will be modified.

section String expression indicating the name of the section whose setting will be modified.

key String expression indicating the name of the setting to be modified.

setting The value assigned to key.

Example

 'The following example adds two entries to the Windows registry
 'if run under Win32 or to NEWAPP.INI on other platforms,
 'using the SaveSetting statement. It then uses DeleteSetting
 'to remove these entries.
 Sub Main()
 SaveSetting appname := "NewApp", section := "Startup", _
 key := "Height", setting := 200
 SaveSetting appname := "NewApp", section := "Startup", _
 key := "Width", setting := 320
 DeleteSetting "NewApp" 'Remove NewApp key from registry
 End Sub

See Also GetAllSettings (page 356) (function), DeleteSetting (page 277) (statement), GetSetting (page 359)
(function)

Note Under Win32, this statement operates on the system registry. All settings are saved to the following entry
in the system registry: HKEY_CURRENT_USER\Software\BasicScript Program Settings\appname\section\key
On this platform, the appname parameter is not optional.

Screen.DlgBaseUnitsX (property)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 469

Syntax Screen.DlgBaseUnitsX

Description Returns an Integer used to convert horizontal pixels to and from dialog units.

Comments The number returned depends on the name and size of the font used to display dialog boxes. To convert
from pixels to dialog units in the horizontal direction: ((XPixels * 4) + (Screen.DlgBaseUnitsX - 1)) /
Screen.DlgBaseUnitsX To convert from dialog units to pixels in the horizontal direction: (XDlgUnits *
Screen.DlgBaseUnitsX) / 4

Example This example converts the screen width from pixels to dialog units.

Sub Main()
 XPixels = Screen.Width
 conv% = Screen.DlgBaseUnitsX
 XDlgUnits = (XPixels * 4) + (conv% -1) / conv%
 MsgBox "The screen width is " & XDlgUnits & " dialog units."
End Sub

See Also Screen.DlgBaseUnitsY (page 469) (property).

Screen.DlgBaseUnitsY (property)

Syntax Screen.DlgBaseUnitsY

Description Returns an Integer used to convert vertical pixels to and from dialog units.

Comments The number returned depends on the name and size of the font used to display dialog boxes. To convert
from pixels to dialog units in the vertical direction: (YPixels * 8) + (Screen.DlgBaseUnitsY - 1) /
Screen.DlgBaseUnitsY To convert from dialog units to pixels in the vertical direction: (YDlgUnits *
Screen.DlgBaseUnitsY) / 8

Example This example converts the screen width from pixels to dialog units.

Sub Main()
 YPixels = Screen.Height
 conv% = Screen.DlgBaseUnitsY
 YDlgUnits = (YPixels * 8) + (conv% -1) / conv%
 MsgBox "The screen width is " & YDlgUnits & " dialog units."
End Sub

See Also Screen.DlgBaseUnitsX (page 468) (property).

Screen.Height (property)

Syntax Screen.Height

Description Returns the height of the screen in pixels as an Integer .

Comments This property is used to retrieve the height of the screen in pixels. This value will differ depending on the
display resolution. This property is read-only.

Example This example displays the screen height in pixels.

Sub Main()
 MsgBox "The Screen height is " & Screen.Height & " pixels."
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 470

See Also Screen.Width (page 470) (property).

Screen.TwipsPerPixelX (property)

Syntax Screen.TwipsPerPixelX

Description Returns an Integer representing the number of twips per pixel in the horizontal direction of the installed
display driver.

Comments This property is read-only.

Example This example displays the number of twips across the screen horizontally.

Sub Main()
 XScreenTwips = Screen.Width * Screen.TwipsPerPixelX
 MsgBox "Total horizontal screen twips = " & XScreenTwips
End Sub

See Also Screen.TwipsPerPixelY (page 470) (property).

Screen.TwipsPerPixelY (property)

Syntax Screen.TwipsPerPixelY

Description Returns an Integer representing the number of twips per pixel in the vertical direction of the installed
display driver.

Comments This property is read-only.

Example This example displays the number of twips across the screen vertically.

Sub Main()
 YScreenTwips = Screen.Height * Screen.TwipsPerPixelY
 MsgBox "Total vertical screen twips = " & YScreenTwips
End Sub

See Also Screen.TwipsPerPixelX (page 470) (property).

Screen.Width (property)

Syntax Screen.Width

Description Returns the width of the screen in pixels as an Integer .

Comments This property is used to retrieve the width of the screen in pixels. This value will differ depending on the
display resolution. This property is read-only.

Example This example displays the screen width in pixels.

Sub Main()
 MsgBox "The screen width is " & Screen.Width & " pixels."
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 471

See Also Screen.Height (page 469) (property).

Second (function)

Syntax Second (time)

Description Returns the second of the day encoded in the specified time parameter.

Comments The value returned is an Integer between 0 and 59 inclusive. The time parameter is any expression that
converts to a Date .

Example This example fires an event every 10 seconds based on the system clock.

Sub Main()
 trigger = 10
 Do
 xs% = Second(Now)
 If (xs% Mod trigger = 0) Then
 Beep
 End 'Remove this line to trigger the loop continuously.
 Sleep 1000
 End If
 DoEvents
 Loop
End Sub

See Also Day (page 269) (function); M (page 404) inute (page 404) (function); Month (page 406) (function);
Year (page 533) (function); Hour (page 364) (function); Weekday (page 521) (function); DatePart
(page 267) (function).

Seek (function)

Syntax Seek (filenumber)

Description Returns the position of the file pointer in a file static to the beginning of the file.

Comments The filenumber parameter is a number that the Basic Control Engine uses to refer to the open file—the
number passed to the Open statement. The value returned depends on the mode in which the file was
opened:

File Mode Returns

Input Byte position for the next read.

Output Byte position for the next write.

Append Byte position for the next write.

Random Number of the next record to be written or read.

Binary Byte position for the next read or write.

The value returned is a Long between 1 and 2147483647, where the first byte (or first record) in the file
is 1.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 472

Example This example opens a file for random write, then writes ten records into the file using the PUT statement.
The file position is displayed using the Seek Function, and the file is closed.

Sub Main()
 Open "test.dat" For Random Access Write As #1
 For x = 1 To 10
 r% = x * 10
 Put #1,x,r%
 Next x
 y = Seek(1)
 MsgBox "The current file position is: " & y
 Close
End Sub

See Also Seek (page 472) (statement); Loc (page 395) (function).

Seek (statement)

Syntax Seek [#] filenumber,position

Description Sets the position of the file pointer within a given file such that the next read or write operation will occur at
the specified position.

Comments The Seek statement accepts the following parameters:

Parameter Description

filenumber Integer used by the Basic Control Engine to refer to the open file—the number passed to the
Open statement.

position Long that specifies the location within the file at which to position the file pointer. The value
must be between 1 and 2147483647, where the first byte (or record number) in the file is
1. For files opened in either Binary, Output, Input, or Append mode, position is the byte
position within the file. For Random files, position is the record number.

A file can be extended by seeking beyond the end of the file and writing data there.

Example This example opens a file for random write, then writes ten records into the file using the PUT statement.
The file is then reopened for read, and the ninth record is read using the Seek and Get functions.

Sub Main()
 Open "test.dat" For Random Access Write As #1
 For x = 1 To 10
 rec$ = "Record#: " & x
 Put #1,x,rec$
 Next x
 Close
 Open "test.dat" For Random Access Read As #1
 Seek #1,9
 Get #1,,rec$
 MsgBox "The ninth record = " & x
Close
 Kill "test.dat"
End Sub

See Also Seek (page 471) (function); Loc (page 395) (function)

Select...Case (statement)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 473

Syntax
Select Case testexpression
[Case expressionlist
 [statement_block]]
[Case expressionlist
 [statement_block]]
 .
 .
[Case Else
 [statement_block]]
End Select

Description Used to execute a block of the Basic Control Engine statements depending on the value of a given
expression.

Comments The Select Case statement has the following parts:

Part Description

testexpression Any numeric or string expression.

statement_block Any group of the Basic Control Engine statements. If the testexpression matches
any of the expressions contained in expressionlist, then this statement block will be
executed.

expressionlist A comma separated list of expressions to be compared against testexpression using
any of the following syntaxes: expression [, expression]... expression to expression
is relational_operator expression The resultant type of expression in expressionlist
must be the same as that of testexpression.

Multiple expression ranges can be used within a single Case clause. For example:

 Case 1 to 10,12,15 Is > 40

Only the statement_block associated with the first matching expression will be executed. If no matching
statement_block is found, then the statements following the Case Else will be executed. A Select...End
Select expression can also be represented with the If...Then expression. The use of the Select
statement, however, may be more readable.

Example This example uses the Select...Case statement to output the current operating system.

Sub Main()
 OpSystem% = Basic.OS
 Select Case OpSystem%
 Case 0,2
 s = "Microsoft Windows"
 Case 1
 s = "DOS"
 Case 3 to 8,12
 s = "UNIX"
 Case 10
 s = "IBM OS/2"
Case Else
 s = "Other"
 End Select
 MsgBox "This version of the Basic Control Engine is running on: " & s
End Sub

See Also Choose (page 241) (function); Switch (page 496) (function); IIf (page 369) (function); If...Then...Else
(page 368) (statement)

SelectBox (function)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 474

Syntax SelectBox(title,prompt,ArrayOfItems)

Description Displays a dialog box that allows the user to select from a list of choices and returns an Integer containing
the index of the item that was selected.

Comments The SelectBox statement accepts the following parameters:

Parameter Description

title Title of the dialog box. This can be an expression convertible to a String. A runtime error is
generated if title is Null.

prompt Text to appear immediately above the list box containing the items. This can be an
expression convertible to a String. A runtime error is generated if prompt is Null.

ArrayOfItems Single-dimensioned array. Each item from the array will occupy a single entry in the
list box. A runtime error is generated if ArrayOfItems is not a single-dimensioned array.
ArrayOfItems can specify an array of any fundamental data type (structures are not
allowed). Null and Empty values are treated as zero-length strings.

The value returned is an Integer representing the index of the item in the list box that was selected, with 0
being the first item. If the user selects Cancel, –1 is returned.

result% = SelectBox("Picker","Pick an application:",a$)

Example This example gets the current apps running, puts them in to an array and then asks the user to select one
from a list.

Sub Main()
 Dim a$()
 AppList a$
 result% = SelectBox("Picker","Pick an application:",a$)
 If Not result% = -1 then
 Msgbox "User selected: " & a$(result%)
 Else
 Msgbox "User canceled"
 End If
End Sub

See Also MsgBox (page 411) (statement); AskBox$ (page 221) (function); AskPassword$ (page 222)
(function); InputBox, InputBox$ (page 374) (functions); OpenFilename$ (page 429) (function);
SaveFilename$ (page 467) (function); AnswerBox (page 205) (function)

Note The SelectBox displays all text in its dialog box in 8-point MS Sans Serif.

SendKeys (statement)

Syntax SendKeys KeyString$ [,[isWait] [,time]]

Description Sends the specified keys to the active application, optionally waiting for the keys to be processed before
continuing.

Comments The SendKeys statement accepts the following parameters:

ParameterDescription

KeyString
$

String containing the keys to be sent. The format for KeyString$ is described below.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 475

isWait Boolean value. If TRUE, then the Basic Control Engine waits for the keys to be completely
processed before continuing. If you are using SendKeys in a CimEdit/CimView script, you must
set this flag to TRUE. If you do not, when a user tries to execute the SendKeys statement, the
CimView screen freezes and processing will not continue. If FALSE (or not specified), then the
BasicScript continues script execution before the active application receives all keys from the
SendKeys statement.

time Integer specifying the number of milliseconds devoted for the output of the entire KeyString$
parameter. It must be within the following range:

 0 <= time <= 32767

For example, if time is 5000 (5 seconds) and the KeyString$ parameter contains ten keys, then a
key will be output every 1/2 second. If unspecified (or 0), the keys will play back at full speed.

Specifying Keys To specify any key on the keyboard, simply use that key, such as "a" for lowercase a,
or "A" for uppercase a . Sequences of keys are specified by appending them together: "abc" or "dir /w".
Some keys have special meaning and are therefore specified in a special way, by enclosing them within
braces. For example, to specify the percent sign, use "{%}" . the following table shows the special keys:

Key Special
Meaning

Example

+ Shift "+{F1}" 'Shift+F1

^ Ctrl "^a" 'Ctrl+A

~ Shortcut
for
Enter

"~" 'Enter

% Alt "%F" 'Alt+F

[] No
special
meaning

"{[}" 'Open bracket

{} Used to
enclose
special
keys

"{Up}" 'Up Arrow

() Used to
specify
grouping

"^(ab)" 'Ctrl+A, Ctrl+B

Keys that are not displayed when you press them are also specified within braces, such as {Enter} or
{Up}. A list of these keys follows:

{BkSp} {BS} {Break} {CapsLock} {Clear}

{Delete} {Del} {Down} {End} {Enter}

{Escape} {Esc} {Help} {Home} {Insert}

{Left} {NumLock} {NumPad0} {NumPad1} {NumPad2}

{NumPad3} {NumPad4} {NumPad5} {NumPad6} {NumPad7}

{NumPad8} {NumPad9} {NumPad/} {NumPad*} {NumPad-}

{NumPad+} {NumPad.} {PgDn} {PgUp} {PrtSc}

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 476

{Right} {Tab} {Up} {F1 {Scroll Lock}

{F2} {F3} {F4} {F5} {F6}

{F7} {F8} {F9} {F10} {F11}

{F12} {F13} {F14} {F15} {F16}

Keys can be combined with Shift, Ctrl, and Alt using the reserved keys " + ", " ^ ", and " % " respectively:
For Key Combination Use Shift+Enter "+{Enter}" Ctrl+C "^c" Alt+F2 "%{F2}"

To specify a modifier key combined with a sequence of consecutive keys, group the key sequence within
parentheses, as in the following example: For Key Combination Use Shift+A, Shift+B "+(abc)" Ctrl+F1, Ctrl
+F2 "^({F1}{F2})"

Use " ~ " as a shortcut for embedding Enter within a key sequence: For Key Combination Use a, b, Enter, d,
e "ab~de" Enter, Enter "~~"

To embed quotation marks, use two quotation marks in a row: For Key Combination Use "Hello" ""Hello""
a"b"c "a""b""c"

Key sequences can be repeated using a repeat count within braces: For Key Combination Use Ten "a"
keys "{a 10}" Two Enter keys "{Enter 2}"

Example This example runs Notepad, writes to Notepad, and saves the new file using the SendKeys statement.

Sub Main()
 Dim id As Variant
 id = Shell ("notepad.exe") 'Run Notepad minimized
 AppActivate id 'Now activate Notepad
 AppMaximize 'Open and maximize the Notepad window
 SendKeys "Hello Notepad", 1 'Write text with time to avoid burst
 Sleep 2000
 SendKeys "%fs", 1 'Save file (Simulate Alt+F,S keys)
 Sleep 2000
 SendKeys "name.txt{ENTER}", 1 'Enter name of file to save
 AppClose
End Sub

Set (statement)

Syntax 1 Set object_var = object_expression

Syntax 2 Set object_var = New object_type

Syntax 3 Set object_var = Nothing

Description Assigns a value to an object variable.

Comments Syntax 1 The first syntax assigns the result of an expression to an object variable. This statement does
not duplicate the object being assigned but rather copies a reference of an existing object to an object
variable. The object_expression is any expression that evaluates to an object of the same type as the
object_var. With data objects, Set performs additional processing. When the Set is performed, the object
is notified that a reference to it is being made and destroyed. For example, the following statement deletes
a reference to object A , then adds a new reference to B .

 Set a = b

In this way, an object that is no longer being referenced can be destroyed.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 477

Syntax 2 In the second syntax, the object variable is being assigned to a new instance of an existing
object type. This syntax is valid only for data objects. When an object created using the New keyword
goes out of scope (that is, the Sub or Function in which the variable is declared ends), the object is
destroyed.

Syntax 3 The reserved keyword Nothing is used to make an object variable reference no object. At a
later time, the object variable can be compared to Nothing to test whether the object variable has been
instantiated:

 Set a = Nothing
 :
 If a Is Nothing Then Beep

Example This example creates two objects and sets their values.

Sub Main()
 Dim document As Object
 Dim page As Object
 Set document = GetObject("c:\resume.doc")
 Set page = Document.ActivePage
 MsgBox page.name
End Sub

See Also = (page 202) (statement); Let (page 390) (statement); CreateObject (page 245) (function);
GetObject (page 358) (function); Nothing (page 419) (constant).

SetAttr (statement)

Syntax SetAttr filename$,attribute

Description Changes the attribute filename$ to the given attribute. A runtime error results if the file cannot be found.

Comments The SetAttr statement accepts the following parameters:

Parameter Description

filename$ String containing the name of the file.

attribute Integer specifying the new attribute of the file.

The attribute parameter can contain any combination of the following values:

Constant Value Description

ebNormal 0 Turns off all attributes

ebReadOnly 1 Read-only files

ebHidden 2 Hidden files

ebSystem 4 System files

ebVolume 8 Volume label

ebArchive 32 Files that have changed since the last backup

ebNone 64 Turns off all attributes

The attributes can be combined using the + operator or the binary Or operator.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 478

Example This example creates a file and sets its attributes to Read-Only and System.

Sub Main()
 Open "test.dat" For Output As #1
 Close #1
 MsgBox "The current file attribute is: " & GetAttr("test.dat")
 SetAttr "test.dat",ebReadOnly + ebSystem
 MsgBox "The file attribute was set to: " & GetAttr("test.dat")
 SetAttr "test.dat",ebNormal
 Kill "test.dat"
End Sub

See Also GetAttr (page 357) (function); FileAttr (page 339) (function).

Sgn (function)

Syntax Sgn (number)

Description Returns an Integer indicating whether a number is less than, greater than, or equal to 0.

Comments Returns 1 if number is greater than 0. Returns 0 if number is equal to 0. Returns –1 if number is less than
0. The number parameter is a numeric expression of any type. If number is Null , then a runtime error is
generated. Empty is treated as 0.

Example This example tests the product of two numbers and displays a message based on the sign of the result.

Sub Main()
 a% = -100
 b% = 100
 c% = a% * b%
 Select Case Sgn(c%)
 Case -1
 MsgBox "The product is negative " & Sgn(c%)
 Case 0
 MsgBox "The product is 0 " & Sgn(c%)
 Case 1
 MsgBox "The product is positive " & Sgn(c%)
 End Select
End Sub

See Also Abs (page 204) (function).

Shell (function)

Syntax Shell (command$ [,WindowStyle])

Description Executes another application, returning the task ID if successful.

Comments The Shell statement accepts the following parameters:

Parameter Description

command$ String containing the name of the application and any parameters.

WindowStyle Optional Integer specifying the state of the application window after execution. It can be
any of the following values:

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 479

1 Normal window with focus.

2 Minimized with focus (default).

3 Maximized with focus.

4 Normal window without focus.

7 Minimized without focus.

An error is generated if unsuccessful running command$. The Shell command runs programs
asynchronously: the statement following the Shell statement will execute before the child application
has exited. On some platforms, the next statement will run before the child application has finished
loading. The Shell function returns a value suitable for activating the application using the AppActivate
statement. It is important that this value be placed into a Variant , as its type depends on the platform.

Example This example displays the Windows Clock, delays awhile, then closes it.

Sub Main()
 id = Shell("clock.exe",1)
 AppActivate "Clock"
 Sleep(2000)
 AppClose "Clock"
End Sub

See Also SendKeys (page 474) (statement); AppActivate (page 207) (statement)

Note This function returns a global process ID that can be used to identify the new process.

Important CIMPLICITY runs as a service. Programs started from the Event Manager run as part of the service.
Services, by default, do not interact with the desktop. Therefore, shelling of a program such as CimView,
will cause the program to run, but with no interface.

Sin (function)

Syntax Sin (angle)

Description Returns a Double value specifying the sine of angle.

Comments The angle parameter is a Double specifying an angle in
radians.

Example This example displays the sine of pi/4 radians (45 degrees).

Sub Main()
 c# = Sin(Pi / 4)
 MsgBox "The sine of 45 degrees is: " & c#
End Sub

See Also Tan (page 501) (function); Cos (page 257) (function); Atn
(page 223) (function).

Single (data type)

Syntax Single

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 480

Description A data type used to declare variables capable of holding real numbers with up to seven digits of precision.

Comments Single variables are used to hold numbers within the following ranges: Sign Range Negative
-3.402823E38 <= single <= -1.401298E-45 Positive 1.401298E-45 <= single <= 3.402823E38 The
type-declaration character for Single is ! .

Storage Internally, singles are stored as 4-byte (32-bit) IEEE values. Thus, when appearing within a
structure, singles require 4 bytes of storage. When used with binary or random files, 4 bytes of storage is
required. Each single consists of the following

• A 1-bit sign
• An 8-bit exponent
• A 24-bit mantissa

See Also Currency (page 259) (data type); Date (page 263) (data type); Double (page 300) (data type);
Integer (page 377) (data type); Long (page 398) (data type); Object (page 422) (data type); String
(page 494) (data type); Variant (page 515) (data type); Boolean (page 233) (data type); DefType
(page 276) (statement); CSng (page 258) (function).

Sleep (statement)

Syntax Sleep milliseconds

Description Causes the script to pause for a specified number of milliseconds.

Comments The milliseconds parameter is a Long in the following range:

 0 <= milliseconds <= 2,147,483,647

Example This example displays a message for 2 seconds.

Sub Main()
 MsgOpen "Waiting 2 seconds",0,False,False
 Sleep 2000
 MsgClose
End Sub

Sln (function)

Syntax Sln (Cost,Salvage,Life)

Description Returns the straight-line depreciation of an asset assuming constant benefit from the asset.

Comments The Sln of an asset is found by taking an estimate of its useful life in years, assigning values to each
year, and adding up all the numbers. The formula used to find the Sln of an asset is as follows:

 (Cost - Salvage Value) / Useful Life

The Sln function requires the following parameters:

Parameter Description

Cost Double representing the initial cost of the asset.

Salvage Double representing the estimated value of the asset at the end of its useful life.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 481

Life Double representing the length of the asset's useful life.

The unit of time used to express the useful life of the asset is the same as the unit of time used to express
the period for which the depreciation is returned.

Example This example calculates the straight-line depreciation of an asset that cost $10,000.00 and has a salvage
value of $500.00 as scrap after 10 years of service life.

Sub Main()
 dep# = Sln(10000.00,500.00,10)
 MsgBox "The annual depreciation is: " & Format(dep#,"Currency")
End Sub

See Also SYD (page 497) (function); DDB (page 269) (function).

Space, Space$ (functions)

Syntax Space[$] (NumSpaces)

Description Returns a string containing the specified number of spaces.

Comments Space$ returns a String , whereas Space returns a String variant. NumSpaces is an Integer
between 0 and 32767.

Example This example returns a string of ten spaces and displays it.

Sub Main()
 ln$ = Space(10)
 MsgBox "Hello" & ln$ & "over there."
End Sub

See Also String, String$ (page 495) (functions); Spc (page 481) (function).

Spc (function)

Syntax Spc (numspaces)

Description Prints out the specified number of spaces. This function can only be used with the Print and Print#
statements.

Comments The numspaces parameter is an Integer specifying the number of spaces to be printed. It can be any
value between 0 and 32767. If a line width has been specified (using the Width statement), then the
number of spaces is adjusted as follows:

 numspaces = numspaces Mod width

If the resultant number of spaces is greater than width - print_position , then the number of spaces is
recalculated as follows:

 numspaces = numspaces – (width – print_position)

These calculations have the effect of never allowing the spaces to overflow the line length. Furthermore,
with a large value for column and a small line width, the file pointer will never advance more than one
line.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 482

Example This example displays 20 spaces between the arrows.

Sub Main()
 Print "I am"; Spc(20); "20 spaces apart!"
 Sleep (10000) 'Wait 10 seconds.
End Sub

See Also Tab (page 501) (function); Print (page 442) (statement); Print# (page 443) (statement).

SQLBind (function)

Syntax SQLBind (ID,array,column)

Description Specifies which fields are returned when results are requested using the SQLRetrieve or
SQLRetrieveToFile function.

Comments The following table describes the parameters to the SQLBind function:

Parameter Description

ID Long parameter specifying a valid connection.

array Any array of variants. Each call to SQLBind adds a new column number (an Integer) in the
appropriate slot in the array. Thus, as you bind additional columns, the array parameter
grows, accumulating a sorted list (in ascending order) of bound columns. If array is fixed,
then it must be a one-dimensional variant array with sufficient space to hold all the bound
column numbers. A runtime error is generated if array is too small. If array is dynamic, then it
will be resized to exactly hold all the bound column numbers.

column Optional Long parameter that specifies the column to which to bind data. If this parameter is
omitted, all bindings for the connection are dropped.

• The first actual column in the table is column 1.
• (If supported by the driver) row numbers can be returned by binding column 0.

This function returns the number of bound columns on the connection. If no columns are bound, then 0 is
returned. If there are no pending queries, then calling SQLBind will cause an error (queries are initiated
using the SQLExecQuery function). If supported by the driver, row numbers can be returned by binding
column 0. The Basic Control Engine generates a runtime error that can be trapped if SQLBind fails.
Additional error information can then be retrieved using the SQLError function.

Example This example binds columns to data.

Sub Main()
 Dim columns() As Variant
 id& = SQLOpen("dsn=SAMPLE",,3)
 t& = SQLExecQuery(id&,"Select * From c:\sample.dbf")
 i% = SQLBind(id&,columns,3)
 i% = SQLBind(id&,columns,1)
 i% = SQLBind(id&,columns,2)
 i% = SQLBind(id&,columns,6)
 For x = 0 To (i% - 1)
 MsgBox columns(x)
 Next x
 id& = SQLClose(id&)
End Sub

See Also SQLRetrieve (page 489) (function); SQLRetrieveToFile (page 490) (function).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 483

SQLClose (function)

Syntax SQLClose (connectionID)

Description Closes the connection to the specified data source.

Comments The unique connection ID (connectionID) is a Long value representing a valid connection as returned
by SQLOpen . After SQLClose is called, any subsequent calls made with the connectionID will
generate runtime errors. The SQLClose function returns 0 if successful; otherwise, it returns the passed
connection ID and generates a trappable runtime error. Additional error information can then be retrieved
using the SQLError function.

The Basic Control Engine automatically closes all open SQL connections when either the script or the
application terminates. You should use the SQLClose function rather than relying on the application to
automatically close connections in order to ensure that your connections are closed at the proper time.

Example This example disconnects the data source sample.

Sub Main()
 Dim s As String
 Dim qry As Long
 id& = SQLOpen("dsn=SAMPLE",s$,3)
 qry = LExecQuery(id&,"Select * From c:\sample.dbf")
 MsgBox "There are " & qry & " records in the result set."
 id& = SQLClose(id&)
End Sub

See Also SQLOpen (page 487) (function).

SQLError (function)

Syntax SQLError (ErrArray [, ID])

Description Retrieves driver-specific error information for the most recent SQL functions that failed.

Comments This function is called after any other SQL function fails. Error information is returned in a two-dimensional
array (ErrArray). The following table describes the parameters to the SQLError function:

Parameter Description

ErrArray Two-dimensional Variant array, which can be dynamic or fixed. If the array is fixed, it must
be (x,3), where x is the number of errors you want returned. If x is too small to hold all the
errors, then the extra error information is discarded. If x is greater than the number of errors
available, all errors are returned, and the empty array elements are set to Empty. If the array
is dynamic, it will be resized to hold the exact number of errors.

ID Optional Long parameter specifying a connection ID. If this parameter is omitted, error
information is returned for the most recent SQL function call.

Each array entry in the ErrArray parameter describes one error. The three elements in each array entry
contain the following information:

Element Value

(entry ,0) The ODBC error state, indicated by a Long containing the error class and subclass.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 484

(entry ,1) The ODBC native error code, indicated by a Long.

(entry ,2) The text error message returned by the driver. This field is String type.

For example, to retrieve the ODBC text error message of the first returned error, the array is referenced
as:

 ErrArray(0,2)

The SQLError function returns the number of errors found. The Basic Control Engine generates
a runtime error if SQLError fails. (You cannot use the SQLError function to gather additional error
information in this case.)

Example This example forces a connection error and traps it for use with the SQLError function.

Sub Main()
 Dim a() As Variant
 On Error Goto Trap
 id& = SQLOpen("",,4)
 id& = SQLClose(id&)
 Exit Sub
Trap:
 rc% = SQLError(a)
 If (rc%) Then
 For x = 0 To (rc% - 1)
 MsgBox "The SQL state returned was: " & a(x,0)
 MsgBox "The native error code returned was: " & a(x,1)
 MsgBox a(x,2)
 Next x
 End If
End Sub

SQLExecQuery (function)

Syntax SQLExecQuery (ID, query$)

Description Executes an SQL statement query on a data source.

Comments This function is called after a connection to a data source is established using the SQLOpen function.
The SQLExecQuery function may be called multiple times with the same connection ID, each time
replacing all results. The following table describes the parameters to the SQLExecQuery function:

Parameter Description

ID Long identifying a valid connected data source. This parameter is returned by the
SQLOpen function.

query$ String specifying an SQL query statement. The SQL syntax of the string must strictly
follow that of the driver.

The return value of this function depends on the result returned by the SQL statement:

SQL
Statement

Value

SELECT...FROM The value returned is the number of columns returned by the SQL statement.

DELETE,INSERT,UPDATEThe value returned is the number of rows affected by the SQL statement.

The Basic Control Engine generates a runtime error if SQLExecQuery fails. Additional error information
can then be retrieved using the SQLError function.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 485

Example This example executes a query on the connected data source.

Sub Main()
 Dim s As String
 Dim qry As Long
 id& = SQLOpen("dsn=SAMPLE",s$,3)
 qry = SQLExecQuery(id&,"Select * From c:\sample.dbf")
 MsgBox "There are " & qry & " columns in the result set."
 id& = SQLClose(id&)
End Sub

See Also SQLOpen (page 487) (function); SQLClose (page 483) (function); SQLRetrieve (page 489)
(function); SQLRetrieveToFil (page 490) (function)

SQLGetSchema (function)

Syntax SQLGetSchema (ID, action, [,[array] [,qualifier$]])

Description Returns information about the data source associated with the specified connection.

Comments The following table describes the parameters to the SQLGetSchema function:

Parameter Description

ID Long parameter identifying a valid connected data source. This parameter is returned by the
SQLOpen function.

action Integer parameter specifying the results to be returned. The following table lists values for
this parameter:

Value Meaning

1 Returns a one-dimensional array of available data sources. The array is returned in
the array parameter.

2 Returns a one-dimensional array of databases (either directory names or database
names, depending on the driver) associated with the current connection. The array
is returned in the array parameter.

3 Returns a one-dimensional array of owners (user IDs) of the database associated
with the current connection. The array is returned in the array parameter.

4 Returns a one-dimensional array of table names for a specified owner and database
associated with the current connection. The array is returned in the array parameter.

5 Returns a two-dimensional array (n by 2) containing information about a specified
table. The array is configured as follows:

(0,0) Zeroth column name (0,1) ODBC SQL data type (Integer) (1,0) First
column name (1,1) ODBC SQL data type (Integer) : : (n-1,0) Nth column
name (n-1,1) ODBC SQL data type (Integer)

6 Returns a string containing the ID of the current user.

7 Returns a string containing the name (either the directory name or the database
name, depending on the driver) of the current database.

8 Returns a string containing the name of the data source on the current connection.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 486

9 Returns a string containing the name of the DBMS of the data source on the current
connection (for example, "FoxPro 2.5" or "Excel Files").

10 Returns a string containing the name of the server for the data source.

11 Returns a string containing the owner qualifier used by the data source (for
example, "owner," "Authorization ID," "Schema").

12 Returns a string containing the table qualifier used by the data source (for example,
"table," "file").

13 Returns a string containing the database qualifier used by the data source (for
example, "database," "directory").

14 Returns a string containing the procedure qualifier used by the data source (for
example, "database procedure," "stored procedure," "procedure").

array Optional Variant array parameter. This parameter is only required for action values 1,
2, 3, 4, and 5. The returned information is put into this array. If array is fixed and it is not
the correct size necessary to hold the requested information, then SQLGetSchema will
fail. If the array is larger than required, then any additional elements are erased. If array is
dynamic, then it will be redimensioned to hold the exact number of elements requested.

qualifier Optional String parameter required for actions 3, 4, or 5. The values are listed in the
following table:

Action Qualifier

3 The qualifier parameter must be the name of the database represented by ID.

4 The qualifier parameter specifies a database name and an owner name. The syntax
for this string is: DatabaseName.OwnerName

5 The qualifier parameter specifies the name of a table on the current connection.

The Basic Control Engine generates a runtime error if SQLGetSchema fails. Additional error information
can then be retrieved using the SQLError function. If you want to retrieve the available data sources
(where action = 1) before establishing a connection, you can pass 0 as the ID parameter. This is the only
action that will execute successfully without a valid connection.

This function calls the ODBC functions SQLGetInfo and SQLTables in order to retrieve the
requested information. Some database drivers do not support these calls and will therefore cause the
SQLGetSchema function to fail.

Example This example gets all available data sources.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 Dim dsn() As Variant
 numdims% = SQLGetSchema(0,1,dsn)
 If (numdims%) Then
 msg1 = "Valid ODBC data sources:" & crlf & crlf
 For x = 0 To numdims% - 1
 msg1 = msg1 & dsn(x) & crlf
 Next x
 Else
 msg1 = "There are no available data sources."
 End If
 MsgBox msg1
End Sub

See Also SQLOpen (page 487) (function)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 487

SQLOpen (function)

Syntax SQLOpen (login$ [,[completed$] [,prompt]])

Description Establishes a connection to the specified data source, returning a Long representing the unique
connection ID.

Comments This function connects to a data source using a login string (login$) and optionally sets the completed
login string (completed$) that was used by the driver. The following table describes the parameters to the
SQLOpen function:

Parameter Description

login$ String expression containing information required by the driver to connect to the requested
data source. The syntax must strictly follow the driver's SQL syntax.

completed
$

Optional String variable that will receive a completed connection string returned by the
driver. If this parameter is missing, then no connection string will be returned.

prompt Integer expression specifying any of the following values:

Value Meaning

1 The driver's login dialog box is always displayed.

2 The driver's dialog box is only displayed if the connection string does not contain
enough information to make the connection. This is the default behavior.

3 The driver's dialog box is only displayed if the connection string does not contain
enough information to make the connection. Dialog box options that were passed as
valid parameters are dimmed and unavailable.

4 The driver's login dialog box is never displayed.

The SQLOpen function will never return an invalid connection ID. The following example establishes a
connection using the driver's login dialog box:

 id& = SQLOpen("",,1)

The Basic Control Engine returns 0 and generates a trappable runtime error if SQLOpen fails. Additional
error information can then be retrieved using the SQLError function. Before you can use any SQL
statements, you must set up a data source and relate an existing database to it. This is accomplished
using the odbcadm.exe program.

Example This example connects the data source called "sample," returning the completed connection string, and
then displays it.

Sub Main()
 Dim s As String
 id& = SQLOpen("dsn=SAMPLE",s$,3)
 MsgBox "The completed connection string is: " & s$
 id& = SQLClose(id&)
End Sub

See Also SQLClose (page 483) (function)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 488

SQLQueryTimeout (statement)

Syntax SQLQueryTimeout time

Description Specifies the timeout, in seconds, for ODBC queries. If you do not set SQLQueryTimeout , the default
timeout is 60 seconds (1 minute).

Comments The SQLQueryTimeout statement accepts the following parameter:

Parameter Description

Time Integer specifying the timeout for ODBC queries in seconds.

Example The following example sets the timeout for ODBC queries to 120 seconds (2 minutes).

Sub Main()
 SQLQueryTimeout 120
End Sub

SQLRequest (function)

Syntax SQLRequest (connection$,query$,array [,[output$] [,[prompt][,isColumnNames]]])

Description Opens a connection, runs a query, and returns the results as an array.

Comments The SQLRequest function takes the following parameters:

Parameter Description

connection String specifying the connection information required to connect to the data source.

query String specifying the query to execute. The syntax of this string must strictly follow the
syntax of the ODBC driver.

array Array of variants to be filled with the results of the query. The array parameter must be
dynamic: it will be resized to hold the exact number of records and fields.

output Optional String to receive the completed connection string as returned by the driver.

prompt Optional Integer specifying the behavior of the driver's dialog box.

isColumnNames Optional Boolean specifying whether the column names are returned as the first row
of results. The default is False .

The Basic Control Engine generates a runtime error if SQLRequest fails. Additional error information
can then be retrieved using the SQLError function. The SQLRequest function performs one of the
following actions, depending on the type of query being performed:

Type of Query Action

SELECT The SQLRequest function fills array with the results of the query, returning a Long
containing the number of results placed in the array. The array is filled as follows
(assuming an x by y query):

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 489

 (record 1,field 1)
 (record 1,field 2)
 :
 (record 1,field y)
 (record 2,field 1)
 (record 2,field 2)
 :
 (record 2,field y)
 :
 :
 (record x,field 1)
 (record x,field 2)
 :
 (record x,field y)

INSERT, DELETE,
UPDATE

The SQLRequest function erases array and returns a Long containing the
number of affected rows.

Example This example opens a data source, runs a select query on it, and then displays all the data found in the
result set.

Sub Main()
 Dim a() As Variant
 l& = SQLRequest("dsn=SAMPLE;","Select * From c:\sample.dbf",a,,3,True)
 For x = 0 To Ubound(a)
 For y = 0 To l - 1
 MsgBox a(x,y)
 Next y
 Next x
End Sub

SQLRetrieve (function)

Syntax SQLRetrieve(ID,array[,[maxcolumns] [,[maxrows] [,[isColumnNames] [, isFetchFirst]]]])

Description Retrieves the results of a query.

Comments This function is called after a connection to a data source is established, a query is executed, and the
desired columns are bound. The following table describes the parameters to the SQLRetrieve function:

Parameter Description

ID Long identifying a valid connected data source with pending query results.

array Two-dimensional array of variants to receive the results. The array has x rows by y
columns. The number of columns is determined by the number of bindings on the
connection.

maxcolumns Optional Integer expression specifying the maximum number of columns to be
returned. If maxcolumns is greater than the number of columns bound, the additional
columns are set to empty. If maxcolumns is less than the number of bound results, the
rightmost result columns are discarded until the result fits.

maxrows Optional Integer specifying the maximum number of rows to be returned. If maxrows
is greater than the number of rows available, all results are returned, and additional
rows are set to empty. If maxrows is less than the number of rows available, the
array is filled, and additional results are placed in memory for subsequent calls to
SQLRetrieve.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 490

isColumnNames Optional Boolean specifying whether column names should be returned as the first
row of results. The default is FALSE.

isFetchFirst Optional Boolean expression specifying whether results are retrieved from the
beginning of the result set. The default is False .

Before you can retrieve the results from a query, you must (1) initiate a query by calling the
SQLExecQuery function and (2) specify the fields to retrieve by calling the SQLBind function. This
function returns a Long specifying the number of rows available in the array. The Basic Control Engine
generates a runtime error if SQLRetrieve fails. Additional error information is placed in memory.

Example This example executes a query on the connected data source, binds columns, and retrieves them.

Sub Main()
 Dim b() As Variant
 Dim c() As Variant
 id& = SQLOpen("DSN=SAMPLE",,3)
 qry& = SQLExecQuery(id&,"Select * From c:\sample.dbf")
 i% = SQLBind(id&,b,3)
 i% = SQLBind(id&,b,1)
 i% = SQLBind(id&,b,2)
 i% = SQLBind(id&,b,6)
 l& = SQLRetrieve(id&,c)
 For x = 0 To Ubound(c)
 For y = 0 To Ubound(b)
 MsgBox c(x,y)
 Next y
 Next x
 id& = SQLClose(id&)
End Sub

See Also SQLOpen (page 487) (function); SQLExecQuery (page 484) (function); SQLClose (page 483)
(function); SQLBind (page 482) (function); SQLRetrieveToFile (page 490) (function).

SQLRetrieveToFile (function)

Syntax SQLRetrieveToFile (ID,destination$ [,[isColumnNames] [,delimiter$]])

Description Retrieves the results of a query and writes them to the specified file.

Comments The following table describes the parameters to the SQLRetrieveToFile function:

Parameter Description

ID Long specifying a valid connection ID.

destination String specifying the file where the results are written.

isColumnNames Optional Boolean specifying whether the first row of results returned are the bound
column names. By default, the column names are not returned.

delimiter Optional String specifying the column separator. A tab (Chr$(9)) is used as the
default.

Before you can retrieve the results from a query, you must (1) initiate a query by calling the
SQLExecQuery function and (2) specify the fields to retrieve by calling the SQLBind function. This
function returns the number of rows written to the file. A runtime error is generated if there are no pending
results or if the Basic Control Engine is unable to open the specified file. The Basic Control Engine
generates a runtime error if SQLRetrieveToFile fails. Additional error information may be placed in
memory for later use with the SQLError function.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 491

Example This example opens a connection, runs a query, binds columns, and writes the results to a file.

Sub Main()
 Dim b() As Variant
 id& = SQLOpen("DSN=SAMPLE;UID=RICH",,4)
 t& = SQLExecQuery(id&,"Select * From c:\sample.dbf")
 i% = SQLBind(id&,b,3)
 i% = SQLBind(id&,b,1)
 i% = SQLBind(id&,b,2)
 i% = SQLBind(id&,b,6)
 l& = SQLRetrieveToFile(id&,"c:\results.txt",True,",")
 id& = SQLClose(id&)
End Sub

See Also SQLOpen (page 487) (function); SQLExecQuery (page 484) (function); SQLClose (page 483)
(function); SQLBind (page 482) (function); SQLRetrieve (page 489) (function).

Sqr (function)

Syntax Sqr (number)

Description Returns a Double representing the square root of number.

Comments The number parameter is a Double greater than or equal to 0.

Example This example calculates the square root of the numbers from 1 to 10 and displays them.

Const crlf = Chr$(13) + Chr$(10)

Sub Main()
 msg1 = ""
 For x = 1 To 10
 sx# = Sqr(x)
 msg1 = msg1 & "The square root of " & x & " is " &_
 Format(sx#,"Fixed") & crlf
 Next x
 MsgBox msg1
End Sub

Stop (statement)

Syntax Stop

Description Suspends execution of the current script, returning control to a debugger if one is present. If a debugger is
not present, this command will have the same effect as End .

Example The Stop statement can be used for debugging. In this example, it is used to stop execution when Z is
randomly set to 0.

Sub Main()
 For x = 1 To 10
 z = Random(0,10)
 If z = 0 Then Stop
 y = x / z
 Next x
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 492

See Also Exit For (page 334) (statement); Exit Do (page 334) (statement); Exit Function (page 335)
(statement); Exit Sub (page 335) (statement); End (page 322) (statement).

Str, Str$ (functions)

Syntax Str[$] (number)

Description Returns a string representation of the given number.

Comments The number parameter is any numeric expression or expression convertible to a number. If number
is negative, then the returned string will contain a leading minus sign. If number is positive, then the
returned string will contain a leading space. Singles are printed using only 7 significant digits. Doubles are
printed using 15–16 significant digits. These functions recognize the decimal separator and thousands
separators as specified in the Regional Settings in the Control Panel. If the regional settings are changed,
these functions will recognize it and act accordingly. The CStr , Format , and Format$ functions also
determine their separators based on the regional settings.

Example In this example, the Str$ function is used to display the value of a numeric variable.

Sub Main()
 x# = 100.22
 MsgBox "The string value is: " + Str(x#)
End Sub

See Also Format, Format$ (page 348) (functions); CStr (page 258) (function).

StrComp (function)

Syntax StrComp (string1,string2 [,compare])

Description Returns an Integer indicating the result of comparing the two string arguments.

Comments Any of the following values are returned:

0 string1 = string2

1 string1 > string2

-1 string1 < string2

NULL string1 or string2 is Null

The StrComp function accepts the following parameters:

Parameter Description

string1 First string to be compared, which can be any expression convertible to a String.

string2 Second string to be compared, which can be any expression convertible to a String.

compare Optional Integer specifying how the comparison is to be performed. It can be either of the
following values:

0 Case-sensitive comparison

1 Case-insensitive comparison

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 493

If compare is not specified, then the current Option Compare setting is used. If no Option Compare
statement has been encountered, then Binary is used (that is, string comparison is case-sensitive).

Example This example compares two strings and displays the results. It illustrates that the function compares two
strings to the length of the shorter string in determining equivalency.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 Dim abc As Integer
 Dim abi As Integer
 Dim cdc As Integer
 Dim cdi As Integer
 a$ = "This string is UPPERCASE and lowercase"
 b$ = "This string is uppercase and lowercase"
 c$ = "This string"
 d$ = "This string is uppercase and lowercase characters"
 msg1 = "a = " & a & crlf
 msg1 = msg1 & "b = " & b & crlf
 msg1 = msg1 & "c = " & c & crlf
 msg1 = msg1 & "d = " & d & crlf & crlf
 abc = StrComp(a$,b$,1)
 msg1 = msg1 & "a and c (insensitive) : " & abc & crlf
 abi = StrComp(a$,b$,0)
 msg1 = msg1 & "a and c (sensitive): " & abi & crlf
 cdc = StrComp(c$,d$,1)
 msg1 = msg1 & "c and d (insensitive): " & cdc & crlf
 cdi = StrComp(c$,d$,0)
 msg1 = msg1 & "c and d (sensitive) : " & cdi & crlf
 MsgBox msg1
End Sub

See Also Comparison Operators (page 250) (topic); Like (page 391) (operator); Option Compare (page 432)
(statement).

StrConv (function)

Syntax StrConv (string, conversion)

Description Converts a string based on a conversion parameter.

Comments The StrConv function takes the following named parameters:

Parameter Description

string String expression specifying the string to be converted.

conversion Integer specifying the types of conversions to be performed.

The conversion parameter can be any combination of the following constants:

Constant Value Description

ebUpperCase 1 Converts string to uppercase. This constant is supported on all platforms.

ebLowerCase 2 Converts string to lowercase. This constant is supported on all platforms.

ebProperCase 3 Capitalizes the first letter of each word and lower-cases all the letters. This
constant is supported on all platforms.

ebWide 4 Converts narrow characters to wide characters. This constant is supported on
Japanese locales only.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 494

ebNarrow 8 Converts wide characters to narrow characters. This constant is supported on
Japanese locales only.

ebKatakana 16 Converts Hiragana characters to Katakana characters. This constant is supported
on Japanese locales only.

ebHiragana 32 Converts Katakana characters to Hiragana characters. This constant is supported
on Japanese locales only.

ebUnicode 64 Converts string from MBCS to UNICODE. (This constant can only be used on
platforms supporting UNICODE.)

ebFromUnicode128 Converts string from UNICODE to MBCS. (This constant can only be used on
platforms supporting UNICODE.)

A runtime error is generated when a conversion is requested that is not supported on the current platform.
For example, the ebWide and ebNarrow constants can only be used on an MBCS platform. (You can
determine platform capabilities using the Basic.Capabilities method.) The following groupings of
constants are mutually exclusive and therefore cannot be specified at the same time:

ebUpperCase, ebLowerCase, ebProperCase
ebWide, ebNarrow
ebUnicode, ebFromUnicode

Many of the constants can be combined. For example, ebLowerCase Or ebNarrow. When converting to
proper case (i.e., the ebProperCase constant), the following are seen as word delimiters: tab, linefeed,
carriage-return, formfeed, vertical tab, space, null.

Example

 Sub Main()
 a = InputBox("Type any string:")
 MsgBox "Upper case: " & StrConv(a,ebUpperCase)
 MsgBox "Lower case: " & StrConv(a,ebLowerCase)
 MsgBox "Proper case: " & StrConv(a,ebProperCase)
 If Basic.Capability(10) And Basic.OS = ebWin16 Then
 'This is an MBCS locale
 MsgBox "Narrow: " & StrConv(a,ebNarrow)
 MsgBox "Wide: " & StrConv(a,ebWide)
 MsgBox "Katakana: " & StrConv(a,ebKatakana)
 MsgBox "Hiragana: " & StrConv(a,ebHiragana)
 End If
 End Sub

See Also UCase, UCase$ (page 511) (functions), LCase, LCase$ (page 387) (functions), Basic.Capability
(page 224) (method)

String (data type)

Syntax String

Description A data type capable of holding a number of characters.

Comments Strings are used to hold sequences of characters, each character having a value between 0 and 255.
Strings can be any length up to a maximum length of 32767 characters. Strings can contain embedded
nulls, as shown in the following example: s$ = "Hello" + Chr$(0) + "there" 'String with embedded null

The length of a string can be determined using the Len function. This function returns the number of
characters that have been stored in the string, including unprintable characters. The type-declaration
character for String is $.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 495

String variables that have not yet been assigned are set to zero-length by default.

Strings are normally declared as variable-length, meaning that the memory required for storage of the
string depends on the size of its content. The following script statements declare a variable-length string
and assign it a value of length 5:

 Dim s As String
 s = "Hello" 'String has length 5.

Fixed-length strings are given a length in their declaration: Dim s As String * 20 s = "Hello" 'String has
length 20 (internally pads with spaces).

When a string expression is assigned to a fixed-length string, the following rules apply:

• If the string expression is less than the length of the fixed-length string, then the fixed-length string is
padded with spaces up to its declared length.

• If the string expression is greater than the length of the fixed-length string, then the string expression
is truncated to the length of the fixed-length string.

Fixed-length strings are useful within structures when a fixed size is required, such as when passing
structures to external routines.

The storage for a fixed-length string depends on where the string is declared, as described in the following
table:

Strings
Declared

Are Stored

In
structures

In the same data area as that of the structure. Local structures are on the stack; public
structures are stored in the public data space; and private structures are stored in the private
data space. Local structures should be used sparingly as stack space is limited.

In arrays In the global string space along with all the other array elements.

Local
routines

On the stack. The stack is limited in size, so local fixed-length strings should be used
sparingly.

See Also Currency (page 259) (data type);Date (page 263) (data type); Double (page 300) (data type); Integer
(page 377) (data type); Long (page 398) (data type); Object (page 422) (data type); Single (page
479) (data type); Variant (page 515) (data type); Boolean (page 233) (data type); DefType (page
276) (statement); CStr (page 258) (function).

String, String$ (functions)

Syntax String[$] (number,[CharCode | text$])

Description Returns a string of length number consisting of a repetition of the specified filler character.

Comments String$ returns a String, whereas String returns a String variant. These functions take the following
parameters:

Parameter Description

number Integer specifying the number of repetitions.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 496

CharCode Integer specifying the character code to be used as the filler character. If CharCode is
greater than 255 (the largest character value), then the Basic Control Engine converts it to a
valid character using the following formula: CharCode Mod 256

text$ Any String expression, the first character of which is used as the filler character.

Example This example uses the String function to create a line of "=" signs the length of another string and then
displays the character string underlined with the generated string.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 a$ = "This string will appear underlined."
 b$ = String(Len(a$),"_")
 MsgBox a$ & crlf & b$
End Sub

See Also Space, Space$ (page 481) (functions).

Sub...End Sub (statement)

1. Must start with a letter.

2. May contain letters, digits, and the underscore character (_). Punctuation and type-declaration
characters are not allowed. The exclamation point (!) can appear within the name as long as it
is not the last character.

3. Must not exceed 80 characters in length.

4. The call cannot end with a comma. For instance, using the above example, the following is not
valid:
Test 1,,

5. The call must contain the minimum number of parameters as required by the called subroutine.
For instance, using the above example, the following are invalid:

Switch (function)

Syntax Switch (condition1,expression1 [,condition2,expression2 ... [,condition7,expression7]])

Description Returns the expression corresponding to the first True condition.

Comments The Switch function evaluates each condition and expression, returning the expression that corresponds
to the first condition (starting from the left) that evaluates to True . Up to seven condition/expression
pairs can be specified. A runtime error is generated it there is an odd number of parameters (that is, there
is a condition without a corresponding expression). The Switch function returns Null if no condition
evaluates to True .

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 497

Example The following code fragment displays the current operating platform. If the platform is unknown, then the
word "Unknown" is displayed.

Sub Main()
 Dim a As Variant
 a = Switch(Basic.OS = 0,"Windows XP",Basic.OS = 2,"Win32",Basic.OS = 11,"OS/2")
 MsgBox "The current platform is: " & IIf(IsNull(a),"Unknown",a)
End Sub

See Also Choose (page 241) (function); IIf (page 369) (function); If...Then...Else (page 368) (statement);
Select...Case (page 472) (statement).

SYD (function)

Syntax SYD (Cost,Salvage,Life,Period)

Description Returns the sum of years' digits depreciation of an asset over a specific period of time.

Comments The SYD of an asset is found by taking an estimate of its useful life in years, assigning values to each
year, and adding up all the numbers. The formula used to find the SYD of an asset is as follows:

 (Cost – Salvage_Value) * Remaining_Useful_Life / SYD

The SYD function requires the following parameters:

Parameter Description

Cost Double representing the initial cost of the asset.

Salvage Double representing the estimated value of the asset at the end of its useful life.

Life Double representing the length of the asset's useful life.

Period Double representing the period for which the depreciation is to be calculated. It cannot
exceed the life of the asset.

To receive accurate results, the parameters Life and Period must be expressed in the same units. If Life is
expressed in terms of months, for example, then Period must also be expressed in terms of months.

Example In this example, an asset that cost $1,000.00 is depreciated over ten years. The salvage value is $100.00,
and the sum of the years' digits depreciation is shown for each year.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 msg1 = ""
 For x = 1 To 10
 dep# = SYD(1000,100,10,x)
 msg1 = msg1 & "Year: " & x & " Dep: " & Format(dep#,"Currency") & crlf
 Next x
 MsgBox msg1
End Sub

See Also Sln (page 480) (function); DDB (page 269) (function)

System.Exit (method)

Syntax System.Exit

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 498

Description Exits the operating environment.

Example This example asks whether the user would like to restart Windows after exiting.

Sub Main
 message$="Restart Windows on exit?",ebYesNo,"Exit Windows"
 button = MsgBox message$
 If button = ebYes Then System.Restart 'Yes button selected.
 If button = ebNo Then System.Exit 'No button selected.
End Sub

See Also System.Restart (page 499) (method).

System.FreeMemory (property)

Syntax System.FreeMemory

Description Returns a Long indicating the number of bytes of free memory.

Example The following example gets the free memory and converts it to kilobytes.

Sub Main()
 FreeMem& = System.FreeMemory
 FreeKBytes$ = Format(FreeMem& / 1000,"##,###")
 MsgBox FreeKbytes$ & " Kbytes of free memory"
End Sub

See Also System.TotalMemory (page 499) (property); System.FreeResources (page 498) (property);
Basic.FreeMemory (page 226) (property).

System.FreeResources (property)

Syntax System.FreeResources

Description Returns an Integer representing the percentage of free system resources.

Comments The returned value is between 0 and 100.

Example This example gets the percentage of free resources.

Sub Main()
 FreeRes% = System.FreeResources
 MsgBox FreeRes% & "% of memory resources available."
End Sub

See Also System.TotalMemory (page 499) (property); System.FreeMemory (page 498) (property);
Basic.FreeMemory (page 226) (property).

System.MouseTrails (method)

Syntax System.MouseTrails isOn

Description Toggles mouse trails on or off.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 499

Comments If isOn is True , then mouse trails are turned on; otherwise, mouse trails are turned off. A runtime error is
generated if mouse trails is not supported on your system.

Example This example turns on mouse trails.

Sub Main
 System.MouseTrails 1
End Sub

System.Restart (method)

Syntax System.Restart

Description Restarts the operating environment.

Example This example asks whether the user would like to restart Windows after exiting.

Sub Main
 button = MsgBox ("Restart Windows on exit?",ebYesNo, _
 "Exit Windows")
 If button = ebYes Then System.Restart 'Yes button selected.
 If button = ebNo Then System.Exit 'No button selected.
End Sub

See Also System.Exit (page 497) (method).

System.TotalMemory (property)

Syntax System.TotalMemory

Description Returns a Long representing the number of bytes of available free memory in Windows.

Example This example displays the total system memory.

Sub Main()
 TotMem& = System.TotalMemory
 TotKBytes$ = Format(TotMem& / 1000,"##,###")
 MsgBox TotKbytes$ & " Kbytes of total system memory exist"
End Sub

See Also System.FreeMemory (page 498) (property); System.FreeResources (page 498) (property);
Basic.FreeMemory (page 226) (property).

System.WindowsDirectory$ (property)

Syntax System.WindowsDirectory$

Description Returns the home directory of the operating environment.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 500

Example This example displays the Windows directory.

Sub Main
 MsgBox "Windows directory = " & System.WindowsDirectory$
End Sub

See Also Basic.HomeDir$ (page 226) (property).

System.WindowsVersion$ (property)

Syntax System.WindowsVersion$

Description Returns the version of the operating environment, such as "5."

Comments

Example This example sets the UseWin31 variable to True if the Windows version is greater than or equal to 3.1;
otherwise, it sets the UseWin31 variable to False.

Sub Main()
 If Val(System.WindowsVersion$) >= 5 Then
 MsgBox "You are running a Windows version 5 or later"
 Else
 MsgBox "You are running Windows version earlier than 5"
 End If
End Sub

See Also Basic.Version$ (page 231) (property).

T

T

Tab (function)

Tan (function)

Text (statement)

TextBox (statement)

Time, Time$ (function)

Time, Time$ (statements)

Timer (function)

TimeSerial (function)

TimeValue (function)

Trim, Trim$, LTrim, LTrim$, RTrim, RTrim$ (functions)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 501

True (constant)

Type (statement)

TypeName (function)

TypeOf (function)

Tab (function)

Syntax Tab(column)

Description Prints the number of spaces necessary to reach a given column position.

Comments This function can only be used with the Print and Print# statements. The column parameter is an
Integer specifying the desired column position to which to advance. It can be any value between 0 and
32767 inclusive. Rule 1: If the current print position is less than or equal to column, then the number of
spaces is calculated as:

 column – print_position

Rule 2: If the current print position is greater than column, then column – 1 spaces are printed on the
next line. If a line width is specified (using the Width statement), then the column position is adjusted as
follows before applying the above two rules:

 column = column Mod width

The Tab function is useful for making sure that output begins at a given column position, regardless of
the length of the data already printed on that line.

Example This example prints three column headers and three numbers aligned below the column headers.

Sub Main()
 Print "Column1";Tab(10);"Column2";Tab(20);"Column3"
 Print Tab(3);"1";Tab(14);"2";Tab(24);"3"
 Sleep(10000) 'Wait 10 seconds.
End Sub

See Also Spc (page 481) (function); Print (page 442) (statement); Print# (page 443) (statement).

Tan (function)

Syntax Tan (angle)

Description Returns a Double representing the tangent of angle.

Comments The angle parameter is a Double value given in radians.

Example This example computes the tangent of pi/4 radians (45 degrees).

Sub Main()
 c# = Tan(Pi / 4)
 MsgBox "The tangent of 45 degrees is: " & c#
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 502

See Also Sin (page 479) (function); Cos (page 257) (function); Atn
(page 223) (function).

Text (statement)

Syntax Text x,y,width,height,title$ [,[.Identifier] [,[FontName$] [,[size] [,style]]]]

Description Defines a text control within a dialog box template. The text control only displays text; the user cannot set
the focus to a text control or otherwise interact with it.

Comments The text within a text control word-wraps. Text controls can be used to display up to 32K of text. The Text
statement accepts the following parameters:

Parameter Description

x, y Integer positions of the control (in dialog units) static to the upper left corner of the dialog
box.

width,
height

Integer dimensions of the control in dialog units.

title$ String containing the text that appears within the text control. This text may contain an
ampersand character to denote an accelerator letter, such as "&Save" for Save . Pressing
this accelerator letter sets the focus to the control following the Text statement in the dialog
box template.

Identifier Name by which this control can be referenced by statements in a dialog function (such as
DlgFocus and DlgEnable). If omitted, then the first two words from title$ are used.

FontName
$

Name of the font used for display of the text within the text control. If omitted, then the default
font for the dialog is used.

size Size of the font used for display of the text within the text control. If omitted, then the default
size for the default font of the dialog is used.

style Style of the font used for display of the text within the text control. This can be any of the
following values:

ebRegular Normal font (that is, neither bold nor italic)

ebBold Bold font

ebItalic Italic font

ebBoldItalic Bold-italic font

If omitted, then ebRegular is used.

Example
Sub Main()
 Begin Dialog UserDialog 81,64,128,60,"Untitled"
 CancelButton 80,32,40,14
 OKButton 80,8,40,14
 Text 4,8,68,44,"This text is displayed in the dialog box."
 End Dialog
 Dim d As UserDialog
 Dialog d
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 503

See Also CancelButton (page 243) (statement); CheckBox (page 240) (statement); ComboBox (page 249)
(statement); Dialog (page 278) (function); Dialog (page 279) (statement); DropListBox (page 301)
(statement); GroupBox (page 361) (statement); ListBox (page 394) (statement); OKButton (page
426) (statement); OptionButton (page 434) (statement); OptionGroup (page 435) (statement);
Picture (page 438) (statement); PushButton (page 447) (statement); TextBox (page 503)
(statement); Begin Dialog (page 231) (statement), PictureButton (page 439) (statement).

Note Accelerators are underlined, and the Alt+letter accelerator combination is used. 8-point MS Sans Serif is
the default font used within user dialogs.

TextBox (statement)

Syntax TextBox x,y,width,height,.Identifier [,[isMultiline] [,[FontName$] [,[size] [,style]]]]

Description Defines a single or multiline text-entry field within a dialog box template.

Comments If isMultiline is 1, the TextBox statement creates a multiline text-entry field. When the user types into
a multiline field, pressing the Enter key creates a new line rather than selecting the default button. This
statement can only appear within a dialog box template (that is, between the Begin Dialog and End
Dialog statements). The TextBox statement requires the following parameters:

Parameter Description

x, y Integer position of the control (in dialog units) static to the upper left corner of the
dialog box.

width, height Integer dimensions of the control in dialog units.

Identifier Name by which this control can be referenced by statements in a dialog function
(such as DlgFocus and DlgEnable). This parameter also creates a string
variable whose value corresponds to the content of the text box. This variable can
be accessed using the syntax:

DialogVariable
 .
 Identifier

isMultiline Specifies whether the text box can contain more than a single line (0 = single-line;
1 = multiline).

FontName$ Name of the font used for display of the text within the text box control. If omitted,
then the default font for the dialog is used.

size Size of the font used for display of the text within the text box control. If omitted,
then the default size for the default font of the dialog is used.

style Style of the font used for display of the text within the text box control. This can be
any of the following values:

ebRegular Normal font (i.e., neither bold nor italic)

ebBold Bold font

ebItalic Italic font

ebBoldItalic Bold-italic font

If omitted, then ebRegular is used.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 504

When the dialog box is created, the Identifier variable is used to set the initial content of the text box.
When the dialog box is dismissed, the variable will contain the new content of the text box. A single-line
text box can contain up to 256 characters. The length of text in a multiline text box is not limited by the
Basic Control Engine; the default memory limit specified by the given platform is used instead.

Example
Sub Main()
 Begin Dialog UserDialog 81,64,128,60,"Untitled"
 CancelButton 80,32,40,14
 OKButton 80,8,40,14
 TextBox 4,8,68,44,.TextBox1,1
 End Dialog
 Dim d As UserDialog
 d.TextBox1 = "Enter text before invoking" 'Display text in the Textbox by setting the
 default value of the TextBox before showing it.
 Dialog d
End Sub

See Also CancelButton (page 243) (statement); CheckBox (page 240) (statement); ComboBox (page 249)
(statement); Dialog (page 278) (function); Dialog (page 279) (statement); DropListBox (page 301)
(statement); GroupBox (page 361) (statement); ListBox (page 394) (statement); OKButton (page
426) (statement); OptionButton (page 434) (statement); OptionGroup (page 435) (statement);
Picture (page 438) (statement); PushButton (page 447) (statement); Text (page 502) (statement);
Begin Dialog (page 231) (statement), PictureButton (page 439) (statement).

Note 8-point MS Sans Serif is the default font used within user dialogs.

Time, Time$ (functions)

Syntax Time[$][()]

Description Returns the system time as a String or as a Date variant.

Comments The Time$ function returns a String contains the time in 24-hour time format, whereas Time returns a
Date variant. To set the time, use the Time/Time$ statements.

Example This example returns the system time and displays it in a dialog box.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 oldtime$ = Time
 msg1 = "Time was: " & oldtime$ & crlf
 Time = "10:30:54"
 msg1 = msg1 & "Time set to: " & Time & crlf
 Time = oldtime$
 msg1 = msg1 & "Time restored to: " & Time
 MsgBox msg1
End Sub

See Also Time, Time$ (page 504) (statements); Date, Date$ (page 263) (functions); Date, Date$ (page 264)
(statements); Now (page 419) (function).

Time, Time$ (statements)

Syntax Time[$] = newtime

Description Sets the system time to the time contained in the specified string.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 505

Comments The Time$ statement requires a string variable in one of the following formats: HH HH:MM
 HH:MM:SS where HH is between 0 and 23, MM is between 0 and 59, and SS is between 0 and 59. The
Time statement converts any valid expression to a time, including string and numeric values. Unlike the
Time$ statement, Time recognizes many different time formats, including 12-hour times.

Example This example returns the system time and displays it in a dialog box.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 oldtime$ = Time
 msg1 = "Time was: " & oldtime$ & crlf
 Time = "10:30:54"
 msg1 = msg1 & "Time set to: " & Time & crlf
 Time = oldtime$
 msg1 = msg1 & "Time restored to: " & Time
 MsgBox msg1
End Sub

See Also Time, Time$ (page 504) (statements); Date, Date$ (page 263) (functions); Date, Date$ (page 264)
(statements); Now (page 419) (function).

Note: If you do not have permission to change the time, a runtime error 70 will be generated.

Timer (function)

Syntax Timer

Description Returns a Single representing the number of seconds that have elapsed since midnight.

Example This example displays the elapsed time between execution start and the time you clicked the OK button
on the first message.

Sub Main()
 start& = Timer
 MsgBox "Click the OK button, please."
 total& = Timer - start&
 MsgBox "The elapsed time was: " & total& & " seconds."
End Sub

See Also Time, Time$ (page 504) (functions); Now (page 419) (function).

TimeSerial (function)

Syntax TimeSerial(hour,minute,second)

Description Returns a Date variant representing the given time with a date of
zero.

Comments The TimeSerial function requires the following parameters:

Parameter Description

hur Integer between 0 and 23.

minute Integer between 0 and 59.

second Integer between 0 and 59.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 506

Example
Sub Main()
 start# = TimeSerial(10,22,30)
 finish# = TimeSerial(10,35,27)
 dif# = Abs(start# - finish#)
 MsgBox "The time difference is: " & Format(dif#,"hh:mm:ss")
End Sub

See Also DateValue (page 268) (function); TimeValue (page 506) (function);
DateSerial (page 268) (function).

TimeValue (function)

Syntax TimeValue (time_string$)

Description Returns a Date variant representing the time contained in the specified string argument.

Comments This function interprets the passed time_string$ parameter looking for a valid time specification. The
time_string$ parameter can contain valid time items separated by time separators such as colon (:) or
period (.).

Time strings can contain an optional date specification, but this is not used in the formation of the returned
value. If a particular time item is missing, then it is set to 0. For example, the string "10 pm" would be
interpreted as "22:00:00."

Example This example calculates the TimeValue of the current time and displays it in a dialog box.

Sub Main()
 t1$ = "10:15"
 t2# = TimeValue(t1$)
 MsgBox "The TimeValue of " & t1$ & " is: " & t2#
End Sub

See Also DateValue (page 268) (function); TimeSerial (page 505) (function); DateSerial (page 268) (function).

Trim, Trim$, LTrim, LTrim$, RTrim, RTrim$ (functions)

Syntax Trim[$](string) LTrim[$](string) RTrim[$](string)

Description Functions return the following.

Function Returns

Trim Copy of the passed string expression (string) with both the leading and trailing
spaces removed.

LTrim String with the leading spaces removed,

RTrim String with the trailing spaces removed.

Trim$, LTrim$, and
RTrim$

String

Trim, LTrim, and
RTrim

String variant.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 507

Null is returned if string is Null.

Comments Trim$ returns a String , whereas Trim returns a String variant. Null is returned if text is Null .

Example 1

 'This first example uses the Trim$ function to extract the
 'nonblank part of a string and display it.
 Const crlf = Chr$(13) + Chr$(10)
 Sub Main()
 text$ = " This is text "
 tr$ = Trim$(text$)
 MsgBox "Original =>" & text$ & "<=" & crlf & _
 "Trimmed =>" & tr$ & "<="
 End Sub

Example 2

 'This second example displays a right-justified string and its
 'LTrim result.
 Const crlf = Chr$(13) + Chr$(10)
 Sub Main()
 a$ = " <= This is a right-justified string"
 b$ = LTrim$(a$)
 MsgBox a$ & crlf & b$
 End Sub

Example 3

 'This third example displays a left-justified string and its
 'RTrim result.
 Const crlf = Chr$(13) + Chr$(10)
 Sub Main()
 a$ = "This is a left-justified string. "
 b$ = RTrim$(a$)
 MsgBox a$ & "<=" & crlf & b$ & "<="
 End Sub

See Also LTrim, LTrim$ (page 399) (functions); RTrim, RTrim$ (page 464) (functions).

True (constant)

Description Boolean constant whose value is True.

Comments Used in conditionals and Boolean expressions.

Example This example sets variable a to True and then tests to see whether (1) A is True; (2) the True constant =
-1; and (3) A is equal to -1 (True).

Sub Main()
 a = True
 If ((a = True) and (True = -1) and (a = -1)) then
 MsgBox "a is True."
 Else
 MsgBox "a is False."
 End If
End Sub

See Also False (page 338) (constant); Constants (topic); Boolean (page 233) (data type).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 508

Type (statement)

Syntax
Type username
 variable As type
 variable As type
 variable As type
 :
End Type

Description The Type statement creates a structure definition that can then be used with the Dim statement to
declare variables of that type. The username field specifies the name of the structure that is used later
with the Dim statement.

Comments Within a structure definition appear field descriptions in the format:

 variable As type

where variable is the name of a field of the structure, and type is the data type for that variable. Any
fundamental data type or previously declared user-defined data type can be used within the structure
definition (structures within structures are allowed). Only fixed arrays can appear within structure
definitions. The Type statement can only appear outside of subroutine and function declarations.

When declaring strings within fixed-size types, it is useful to declare the strings as fixed-length. Fixed-
length strings are stored within the structure itself rather than in the string space. For example, the
following structure will always require 62 bytes of storage:

 Type Person
 FirstName As String * 20
 LastName As String * 40
 Age As Integer
 End Type

Note: Fixed-length strings within structures are size-adjusted upward to an even byte boundary. Thus, a
fixed-length string of length 5 will occupy 6 bytes of storage within the structure.

Example This example displays the use of the Type statement to create a structure representing the parts of a
circle and assign values to them.

Type Circ
 msg As String
 rad As Integer
 dia As Integer
 are As Double
 cir As Double
End Type
Sub Main()
 Dim circle As Circ
 circle.rad = 5
 circle.dia = circle.rad * 2
 circle.are = (circle.rad ^ 2) * Pi
 circle.cir = circle.dia * Pi
 circle.msg = "The area of this circle is: " & circle.are
 MsgBox circle.msg
End Sub

See Also Dim (page 279) (statement); Public (page 446) (statement); Private (page 445) (statement).

TypeOf (function)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 509

Syntax TypeOf objectvariable Is objecttype

Description Returns TRUE if objectvariable is the specified typel; otherwise FALSE.

Comments This function is used within the If...Then statement to determine if a variable is of a particular type. This
function is particularily useful for determining the type of OLE automation objects.

Example

 Sub Main()
 Dim a As Object
 Set a = CreateObject("Excel.Application")
 If TypeOf a Is "Application" Then
 MsgBox "We have an Application object."
 End If
 End Sub

See Also TypeName (page 509) (function)

TypeName (function)

Syntax TypeName (varname)

Description Returns the type name of the specified variable.

Comments The returned string can be any of the following:

Returned
String

Returned if varname is

"String" A String.

objecttype A data object variable. In this case, objecttype is the name of the specific object type.

"Integer" An integer.

"Long" A long.

"Single" A single.

"Double" A double

"Currency" A currency value.

"Date" A date value.

"Boolean" A boolean value.

"Error" An error value.

"Empty" An uninitialized variable.

"Null" A variant containing no valid data.

"Object" An OLE automation object.

"Unknown" An unknown type of OLE automation object.

"Nothing" An uninitialized object variable.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 510

class A specific type of OLE automation object. In this case, class is the name of the object as
known to OLE.

If
Varname
is an

then

array the returned string can be any of the above strings follows by a empty parenthesis. For
example, "Integer()" would be returned for an array of integers.

expression the expression is evaluated and a String representing the resultant data type is returned.

OLE
collection

TypeName returns the name of that object collection.

Example

 'The following example defines a subroutine that only accepts
 'Integer variables. If not passed an Integer, it will inform
 'the user that there was an error, displaying the actual type
 'of variable that was passed.
 Sub Foo(a As Variant)
 If VarType(a) <> ebInteger Then
 MsgBox "Foo does not support " & TypeName(a) & " variables"
 End If
 End Sub

See Also TypeOf (page 508) (function)

U

U

UBound (function)

UCase, UCase$ (functions)

Unlock (statement)

User Defined Types (topic)

UBound (function)

Syntax UBound (ArrayVariable() [,dimension])

Description Returns an Integer containing the upper bound of the specified dimension of the specified array variable.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 511

Comments The dimension parameter is an integer that specifies the desired dimension. If not specified, then the
upper bound of the first dimension is returned. The UBound function can be used to find the upper
bound of a dimension of an array returned by an OLE automation method or property:

 UBound(object.property [,dimension])
 UBound(object.method [,dimension])

Example This example dimensions two arrays and displays their upper bounds.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 Dim a(5 To 12)
 Dim b(2 To 100,9 To 20)
 uba = UBound(a)
 ubb = UBound(b,2)
 MsgBox "The upper bound of a is: " & uba & crlf & " The upper bound of b is: " & ubb

This example uses Lbound and Ubound to dimension a dynamic array to hold a copy of an array
redimmed by the FileList statement.

 Dim fl$()
 FileList fl$,"*"
 count = Ubound(fl$)
 If ArrayDims(a) Then
 Redim nl$(Lbound(fl$) To Ubound(fl$))
 For x = 1 To count
 nl$(x) = fl$(x)
 Next x
 MsgBox "The last element of the new array is: " & nl$(count)
 End If
End Sub

See Also LBound (page 387) (function); ArrayDims (page 217) (function); Arrays (page 218) (topic).

UCase, UCase$ (functions)

Syntax UCase[$] (text)

Description Returns the uppercase equivalent of the specified string.

Comments UCase$ returns a String , whereas UCase returns a String variant. Null is returned if text
is Null .

Example This example uses the UCase$ function to change a string from lowercase to uppercase.

Sub Main()
 a1$ = "this string was lowercase, but was converted."
 a2$ = UCase(a1$)
 MsgBox a2$
End Sub

See Also LCase, LCase$ (page 387) (functions).

Unlock (statement)

Syntax Unlock [#] filenumber [,{record | [start] To end}]

Description Unlocks a section of the specified file, allowing other processes access to that section of the file.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 512

Comments The Unlock statement requires the following parameters:

Parameter Description

filenumber Integer used by the Basic Control Script to refer to the open file—the number passed to the
Open statement.

record Long specifying which record to unlock.

start Long specifying the first record within a range to be unlocked.

end Long specifying the last record within a range to be unlocked.

For sequential files, the record, start, and end parameters are ignored: the entire file is unlocked. The
section of the file is specified using one of the following:

Syntax Description

No record
specification

Unlock the entire file.

record Unlock the specified record number (for Random files) or byte (for Binary files).

to end Unlock from the beginning of the file to the specified record (for Random files) or byte
(for Binary files).

start to end Unlock the specified range of records (for Random files) or bytes (for Binary files).

The unlock range must be the same as that used by the Lock statement.

Example This example creates a file named test.dat and fills it with ten string variable records. These are displayed
in a dialog box. The file is then reopened for read/write, and each record is locked, modified, rewritten,
and unlocked. The new records are then displayed in a dialog box.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 a$ = "This is record number: "
 b$ = "0"
 rec$ = ""
 msg1 = ""
 Open "test.dat" For Random Access Write Shared As #1
 For x = 1 To 10
 rec$ = a$ & x
 Lock #1,x
 Put #1,,rec$
 Unlock #1,x
 msg1 = msg1 & rec$ & crlf
 Next x
 Close
 MsgBox "The records are: " & crlf & msg1
 msg1 = ""
 Open "test.dat" For Random Access Read Write Shared As #1
 For x = 1 to 10
 rec$ = Mid(rec$,1,23) & (11 - x)
 Lock #1,x 'Lock it for our use.
 Put #1,x,rec$ 'Nobody's changed it.
 UnLock #1,x
 msg1 = msg1 & rec$ & crlf
 Next x
 MsgBox "The records are: " & crlf & msg1
 Close
 Kill "test.dat"
End Sub

See Also Lock (page 396) (statement); Open (page 428) (statement).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 513

User-Defined Types (topic)

User-defined types (UDTs) are structure definitions created using the Type statement. UDTs are equivalent to C
language structures.

Declaring Structures The Type statement is used to create a structure definition. Type declarations must appear
outside the body of all subroutines and functions within a script and are therefore global to an entire script. Once
defined, a UDT can be used to declare variables of that type using the Dim, Public, or Private statement. The following
example defines a rectangle structure:

 Type Rect
 left As Integer
 top As Integer
 right As Integer
 bottom As Integer
 End Type
 :
 Sub Main()
 Dim r As Rect
 :
 r.left = 10
 End Sub

Any fundamental data type can be used as a structure member, including other user-defined types. Only fixed arrays
can be used within structures.

Copying Structures UDTs of the same type can be assigned to each other, copying the contents. No other standard
operators can be applied to UDTs.

 Dim r1 As Rect
 Dim r2 As Rect
 :
 r1 = r2

When copying structures of the same type, all strings in the source UDT are duplicated and references are placed into
the target UDT. The LSet statement can be used to copy a UDT variable of one type to another:

 LSet variable1 = variable2

LSet cannot be used with UDTs containing variable-length strings. The smaller of the two structures determines how
many bytes get copied.

Passing Structures UDTs can be passed both to user-defined routines and to external routines, and they can be
assigned. UDTs are always passed by reference. Since structures are always passed by reference, the ByVal keyword
cannot be used when defining structure arguments passed to external routines (using Declare). The ByVal keyword
can only be used with fundamental data types such as Integer and String. Passing structures to external routines
actually passes a far pointer to the data structure.

Size of Structures The Len function can be used to determine the number of bytes occupied by a UDT:

 Len(udt_variable_name)

Since strings are stored in the Basic Control Engine's data space, only a reference (currently, 2 bytes) is stored within a
structure. Thus, the Len function may seem to return incorrect information for structures containing strings.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 514

V

V

Val (function)

Variant (data type)

VarType (function)

Viewport.Clear (method)

Viewport.Close (method)

Viewport.Open (method)

VLine (statement)

VPage (statement)

VScroll (statement)

Val (function)

Syntax Val (string_expression)

Description Converts a given string expression to a number.

Comments The number parameter can contain any of the following:

• Leading minus sign (for nonhex or octal numbers only)
• Hexadecimal number in the format &Hhexdigits
• Octal number in the format &Ooctaldigits
• Floating-point number, which can contain a decimal point and an optional exponent

Spaces, tabs, and line feeds are ignored. If number does not contain a number, then 0 is returned.

The Val function continues to read characters from the string up to the first nonnumeric character. The
Val function always returns a double-precision floating-point value. This value is forced to the data type of
the assigned variable.

Example This example inputs a number string from an InputBox and converts it to a number variable.

Sub Main()
 a$ = InputBox("Enter anything containing a number","Enter Number")
 b# = Val(a$)
 MsgBox "The value is: " & b#
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 515

'The following table shows valid strings and their numeric equivalents:
' "1 2 3" 123
' "12.3" 12.3
' "&HFFFF" -1
' "&O77" 63
' "12.345E-02" .12345

See Also CDbl (page 237) (function); Str, Str$ (page 495) (functions).

Variant (data type)

Assigning to VariantsBefore a Variant has been assigned a value, it is considered empty. Thus,
immediately after declaration, the VarType function will return ebEmpty. An uninitialized
variant is 0 when used in numeric expressions and is a zero-length string when used within string
expressions.A Variant is Empty only after declaration and before assigning it a value. The
only way for a Variant to become Empty after having received a value is for that variant to be
assigned to another Variant containing Empty , for it to be assigned explicitly to the constant
Empty , or for it to be erased using the Erase statement.When a variant is assigned a value, it is
also assigned that value's type. Thus, in all subsequent operations involving that variant, the variant
will behave like the type of data it contains.Operations on VariantsNormally, a Variant behaves
just like the data it contains. One exception to this rule is that, in arithmetic operations, variants are
automatically promoted when an overflow occurs. Consider the following statements:

 Dim a As Integer,b As Integer,c As Integer
 Dim x As Variant,y As Variant,z As Variant
 a% = 32767
 b% = 1
 c% = a% + b% 'This will overflow.
 x = 32767
 y = 1
 z = x + y 'z becomes a Long because of Integer overflow.

In the above example, the addition involving Integer variables overflows because the result
(32768) overflows the legal range for integers. With Variant variables, on the other hand, the
addition operator recognizes the overflow and automatically promotes the result to a Long .Adding
VariantsThe + operator is defined as performing two functions: when passed strings, it concatenates
them; when passed numbers, it adds the numbers.With variants, the rules are complicated because
the types of the variants are not known until execution time. If you use +, you may unintentionally
perform the wrong operation.It is recommended that you use the & operator if you intend to
concatenate two String variants. This guarantees that string concatenation will be performed and
not addition.Variants That Contain No DataA Variant can be set to a special value indicating that
it contains no valid data by assigning the Variant to Null:

 Dim a As Variant
 a = Null

The only way that a Variant becomes Null is if you assign it as shown above.The Null
value can be useful for catching errors since its value propagates through an expression.Variant
StorageVariants require 16 bytes of storage internally:

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 516

• A 2-byte type
• A 2-byte extended type for data objects
• Bytes of padding for alignment
• An 8-byte value

Unlike other data types, writing variants to Binary or Random files does not write 16
bytes. With variants, a 2-byte type is written, followed by the data (2 bytes for Integer and so
on).Disadvantages of VariantsThe following list describes some disadvantages of variants:

1. Using variants is slower than using the other fundamental data types (that is, Integer, Long,
Single, Double, Date, Object , String, Currency, and Boolean). Each operation involving a
Variant requires examination of the variant's type.

2. Variants require more storage than other data types (16 bytes as opposed to 8 bytes for a
Double, 2 bytes for an Integer, and so on).

3. Unpredictable behavior. You may write code to expect an Integer variant. At runtime, the
variant may be automatically promoted to a Long variant, causing your code to break.
Passing Nonvariant Data to Routines Taking VariantsPassing nonvariant data to a routine
that is declared to receive a variant by reference prevents that variant from changing type within
that routine. For example:

 Sub Foo(v As Variant)
 v = 50 'OK.
 v = "Hello, world." 'Get a type-mismatch error here!
 End Sub
 Sub Main()
 Dim i As Integer
 Foo i 'Pass an integer by reference.
 End Sub

In the above example, since an Integer is passed by reference (meaning that the caller can
change the original value of the Integer), the caller must ensure that no attempt is made to
change the variant's type.Passing Variants to Routines Taking NonvariantsVariant variables
cannot be passed to routines that accept nonvariant data by reference, as demonstrated in the
following example:

 Sub Foo(i As Integer)
 End Sub
 Sub Main()
 Dim a As Variant
 Foo a 'Compiler gives type-mismatch error here.
 End Sub

VarType (function)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 517

Syntax VarType (variable)

Description Returns an Integer representing the type of data in variable.

Comments The variable parameter is the name of any Variant . The following table shows the different values that
can be returned by VarType :

Value Constant Data Type

0 ebEmpty Uninitialized

1 ebNull No valid data

2 ebInteger Integer

3 ebLong Long

4 ebSingle Single

5 ebDouble Double

6 ebCurrency Currency

7 ebDate Date

8 ebString String

9 ebObject Object (OLE automation object)

10 ebError User-defined error

11 ebBoolean Boolean

12 ebVariant Variant (not returned by this function)

13 ebDataObject Non-OLE automation object

Comments When passed an object, the VarType function returns the type of the default property of that object. If
the object has no default property, then either ebObject or ebDataObject is returned, depending on
the type of variable.

Example
Sub Main()
 Dim v As Variant
 v = 5& 'Set v to a Long.
 If VarType(v) = ebInteger Then
 Msgbox "v is an Integer."
 ElseIf VarType(v) = ebLong Then
 Msgbox "v is a Long."
 End If
End Sub

See Also Empty (page 321) (constant); Null (page 421) (constant); Variant (page 515) (data type).

Viewport.Clear (method)

Syntax Viewport.Clear

Description Clears the open viewport window.

Comments The method has no effect if no viewport is open.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 518

Example

 Sub Main()
 Viewport.Open
 Print "This will be
 displayed in the viewport window."
 Sleep 2000
 Viewport.Clear
 Print "This will replace
 the previous text."
 Sleep 2000
 Viewport.Close
 End Sub

See Also Viewport.Close (page 518) (method), Viewport.Open (page
518) (method)

Viewport.Close (method)

Syntax Viewport.Close

Description This method closes an open viewport window.

Comments The method has no effect if no viewport is opened.

Example

 Sub Main()
 Viewport.Open
 Print "This will be
 displayed in the viewport window."
 Sleep 2000
 Viewport.Close
 End Sub

See Also Viewport.Open (page 518) (method)

Viewport.Open (method)

Syntax Viewport.Open [title [,XPos,YPos [,width,height]]]

Description Opens a new viewport window or switches the focus to the existing viewport window.

Comments The Viewport.Open method accepts the following named :

Parameter Description

title Specifies a String containing the text to appear in the viewport's caption.

XPos, YPos Specifies Integer coordinates given in twips indicating the initial position of the upper left
corner of the viewport.

width,height Specifies Integer values indicating the initial width and height of the viewport.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 519

If a viewport window is already open, then it is given the focus. Otherwise, a new viewport window
is created. Combined with the Print statement, a viewport window is a convenient place to output
debugging information. The viewport window is closed when the BasicScript host application is
terminated. The following keys work within a viewport window:

Key Scrolls

Up Up by one line.

Down Down by one line.

Home To the first line in the viewport window.

End To the last line in the viewport window.

PgDn The viewport window down by one page.

PgUp The viewport window up by one page.

Ctrl+PgUp The viewport window left by one page.

Ctrl+PgDn The viewport window right by one page.

Only one viewport window can be open at any given time. Any scripts with Print statements will output
information into the same viewport window. When printing to viewports, the end-of-line character can
be any of the following: a carriage return, a line feed, or a carriage-return/line-feed pair. Embedded null
characters are printed as spaces.

Example

 Sub Main()
 Viewport.Open "BasicScript Viewport",100,100,500,500
 Print "This will be displayed in the viewport window."
 Sleep 2000
 Viewport.Close
 End Sub

See Also Viewport.Close (page 518) (method)

VLine (statement)

Syntax VLine [lines]

Description Scrolls the window with the focus up or down by the specified number of lines.

Comments The lines parameter is an Integer specifying the number of lines to scroll. If this parameter is omitted,
then the window is scrolled down by one line.

Example This example prints a series of lines to the viewport, then scrolls back up the lines to the top using VLine.

Sub Main()
 "BasicScript Viewport",100,100,500,200
 For i = 1 to 50
 Print "This will be displayed on line#: " & i
 Next i
 MsgBox "We will now go back 40 lines..."
 VLine -40
 MsgBox "...and here we are!"
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 520

See Also VPage (page 520) (statement); VScroll (page 520) (statement).

VPage (statement)

Syntax VPage [pages]

Description Scrolls the window with the focus up or down by the specified number of pages.

Comments The pages parameter is an Integer specifying the number of lines to scroll. If this parameter is omitted,
then the window is scrolled down by one page.

Example This example scrolls the viewport window up five pages.

Sub Main()
 "BasicScript Viewport",100,100,500,200
 For i = 1 to 500
 Print "This will be displayed on line#: " & i
 Next i
 MsgBox "We will now go back 5 pages "
 VLine -5
 MsgBox "...and here we are!"
End Sub

See Also VLine (page 519) (statement); VScroll (page 520) (statement).

VScroll (statement)

Syntax VScroll percentage

Description Sets the thumb mark on the vertical scroll bar attached to the current window.

Comments The position is given as a percentage of the total range associated with that scroll bar. For example, if the
percentage parameter is 50, then the thumb mark is positioned in the middle of the scroll bar.

Example This example prints a bunch of lines to the viewport, then scrolls back to the top using VScroll .

Sub Main()
 "BasicScript Viewport",100,100,500,200
 For i = 1 to 50
 Print "This will be displayed on line#: " & i
 Next i
 Message$="We will now go to the the top "
 MsgBox Message$
 VScroll 0
 VScroll 0
 MsgBox " and here we are!"
End Sub

See Also VLine (page 519) (statement); VPage (page 520) (statement).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 521

W

W

Weekday (function)

While...Wend (statement)

Width# (statement)

WinActivate (statement)

WinClose (statement)

WinFind (function)

WinList (statement)

WinMaximize (statement)

WinMinimize (statement)

WinMove (statement)

WinRestore (statement)

WinSize (statement)

Word$ (function)

WordCount (function)

Write# (statement)

WriteIni (statement)

Weekday (function)

Syntax Weekday (date)

Description Returns an Integer value representing the day of the week given by date. Sunday is 1, Monday is 2, and
so on. The date parameter is any expression representing a valid date.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 522

Example This example gets a date in an input box and displays the day of the week and its name for the date
entered.

Sub Main()
 Dim a$(7)
 a$(1) = "Sunday"
 a$(2) = "Monday"
 a$(3) = "Tuesday"
 a$(4) = "Wednesday"
 a$(5) = "Thursday"
 a$(6) = "Friday"
 a$(7) = "Saturday"
Reprompt:
 bd = InputBox("Please enter your birthday.","Enter Birthday")
 If Not(IsDate(bd)) Then Goto Reprompt

 dt = DateValue(bd)
 dw = WeekDay(dt)
 Msgbox "You were born on day " & dw & ", which was a " & a$(dw)
End Sub

See Also Day (page 269) (function);Minute (page 404) (function); Second (page 471) (function); Month (page
406) (function); Year (page 533) (function); Hour (page 364) (function); DatePart (page 267)
(function).

While...Wend (statement)

Syntax While condition [statements] Wend

Description Repeats a statement or group of statements while a condition is True .

Comments The condition is initially and then checked at the top of each iteration through the loop.

Example This example executes a While loop until the random number generator returns a value of 1.

Sub Main()
 x% = 0
 count% = 0
 While x% <> 1 And count% < 500
 x% = Rnd(1)
 If count% > 1000 Then
 Exit Sub
 Else
 count% = count% + 1
 End If
 Wend
 MsgBox "The loop executed " & count% & " times."
End Sub

See Also Do...Loop (page 298) (statement); For...Next (page 347) (statement).

Note: Due to errors in program logic, you can inadvertently create infinite loops in your code. You can break out
of infinite loops using Ctrl+Break.

Width# (statement)

Syntax Width# filenumber,newwidth

Description Specifies the line width for sequential files opened in either Output or Append mode.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 523

Comments The Width# statement requires the following parameters:

Parameter Description

filenumber Integer used by the Basic Control Engine to refer to the open file—the number passed to the
Open statement.

newwidth Integer between 0 to 255 inclusive specifying the new width. If newwidth is 0, then no
maximum line length is used.

When a file is initially opened, there is no limit to line length. This command forces all subsequent output
to the specified file to use the specified value as the maximum line length. The Width statement affects
output in the following manner: if the column position is greater than 1 and the length of the text to be
written to the file causes the column position to exceed the current line width, then the data is written on
the next line. The Width statement also affects output of the Print command when used with the Tab
and Spc functions.

Example This statement sets the maximum line width for file number 1 to 80 columns.

Const crlf$ = Chr$(13) + Chr$(10)
Sub Main()
 Dim i,msg1,newline$
 Open "test.dat" For Output As #1 'Create data file.
 For i = 0 To 9
 Print #1,Chr(48 + i); 'Print 0-9 to test file all on same line.
 Next i
 Print #1,crlf 'New line.
 Width #1,5 'Change line width to 5.
 For i = 0 To 9 'Print 0-9 again. This time, five characters print before line wraps.
 Print #1,Chr(48 + i);
 Next I
 Close #1
 msg1 = "The effect of the Width statement is as shown below: " & crlf
 Open "test.dat" For Input As #1 'Read new file.
 Do While Not Eof(1)
 Input #1,newline$
 msg1 = msg1 & crlf$ & newline$
 Loop
 Close #1
 msg1 = msg1 & crlf$ & crlf$ & "Choose OK to remove the test file."
 MsgBox msg1 'Display effects of Width.
 Kill "test.dat"
End Sub

See Also Print (page 442) (statement); Print# (page 443) (statement); Tab (page 501) (function); Spc (page
481) (function)

WinActivate (statement)

Syntax WinActivate [window_name$ | window_object] [,timeout]

Description Activates the window with the given name or object value.

Comments The WinActivate statement requires the following parameters:

Parameter Description

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 524

window_name
$

String containing the name that appears on the desired application's title bar. Optionally,
a partial name can be used, such as "Word" for "Microsoft Word." A hierarchy of
windows can be specified by separating each window name with a vertical bar (|), as in
the following example:

 WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a window whose title contains
the word "Notepad ." If found, the windows owned by the top level window are
searched for one whose title contains the string "Find ."

window_object HWND object specifying the exact window to activate. This can be used in place of the
window_name$ parameter to indicate a specific window to activate.

timeout Integer specifying the number of milliseconds for which to attempt activation of the
specified window. If not specified (or 0), then only one attempt will be made to activate
the window. This value is handy when you are not certain that the window you are
attempting to activate has been created.

If window_name$ and window_object are omitted, then no action is performed.

Example This example runs the clock.exe program by activating the Run File dialog box from within Program
Manager.

Sub Main()
 WinActivate "Program Manager"
 Menu "File.Run"
 WinActivate "Program Manager|Run"
 SendKeys "clock.exe{ENTER}"
End Sub

See Also AppActivate (page 207) (statement).

WinClose (statement)

Syntax WinClose [window_name$ | window_object]

Description Closes the given window.

Comments The WinClose statement requires the following parameters:

Parameter Description

window_name
$

String containing the name that appears on the desired application's title bar. Optionally,
a partial name can be used, such as "Word" for "Microsoft Word." A hierarchy of
windows can be specified by separating each window name with a vertical bar (|), as in
the following example:

 WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a window whose title contains
the word "Notepad" . If found, the windows owned by the top level window are
searched for one whose title contains the string "Find" .

window_object HWND object specifying the exact window to activate. This can be used in place of the
window_name$ parameter to indicate a specific window to activate.

If window_name$ and window_object are omitted, then the window with the focus is closed. This
command differs from the AppClose command in that this command operates on the current window
rather than the current top-level window (or application).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 525

Example This example closes Microsoft Word if its object reference is found.

Sub Main()
 Dim WordHandle As HWND
 Set WordHandle = WinFind("Word")
 If (WordHandle Is Not Nothing) Then WinClose WordHandle
End Sub

See Also WinFind (page 525) (function)

Note Under Windows, the current window can be an MDI child window, a pop-up window, or a top-level
window.

WinFind (function)

Syntax WinFind (name$) As HWND

Description Returns an object variable referencing the window having the given name.

Comments The name$ parameter is specified using the same format as that used by the WinActivate statement.

Example This example closes Microsoft Word if its object reference is found.

Sub Main()
 Dim WordHandle As HWND
 Set WordHandle = WinFind("Word")
 If (WordHandle Is Not Nothing) Then WinClose WordHandle
End Sub

See Also WinActivate (page 523) (statement).

WinList (statement)

Syntax WinList ArrayOfWindows()

Description Fills the passed array with references to all the top-level windows.

Comments The passed array must be declared as an array of HWND objects. The ArrayOfWindows parameter must
specify either a zero- or one-dimensioned dynamic array or a single-dimensioned fixed array. If the array
is dynamic, then it will be redimensioned to exactly hold the new number of elements. For fixed arrays,
each array element is first erased, then the new elements are placed into the array. If there are fewer
elements than will fit in the array, then the remaining elements are unused. A runtime error results if the
array is too small to hold the new elements. After calling this function, use the LBound and UBound
functions to determine the new size of the array.

Example This example minimizes all top-level windows.

Sub Main()
 Dim a() As HWND
 WinList a
 For i = 1 To UBound(a)
 WinMinimize a(i)
 Next i
End Sub

See Also WinFind (page 525) (function).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 526

WinMaximize (statement)

Syntax WinMaximize [window_name$ | window_object]

Description Maximizes the given window.

Comments The WinMaximize statement requires the following parameters:

Parameter Description

window_name
$

String containing the name that appears on the desired application's title bar. Optionally,
a partial name can be used, such as "Word" for "Microsoft Word." A hierarchy of
windows can be specified by separating each window name with a vertical bar (|), as in
the following example:

 WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a window whose title contains
the word "Notepad" . If found, the windows owned by the top level window are
searched for one whose title contains the string "Find" .

window_object HWND object specifying the exact window to activate. This can be used in place of the
window_name$ parameter to indicate a specific window to activate.

If window_name$ and window_object are omitted, then the window with the focus is maximized. This
command differs from the AppMaximize command in that this command operates on the current
window rather than the current top-level window.

Example This example maximizes all top-level windows.

Sub Main()
 Dim a() As HWND
 WinList a
 For i = 1 To UBound(a)
 WinMaximize a(i)
 Next i
End Sub

See Also WinMinimize (page 526) (statement); WinRestore (page 528) (statement).

Note Under Windows, the current window can be an MDI child window, a pop-up window, or a top-level
window.

WinMinimize (statement)

Syntax WinMinimize [window_name$ | window_object]

Description Minimizes the given window.

Comments The WinMinimize statement requires the following parameters:

Parameter Description

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 527

window_name
$

String containing the name that appears on the desired application's title bar. Optionally,
a partial name can be used, such as "Word" for "Microsoft Word." A hierarchy of
windows can be specified by separating each window name with a vertical bar (|), as in
the following example:

 WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a window whose title contains
the word "Notepad" . If found, the windows owned by the top level window are
searched for one whose title contains the string "Find" .

window_object HWND object specifying the exact window to activate. This can be used in place of the
window_name$ parameter to indicate a specific window to activate.

If window_name$ and window_object are omitted, then the window with the focus is minimized. This
command differs from the AppMinimize command in that this command operates on the current window
rather than the current top-level window.

Example See example for WinList (statement).

See Also WinMaximize (page 526) (statement); WinRestore (page 528) (statement).

Note Under Windows, the current window can be an MDI child window, a pop-up window, or a top-level
window.

WinMove (statement)

Syntax WinMove x,y [window_name$ | window_object]

Description Moves the given window to the given x,y position.

Comments The WinMove statement requires the following parameters:

Parameter Description

x,y Integer coordinates given in twips that specify the new location for the window.

window_name
$

String containing the name that appears on the desired application's title bar. Optionally,
a partial name can be used, such as "Word" for "Microsoft Word." A hierarchy of
windows can be specified by separating each window name with a vertical bar (|), as in
the following example:

 WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a window whose title contains
the word "Notepad". If found, the windows owned by the top level window are searched
for one whose title contains the string "Find".

window_object HWND object specifying the exact window to activate. This can be used in place of the
window_name$ parameter to indicate a specific window to activate.

If window_name$ and window_object are omitted, then the window with the focus is moved. This
command differs from the AppMove command in that this command operates on the current window rather
than the current top-level window. When moving child windows, remember that the x and y coordinates
are static to the client area of the parent window.

Example This example moves Program Manager to upper left corner of the screen.

WinMove 0,0,"Program Manager"

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 528

See Also WinSize (page 528) (statement).

Note Under Windows, the current window can be an MDI child window, a pop-up window, or a top-level
window.

WinRestore (statement)

Syntax WinRestore [window_name$ | window_object]

Description Restores the specified window to its restore state.

Comments Restoring a minimized window restores that window to its screen position before it was minimized.
Restoring a maximized window resizes the window to its size previous to maximizing. The WinRestore
statement requires the following parameters:

Parameter Description

window_name
$

String containing the name that appears on the desired application's title bar. Optionally,
a partial name can be used, such as "Word" for "Microsoft Word." A hierarchy of
windows can be specified by separating each window name with a vertical bar (|), as in
the following example:

 WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a window whose title contains
the word "Notepad" . If found, the windows owned by the top level window are
searched for one whose title contains the string "Find" .

window_object HWND object specifying the exact window to activate. This can be used in place of the
window_name$ parameter to indicate a specific window to activate.

If window_name$ and window_object are omitted, then the window with the focus is restored. This
command differs from the AppRestore command in that this command operates on the current window
rather than the current top-level window.

Example This example minimizes all top-level windows except for Program Manager.

Sub Main()
 Dim a() As HWND
 WinList a
 For i = 0 To UBound(a)
 WinMinimize a(i)
 Next I
 WinRestore "Program Manager"
End Sub

See Also WinMaximize (page 526) (statement); WinMinimize (page 526) (statement)

Note Under Windows, the current window can be an MDI child window, a pop-up window, or a top-level
window.

WinSize (statement)

Syntax WinSize width,height [,window_name$ | window_object]

Description Resizes the given window to the specified width and height.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 529

Comments The WinSize statement requires the following parameters:

Parameter Description

width,height Integer coordinates given in twips that specify the new size of the window.

window_name
$

String containing the name that appears on the desired application's title bar. Optionally,
a partial name can be used, such as "Word" for "Microsoft Word." A hierarchy of
windows can be specified by separating each window name with a vertical bar (|), as in
the following example:

 WinActivate "Notepad|Find"

In this example, the top-level windows are searched for a window whose title contains
the word "Notepad" . If found, the windows owned by the top level window are
searched for one whose title contains the string "Find" .

window_object HWND object specifying the exact window to activate. This can be used in place of the
window_name$ parameter to indicate a specific window to activate.

If window_name$ and window_object are omitted, then the window with the focus is resized. This
command differs from the AppSize command in that this command operates on the current window
rather than the current top-level window.

Example This example runs and resizes Notepad.

Sub Main()
 Dim NotepadApp As HWND
 id = Shell("Notepad.exe")
 set NotepadApp = WinFind("Notepad")
 WinSize 4400,8500,NotepadApp
End Sub

See Also WinMove (page 527) (statement)

Note Under Windows, the current window can be an MDI child window, a pop-up window, or a top-level
window.

Word$ (function)

Syntax Word$ (text$,first[,last])

Description Returns a String containing a single word or sequence of words between first and last.

Comments The Word$ function requires the following parameters:

Parameter Description

text$ String from which the sequence of words will be extracted.

first Integer specifying the index of the first word in the sequence to return. If last is not specified,
then only that word is returned.

last Integer specifying the index of the last word in the sequence to return. If last is specified,
then all words between first and last will be returned, including all spaces, tabs, and end-of-
lines that occur between those words.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 530

Words are separated by any non-alphanumeric characters such as spaces, tabs, end-of-lines, and
punctuation. If first is greater than the number of words in text$, then a zero-length string is returned.
If last is greater than the number of words in text$, then all words from first to the end of the text are
returned.

Example This example finds the name "Stuart" in a string and then extracts two words from the string.

Sub Main()
 s$ = "My last name is Williams; Stuart is my surname."
 c$ = Word$(s$,5,6)
 MsgBox "The extracted name is: " & c$
End Sub

See Also Item$ (page 383) (function); ItemCount (page 384) (function); Line$ (page 392) (function);
LineCount (page 393) (function); WordCount (page 530) (function).

WordCount (function)

Syntax WordCount (text$)

Description Returns an Integer representing the number of words in the specified text.

Comments Words are separated by spaces, tabs, and end-of-lines.

Example This example counts the number of words in a particular string.

Sub Main()
 s$ = "My last name is Williams; Stuart is my surname."
 i% = WordCount(s$)
 MsgBox "'" & s$ & "' has " & i% & " words."
End Sub

See Also Item$ (page 383) (function); ItemCount (page 384) (function); Line$ (page 392) (function);
LineCount (page 393) (function); Word$ (page 529) (function).

Write# (statement)

Syntax Write [#] filenumber [,expressionlist]

Description Writes a list of expressions to a given sequential file.

Comments The file referenced by filenumber must be opened in either Output or Append mode. The filenumber
parameter is an Integer used by the Basic Control Engine to refer to the open file—the number passed to
the Open statement. The following table summarizes how variables of different types are written:

Data Type Description

Any numeric
type

Written as text. There is no leading space, and the period is always used as the decimal
separator.

String Written as text, enclosed within quotes.

Empty No data is written.

Null Written as #NULL# .

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 531

Boolean Written as #TRUE# or #FALSE# .

Date Written using the universal date format: #YYYY-MM-DD HH:MM:SS#

User-defined
errors

Written as #ERROR ErrorNumber # , where ErrorNumber is the value of the user-defined
error. The word ERROR is not translated.

The Write statement outputs variables separated with commas. After writing each expression in the list,
Write outputs an end-of-line. The Write statement can only be used with files opened in Output or
Append mode.

Example This example opens a file for sequential write, then writes ten records into the file with the values 10...50.
Then the file is closed and reopened for read, and the records are read with the Input statement. The
results are displayed in a dialog box.

Sub Main()
 Open "test.dat" For Output Access Write As #1
 For x = 1 To 10
 r% = x * 10
 Write #1,x,r%
 Next x
 Close
 msg1 = ""
 Open "test.dat" For Input Access Read As #1
 For x = 1 To 10
 Input #1,a%,b%
 msg1 = msg1 & "Record " & a% & ": " & b% & Basic.Eoln$
 Next x

 MsgBox msg1
 Close
End Sub

See Also Open (page 428) (statement); Put (page 448) (statement); Print# (page 443) (statement).

WriteIni (statement)

Syntax WriteIni section$,ItemName$,value$[,filename$]

Description Writes a new value into an .ini file.

Comments The WriteIni statement requires the following parameters:

Parameter Description

section$ String specifying the section that contains the desired variables, such as "windows." Section
names are specified without the enclosing brackets.

ItemName
$

String specifying which item from within the given section you want to change. If ItemName$
is a zero-length string (""), then the entire section specified by section$ is deleted.

value$ String specifying the new value for the given item. If value$ is a zero-length string (""), then
the item specified by ItemName$ is deleted from the ini file.

filename$ String specifying the name of the ini file.

Example This example sets the txt extension to be associated with Notepad.

Sub Main()
 WriteIni "Extensions","txt","c:\windows\notepad.exe ^.txt","win.ini"
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 532

See Also ReadIni$ (page 458) (function); ReadIniSection (page 458) (statement)

Note If filename$ is not specified, the win.ini file is used. If the filename$ parameter does not include a path,
then this statement looks for ini files in the Windows directory.

X

X or (operator)

Syntax expression1 Xor expression2

Description Performs a logical or binary exclusion on two expressions.

Comments If both expressions are either Boolean, Boolean variants, or NULL variants, then a logical exclusion is
performed as follows:

If the first expression is and the second expression is then the result is

TRUE TRUE FALSE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

If either expression is Null , then Null is returned. Binary Exclusion If the two expressions are Integer,
then a binary exclusion is performed, returning an Integer result. All other numeric types (including Empty
variants) are converted to Long, and a binary exclusion is then performed, returning a Long result. Binary
exclusion forms a new value based on a bit-by-bit comparison of the binary representations of the two
expressions according to the following table:

1 Xor 1 = 0 Example

0 Xor 1 = 1 5 01101001

1 Xor 0 = 1 6 10101010

0 Xor 0 = 0 Xor 11000011

Example This example builds a logic table for the XOR function and displays it.

Const crlf = Chr$(13) + Chr$(10)
Sub Main()
 msg1 = "Logic table for Xor:" & crlf & crlf
 For x = -1 To 0
 For y = -1 To 0
 z = x Xor y
 msg1 = msg1 & CBool(x) & " Xor "
 msg1 = msg1 & CBool(y) & " = "
 msg1 = msg1 & CBool(z) & crlf
 Next y
 Next x
 MsgBox msg1
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 533

See Also Operator Precedence (page 431) (topic); Or (page 435) (operator); Eqv (page 323) (operator); Imp
(page 371) (operator); And (page 204) (operator).

Y

Year (function)

Syntax Year (date)

Description Returns the year of the date encoded in the specified date parameter. The value returned is between 100
and 9999 inclusive. The date parameter is any expression representing a valid date.

Example This example returns the current year in a dialog box.

Sub Main()
 tdate$ = Date$
 tyear! = Year(DateValue(tdate$))
 MsgBox "The current year is " & tyear!
End Sub

See Also Day (page 269) (function) Minute (page 404) (function); Second (page 471) (function); Month (page
406) (function); Hour (page 364) (function); Weekday (page 521) (function); DatePart (page 267)
(function).

CIMPLICITY Extensions to Basic

CIMPLICITY Extensions to Basic

Click a category to view extensions.

64-bit... (page 534)

Acquire... (page 534)

Alarm... (page 535)

Change... (page 535)

CimChange... (page 535)

CimEmAlarmEvent... (page
535)

CimEmEvent... (page
535)

CimEmPointEvent... (page
535)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 534

CimGetEMEvent... (page
536)

CimIsMaster... (page 536)

CimLogin/CimLogout...
(page 536)

CimProjectData... (page
536)

CimRemoveUnusedPoints...
(page 536)

Do... (page 537)

Get... (page 537)

IsTerminalServices... (page
537)

LogStatus... (page 537)

Point... (page 537)

PointGet... (page 538)

PointSet... (page 539)

String... (page 539)

Trace... (page 539)

64-bit

• DoQINTMath (function) (page 576)
• DoUQINTMath (function) (page 577)
• GetCurTimeHR (function) (page 578)
• GetTimeComponentsHR (function) (page 584)
• Point.GetTimeStampHR (statement) (page 593)
• Point.QuadValueAsString (property, read) (page 599)
• Point.QuadValueAsString (property, write) (page 599)
• Point.SetQuadIntValue (function) (page 606)
• QINTFromString (function) (page 622)
• SetTimecomponentsHR (function) (page 622)
• StringFromQINT (function) (page 623)
• StringFromUQINT (function) (page 623)
• UQINTFromString (function) (page 625)

Acquire...

• Acquire (function) (page 539)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 535

• Acquire, Release (statements) (page 540)

Alarm...

• AlarmGenerate (statement) (page 540)
• AlarmGenerateEx (statement) (page 542)
• AlarmUpdate (statement) (page 545)
• AlarmUpdateCA (statement) (page 546)
• AlarmUpdateEx (statement) (page 547)

Change...

• ChangePassword (statement) (page 551)

CimChange...

• CimChangeApprovalData (Object) (page 551)

CimEMAlarmEvent...

• CimEMAlarmEvent (object) (page 553)
• CimEMAlarmEvent.AlarmID (property, read) (page 551)
• CimEMAlarmEvent.FinalState (property, read) (page 552)
• CimEMAlarmEvent.GenTime (property, read) (page 552)
• CimEMAlarmEvent.Message (property, read) (page 552)
• CimEMAlarmEvent.PrevState (property, read) (page 553)
• CimEMAlarmEvent.RefID (property, read) (page 553)
• CimEMAlarmEvent.ReqAction (property, read) (page 554)
• CimEMAlarmEvent.ResourceID (property, read) (page 554)

CimEMEvent...

• CimEMEvent (object) (page 555)
• CimEMEvent.ActionID (property, read) (page 554)
• CimEMEvent.AlarmEvent (function) (page 555)
• CimEMEvent.EventID (property, read) (page 555)
• CimEMEvent.ObjectID (property, read) (page 555)
• CimEMEvent.PointEvent (page 556)
• CimEMEvent.TimeStamp (property, read) (page 556)
• CimEMEvent.Type (property, read) (page 556)

CimEMPointEvent...

• CimEMPointEvent (object) (page 557)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 536

• CimEMPointEvent.Id (page 557)
• CimEmPointEvent.Quality (property, read) (page 558)
• CimEmPointEvent.QualityAlarmed (property, read) (page 558)
• CimEmPointEvent.QualityAlarms_Enabled (property, read) (page 558)
• CimEmPointEvent.QualityDisable_Write (property, read) (page 559)
• CimEmPointEvent.QualityIs_Available (property, read) (page 560)
• CimEmPointEvent.QualityIs_In_Range (property, read) (page 559)
• CimEmPointEvent.QualityLast_Upd_Man (property, read) (page 559)
• CimEmPointEvent.QualityManual_Mode (property, read) (page 559)
• CimEmPointEvent.QualityStale_Data (property, read) (page 560)
• CimEMPointEvent.State (property, read) (page 560)
• CimEMPointEvent.TimeStamp (property, read) (page 561)
• CimEmPointEvent.UserFlags (property, read} (page 561)
• CimEMPointEvent.Value (property, read) (page 561)

CimGetEMEvent...

• CimGetEMEvent (function) (page 561)

CimIsMaster...

• CimIsMaster (function) (page 562)

CimLogin/CimLogout...

• CimLogin (statement) (page 562)
• CimLogout (statement) (page 562)

CimProjectData...

• CimProjectData (object) (page 574)
• CimProjectData.Attributes (property, read/write) (page 563)
• CimProjectData.Entity (property, read/write) (page 564)
• CimProjectData.Filters (property, read/write) (page 563)
• CimProjectData.GetNext (function) (page 563)
• CimProjectData.Project (property, read/write) (page 575)
• CimProjectData.Reset (method) (page 576)

CimRemoveUnusedPoints

• CimRemoveUnusedPoints (method) (page 576)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 537

Do...

• DoQINTMath (function) (page 576)
• DoUQINTMath (function) (page 577)

Get...

• GetCurTimeHR (function) (page 578)
• GetKey (function) (page 578)
• GetMemoryInfoSymbolSpace (statement) (page 579)
• GetMemoryInfoStringSpaceHandles (statement) (page 580)
• GetMemoryInfoStringSpace (statement) (page 581)
• GetMemoryInfoPublicSpace (statement) (page 582)
• GetSystemWindowsDirectory (function) (page 583)
• GetTimeComponentsHR (function) (page 584)
• GetTSSessionId (function) (page 584)

IsTerminalServices

• IsTerminalServices (function) (page 585)

LogStatus

• LogStatus (property, read/write) (page 585)

Point...

• Point (object) (page 596)
• Point (subject) (page 608)
• Point.AlarmAck (property, read) (page 586)
• Point.Cancel (method) (page 586)
• Point.ChangeApproval (property, write) (page 586)
• Point.ChangeApprovalInfo (property, read) (page 587)
• Point.DataType (property, read) (page 587)
• Point.DisplayFormat (property, read) (page 588)
• Point.DownloadPassword (property, read) (page 588)
• Point.Elements (property, read) (page 589)
• Point.EnableAlarm (method) (page 589)
• Point.Enabled (property, read) (page 589)
• Point.EuLabel (property, read) (page 590)
• Point.Get (statement) (page 590)
• Point.GetArray (statement) (page 590)
• Point.GetNext (function) (page 591)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 538

• Point.GetNext (statement) (page 592)
• Point.GetQuadIntValue (function) (page 592)
• Point.GetRawArray (statement) (page 593)
• Point.GetTimeStampHR (statement) (page 593)
• Point.GetValue (property, read) (page 594)
• Point.HasEuConv (property, read) (page 594)
• Point.Id (property, read/write) (page 594)
• Point.InUserView (property, read) (page 595)
• Point.Length (property, read) (page 595)
• Point.OnAlarm (statement) (page 596)
• Point.OnAlarmAck (statement) (page 597)
• Point.OnChange (statement) (page 598)
• Point.OnTimed (statement) (page 598)
• Point.PointTypeId (property, read) (page 599)
• Point.QuadValueAsString (property, read) (page 599)
• Point.QuadValueAsString (property, write) (page 599)
• Point.Quality (property, read) (page 600)
• Point.QualityAlarmed (property, read) (page 600)
• Point.QualityAlarms_Enabled (property, read) (page 600)
• Point.QualityDisable_Write (property, read) (page 600)
• Point.QualityIs_Available (property, read) (page 601)
• Point.QualityIs_In_Range (property, read) (page 601)
• Point.QualityLast_Upd_Man (property, read) (page 601)
• Point.QualityManual_Mode (property, read) (page 602)
• Point.QualityStale_Data (property, read) (page 602)
• Point.RawValue (property, read/write) (page 602)
• Point.ReadOnly (property, read) (page 604)
• Point.Set (statement) (page 604)
• Point.SetArray (statement) (page 604)
• Point.SetElement (statement) (page 605)
• Point.SetpointPriv (property, read) (page 606)
• Point.SetQuadIntValue (function) (page 606)
• Point.SetRawArray (statement) (page 606)
• Point.SetValue (property, write) (page 607)
• Point.State (property, read) (page 608)
• Point.TimeStamp (property, read) (page 611)
• Point.TimeStampHR (property, read) (page 611)
• Point.UserFlags (property, read) (page 612)
• Point.Value (property, read/write) (page 612)

PointGet...

• PointGet (function) (page 613)
• PointGetMultiple (function) (page 614)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 539

• PointGetNext (function) (page 615)

PointSet...

• PointSet (statement) (page 617)
• PointSetMultiple (function) (page 618)
• PointSetMultipleEx (function) (page 620)

String...

• QINTFromString (function) (page 622)
• StringFromQINT (function) (page 623)
• StringFromUQINT (function) (page 623)
• UQINTFromString (function) (page 625)

Trace...

• Trace (statement) (page 624)
• TraceEnable/TraceDisable (statement) (page 624)

Acquire (function)

Syntax bool = Acquire(Region$, TimeOut&)

Description Acquire a Critical Section with a timeout. If the section is not acquired within the specified timeout, a value
of False is returned.

Critical Sections are used in multithreaded application to control reentrancy, protect access global data
structures, and provide synchronization. Only one thread of an application can be within a critical section
at a time. Since the Basic Control Engine is a multithreaded application, you may need to use critical
sections to prevent race type conditions.

Acquire and Release only work with the same process. In other words, two standalone executables
cannot protect against each other using this mechanism.

In the Basic Control Engine, when an event occurs, the script is started in parallel with any other currently
executing scripts. If two scripts compete for the same resource in your factory (e.g. controlling a pump)
you may need to use critical sections to control access.

Unlike a C application, access to public and private variables is controlled automatically by BASIC. That
is, if two threads are trying to set and get the value of a variable access to the variable is synchronous.
In other words, the thread, which is reading the value, won't get a value, which is half-written by the
other thread. However, if you are accessing more than one element of a global data structure and expect
another thread to be accessing the data, then you must protect the access with a critical section.

The Basic Control Engine automatically releases any critical sections held by the script when it
terminates. While the script is running, you can use the Acquire and Release commands to control when
a critical section is released. You must make a call to Release for each call you make to Acquire for a
critical section.

Comments

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 540

Parameter Description

Region$ String. A unique identifier of the region to be operated on.

TimeOut& Long. The time in milliseconds to wait.

Example Prevent reentry into the routine if the script is already in progress. If the script can't acquire the region
immediately, it will exit.

Sub Main()
 if Acquire("DATETIME",0) = FALSE then
 Exit Sub
 end if
 if Date$ <> LastDate then
 LastDate = Date$
 PointSet "DATE",LastDate
 end if
 PointSet "TIME",Time$
 Release "DATETIME"
End Sub

Acquire, Release (statements)

Note: In the Basic Control Engine, when an event occurs, the script is started in parallel. If another
event triggers the same script before the script ends, two scripts will be running in parallel. The
Acquire and Release routines can be used to modify this behavior. Two options are available.

1. Serialize the processing. In this case, the second instance of the script waits until the first is
complete and then begins execution. This is accomplished by placing an acquire statement at the
start of the script.

2. Skip processing. In this case, the second instance of the script exits without performing any
processing. The example in Acquire (FUNCTION) illustrated this.

AlarmGenerate (statement)

Syntax AlarmGenerate Project$, AlarmId$, ResourceId$, Message$, [, UserId$ [, RefId$ [, Master]]]

Description To generate an alarm on a local or remote CIMPLICITY project.

Parameter Description

Project$ String. The project to generate the alarm on. An
empty string "" indicates the current project.

AlarmId$ String. The ID of the Alarm. Must be a valid alarm
of type $CIMBASIC.

ResourceId$ String. The Resource ID to generate the alarm
against. Used to control routing of the alarm.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 541

Message$ (page) String. The update alarm message to display.

Note: This string is substituted into the first variable
field of the Alarm's message. For a user-defined
alarm message, this will be the first %s field in the
message. For a point alarm message, it will be the
first variable field (%VAL, %ID, etc.) in the alarm
message. For this reason, it is not recommended
that you use the AlarmMessage$ field when
updating point alarms.

UserId$ String (optional). The User ID that generated the
alarm.

RefId$ String (optional). A Reference ID used to
distinguish identical alarms.

Master BOOLEAN (optional). By default on a computer with
Server Redundancy, alarms sent by the standby
computer's Event Manager are ignored. To allow an
alarm to be generated from a script on a standby
computer, set Master to True.

Alarm
Message
Length

Important: The following use of AlarmGenerate requires extra configuration for projects created before
CIMPLICITY version 6.1.

An alarm is triggered from a BCE script using AlarmGenerate. The alarm is a $CIMBASIC type. The alarm
message contains 80 characters. Example:

Sub Main()
 AlarmGenerate "TEST_AMV","TEST_AMV_ALARM_SCRIPT","$SYSTEM","123456789012345678
90123456789012345678901234567890123456789012345678901234567890"
End Sub

For projects created before CIMPLICITY version 6.1:

Problem

If BASIC generates an alarm that is greater than 72 characters to a project that does not have the
following solution: The project will log an error indicating there were too many fields. The alarm will be
displayed with 72 characters.

Solution

Allow 80 characters in a BASIC alarm message. Idtpop the alarm_field record. Edit the alarm_field.idt file.
Change the field_len to 80 in the $CIMBASIC record. For projects created in CIMPLICITY version 6.1 and
later 80 characters are supported automatically.

unique_780_Connect_42_Message
unique_780_Connect_42_Message
unique_780_Connect_42_Message

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 542

Example
Sub Main()
 ' Generate a single alarm with no reference Id.
 AlarmGenerate "BCEDEMO","MY_ALARM_1","$SYSTEM",_
 "Electrical Bus 1 Failure"
 ' Generate three of the same alarm for different resources.
 AlarmGenerate "BCEDEMO","MY_ALARM_2","RESOURCE_1",_
 "Multiple Instance for each resource"
 AlarmGenerate "BCEDEMO","MY_ALARM_2","RESOURCE_2",_
 "Multiple Instance for each resource"
 AlarmGenerate "BCEDEMO","MY_ALARM_2","RESOURCE_3",_
 "Multiple Instance for each resource"
 ' Generate three of the same alarm for the same resource
 ' but use a different reference id.
 AlarmGenerate "BCEDEMO","MY_ALARM_3","RESOURCE_1",_
 "Multiple Instances for RefId","","1"
 AlarmGenerate "BCEDEMO","MY_ALARM_3","RESOURCE_1",_
 "Multiple Instances for RefId","","2"
 AlarmGenerate "BCEDEMO","MY_ALARM_3","RESOURCE_1",_
 "Multiple Instances for RefId","","3"
End Sub

See Also AlarmUpdate (statement) (page 545)

Notes The Alarm ID must have an Alarm Type of $CIMBASIC otherwise the alarm message may not be
displayed correctly.

A unique alarm in CIMPLICITY is defined by the Alarm ID, Resource ID and Reference ID combination.
Each unique alarm can be displayed as a distinct entry in the Alarm Viewer. Non-unique alarms are
stacked, so that the user only sees the most recent occurrence. In general, the Resource ID is used to
control the routing of alarms to users. The Reference ID is used by an application to distinguish between
different instances of the same alarm.

Guidelines for AlarmGenerateEx (statement) (page 542) also apply to AlarmGenerate.

AlarmGenerateEx (statement)

Syntax AlarmGenerateEx Project$, AlarmId$, ResourceId$, Message$, DateTime, IsUTC [, UserId$ [, RefId$ [
, Master]]]

Parameter Description

Project$ String. The project to generate the alarm on. An empty string ""
indicates the current project

AlarmId$ String. The ID of a non-point or point Alarm that is listed in the right-
pane of the Workbench>Alarms section.

Note:

Non-point alarms must be a $CIMBASIC alarm type for all details,
including the alarm message (page 544), to display correctly in an
Alarm Viewer. Point alarms are not $CIMBASIC alarms. As a result, there
are limitations and guidelines (page 545) to be aware of if those alarm
IDs are used in the script.

ResourceId$ String. The Resource ID to generate the alarm against. Used to control
routing of the alarm.

Message$ (page 544) String. The generated alarm message to display. Note: This string
is substituted into the first variable field (page 544) of the alarm's
configured message.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 543

DateTime The DateTime parameter depends on the script type.

CimBasic Date Variant The Date and
Now functions return the Date
Variant type.

.NET C# System.DateTime type

VB .NET System.DateTime type

IsUTC BOOLEAN Whether or not the passed in timestamp is UTC.

TRUE The DateTime parameter is a
UTC timestamp

FALSE The DateTime parameter is
not a UTC timestamp

Note: If you do not use UTC time, you will be responsible for
making sure your system’s Time Zone settings, including DST, are
properly set.

UserId$ String (optional). The User ID that generated the alarm.

RefId$ String (optional). A Reference ID used to distinguish identical alarms.

Master BOOLEAN (optional). By default on a computer with Server
Redundancy, alarms sent by the standby computer's Event Manager
are ignored. To allow an alarm to be generated from a script on a
standby computer, set Master to True.

CimBasic
Example
1

'This example displays the syntax.
Sub Main()
theDate = Now()
 AlarmGenerateEx "PROJECT01","ALARM501","$SYSTEM","Device 501 needs attention.", theDate,
 FALSE
End Sub

Example
2

'This example displays time in microseconds.

Sub Main()
TheDate = #2012/1/12 10:49:0# + 0.000002
AlarmGenerateEx "FORSHOW","MYALARM","$MAC_FR","Hello", TheDate, true
End Sub

.NET C#
Example
1

//This example displays the syntax.
public void Main()
{ DateTime dt = new DateTime(2012, 06, 18, 2, 5, 5);
 Cimplicity.AlarmGenerateEx("TESTER","TESTALARMGEN","$SYSTEM","csAG Test",dt, true)}

Example
2 //This example displays time in microseconds.

public void Main()
 {
 DateTime dt = new DateTime(2012, 7, 1, 0,0,0,123);
// Add One extra millisecond + a few Nano100seconds (10000 milliseconds in a Nano100Seconds)
 dt = dt.AddTicks(10100);
 Cimplicity.AlarmGenerateEx("FORSHOW","MYALARM","$MAC_FR",".net", dt, false);
 }

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 544

VB .NET
Example 'This example displays the syntax.

Public Sub Main()
 Dim DT1 As DateTime
 DT1 = New DateTime(2012,7,1,15,30,22,123)
 Cimplicity.AlarmGenerateEx("ALARMGENERATEUPDATE","CB1","$SYSTEM","Test VB alarm",
 DT1, False)
End Sub

Guidelines: AlarmGenerateEx and AlarmUpdateEx

• Message$ limitations and guidelines.
• Non-Point alarm requirements.
• Point alarm guidelines.

Note: Guidelines also apply to AlarmGenerate (page 540) and AlarmUpdate (page 545)
.

Message$ Limitations and Guidelines

Messages that display in the Alarm Viewer draw from the following sources and have the following
limitations.

The message, which is a string, is substituted into the first variable field of the alarm's configured
message.

Message: User-defined alarm The substituted string will be the first %s in the Alarm Definition dialog box>Alarm
Message field.

Message : Point alarm ID The substituted string will be the first variable field (%VAL, %ID) in an Alarm Definition dialog
box (or Point Properties dialog box)>Alarm Message field. However, if a point alarm ID is used in an AlarmGenerateEx
or AlarmUpdateEx (page 547) script, because the alarm is not a $CIMBASIC alarm, the message will most likely not
display as you would expect. Examples The entry in the Alarm Message field includes text and more than one variable
POINT01 is %VAL : %STATE If the code:

Does not include a message
• Text from the field will display; Variable

values will not display.
• The first variable position will be blank; BAD

FIELD might display for the other variables.

POINT01 is :BAD FIELD

Does include a message "Point in alarm state."
• Text will display; the message in the code

will display in the first variable position.
• BAD FIELD might display for other

variables.

POINT01 is Point in alarm state. BAD FIELD

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 545

Non-Point Alarm Requirements

The alarm definition (in an Alarm Definition dialog box) for a non-point alarm must include the
following values.

Alarm type $CIMBASIC alarm.

Alarm message %s

Point Alarm Guidelines

When an alarm is generated using a point alarm ID, the alarm that is generated is actually no longer a
point alarm.

However, like its point alarm counterpart, it also is not a $CIMBASIC alarm.

• The alarm message (page 544) may not display correctly.
• A unique alarm in CIMPLICITY is defined by the Alarm ID, Resource ID and Reference ID

combination.

Each unique alarm can be displayed as a distinct entry in the Alarm Viewer.

If the actual point alarm is in alarm state and displays in the Alarm Viewer, using the same alarm ID
in:

• AlarmGenerateEx will generate a separate alarm from the point alarm.
• AlarmUpdateEx (page 547) will acknowledge and/or reset the actual alarm depending on

the command(s).

Note: If only the generated alarm is listed AlarmUpdateEx (page 547) will acknowledge
and/or reset that alarm. Non-unique alarms are stacked, so that the user only sees the most recent
occurrence. In general, the Resource ID is used to control the routing of alarms to users. The
Reference ID is used by an application to distinguish between different instances of the same alarm.

AlarmUpdate (statement)

Syntax AlarmUpdate Project$, AlarmId$, ResourceId$, Action% [, AlarmMessage$ [, UserId$ [, RefId$]]]

Description To update a currently generated alarm. The alarm being updated may be of any alarm type. However, if
the AlarmMessage$ is specified, it must be an alarm with an alarm type of $CIMBASIC.

Comments Parameter Description

Project$ String. The project to generate the alarm on, an empty string "" indicates the current
project

AlarmId$ String. The ID of the Alarm. Must be a valid alarm.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 546

ResourceId$ String. The Resource ID to generate the alarm against. Used to control routing of the
alarm.

Action% Integer. Indicates whether to acknowledge or reset the alarm. Use the manifest
constants AM_ACKNOWLEDGED and AM_RESET to perform an acknowledgment and a reset.
By default, on a computer with Server Redundancy, alarm updates from the standby
computer's Event Manager are ignored. To acknowledge or reset an alarm on the
active computer from the standby computer, use AM_ACKNOWLEDGED_M or
AM_RESET_M to override the default behavior.

AlarmMessage
$

String. (optional). The update alarm message to display. Note: This string is substituted
into the first variable field of the Alarm's message. For a user-defined alarm message,
this will be the first %s field in the message. For a point alarm message, it will be
the first variable field (%VAL, %ID, etc.) in the alarm message. For this reason, it is not
recommended that you use the AlarmMessage$ field when updating point alarms.

UserId$ String. (optional). The User ID which generated the alarm.

RefId$ String. A Reference ID used to distinguish between identical alarms. The Reference ID
needs to match the Reference ID of the generated alarm. If the alarm was generated
without a Reference ID, then this field can be omitted from the call.

Example
Sub Main()
 a$ = time$
 AlarmUpdate "BCEDEMO","MY_ALARM_1","$SYSTEM",x,_
 "Electrical Bus 1 " & a$
 AlarmUpdate "BCEDEMO","MY_ALARM_2","RESOURCE_1",x,_
 "Multiple Instance for each resource " & a$
 AlarmUpdate "BCEDEMO","MY_ALARM_2","RESOURCE_2",x,_
 "Multiple Instance for each resource " & a$
 AlarmUpdate "BCEDEMO","MY_ALARM_2","RESOURCE_3",x,_
"Multiple Instance for each resource " & a$
 AlarmUpdate "BCEDEMO","MY_ALARM_3","RESOURCE_1",x,_
"Multiple Instances for RefIf " & a$,"","1"
 AlarmUpdate "BCEDEMO","MY_ALARM_3","RESOURCE_1",x,_
"Multiple Instances for RefIf " & a$,"","2"
 AlarmUpdate "BCEDEMO","MY_ALARM_3","RESOURCE_1",x,_
"Multiple Instances for RefIf " & a$,"","3"
End Sub

See Also AlarmGenerate (page 540) (statement)

Note When updating an alarm, the AlarmId$, ResourceId$ and RefId$ must match exactly to the alarm to be
updated; if they do not match, the alarm will not be updated. When updating a point alarm, the RefId$ is
always the Point ID (which is also the Alarm ID).

Guidelines that apply to AlarmUpdateEx (page 549) also apply to AlarmUpdate.

AlarmUpdateCA (statement)

Syntax AlarmUpdate Project$, AlarmId$, ResourceId$, Action% ,caObj [, AlarmMessage$ [, UserId$ [,RefId

$]]]

Description To update a currently generated Change approval alarm. The alarm being updated may be of any alarm
type. However, if the AlarmMessage$ is specified, it must be an alarm with an alarm type of $CIMBASIC.

Comments Parameter Description

Project$ String. The project to generate the alarm on, an empty string "" indicates the current
project

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 547

AlarmId$ String. The ID of the Alarm. Must be a valid alarm.

ResourceId$ String. The Resource ID to generate the alarm against. Used to control routing of the
alarm.

Action% Integer. Indicates whether to acknowledge or reset the alarm. Use the manifest
constants AM_ACKNOWLEDGED and AM_RESET to perform an acknowledgment and a reset.
By default, on a computer with Server Redundancy, alarm updates from the standby
computer's Event Manager are ignored. To acknowledge or reset an alarm on the active
computer from the standby computer, use AM_ACKNOWLEDGED_M or AM_RESET_M to override
the default behavior.

caObj Object of type CimAlmChangeApprovalData. It contains Change Approval information.

AlarmMessage
$

String. (optional). The update alarm message to display. Note: This string is substituted
into the first variable field of the Alarm's message. For a user-defined alarm message,
this will be the first %s field in the message. For a point alarm message, it will be
the first variable field (%VAL, %ID, etc.) in the alarm message. For this reason, it is not
recommended that you use the AlarmMessage$ field when updating point alarms.

UserId$ String. (optional). The User ID which generated the alarm.

RefId$ String. A Reference ID used to distinguish between identical alarms. The Reference ID
needs to match the Reference ID of the generated alarm. If the alarm was generated
without a Reference ID, then this field can be omitted from the call.

Example
Sub Main()
Dim obj As New CimAlmChangeApprovalData
 obj.PerformerUserid = "OPERATOR"
 obj.PerformerPassword = ""
 obj.PerformerComment= "bool=1 from BCE"
 obj.VerifierUserid = "MANAGER"
 obj.VerifierPassword = ""
 obj.VerifierComment= "bool=1 from BCE"

 AlarmUpdateCA"ESIGDEMO","CA_TESTPOINT","$MAC_FR",AM_ACKNOWLEDGED,CAobj,
 "CA_TESTPOINT","CA_TESTPOINT","CA_TESTPOINT"
End Sub

See Also AlarmGenerate (page 540) (statement)

Note When updating an alarm, the AlarmId$, ResourceId$ and RefId$ must match exactly to the alarm to be
updated; if they do not match the alarm will not be updated. When updating a point alarm, the RefId$ is
always the Point ID (which is also the Alarm ID).

AlarmUpdateEx (statement)

Syntax AlarmUpdateEx Project$, AlarmId$, ResourceId$, Action%, DateTime, IsUTC [, AlarmMessage$ [,
UserId$ [, RefId$]]]

Parameter Description

Project$ String. The project to update the alarm on. An empty string ""
indicates the current project.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 548

AlarmId$ String. The ID of a non-point or point Alarm that is listed in the right-
pane of the Workbench>Alarms section.

Note:

Non-point alarms must be a $CIMBASIC alarm type for all details,
including the alarm message (page 549), to display correctly in an
Alarm Viewer. Point alarms are not $CIMBASIC alarms. As a result,
there are limitations and guidelines (page 550) to be aware of if
those alarm IDs are used in the script.

ResourceId$ String. The Resource ID to update the alarm against. Used to control
routing of the alarm.

Action Integer. Indicates whether to acknowledge or reset the alarm. Use the
following constants to perform an acknowledgment and a reset.

• AM_ACKNOWLEDGED

• AM_RESET

Server Redundancy: By default, on a computer with Server
Redundancy, alarm updates from the standby computer's Event
Manager are ignored. To acknowledge or reset an alarm on the active
computer from the standby computer, use either of the following to
override the default behavior.

• AM_ACKNOWLEDGED_M

• AM_RESET_M

DateTime The DateTime parameter depends on the script type.

CimBasic Date Variant The Date and
Now functions return the Date
Variant type.

.NET C# System.DateTime type

VB .NET System.DateTime type

IsUTC BOOLEAN Whether or not the passed in timestamp is UTC.

TRUE The DateTime parameter is a
UTC timestamp

FALSE The DateTime parameter is
not a UTC timestamp

Note: If you do not use UTC time, you will be responsible for
making sure your system’s Time Zone settings, including DST, are
properly set.

Message$ (page 549) String. The update alarm message to display. Note: This string is
substituted into the first variable field (page 549) of the Alarm's
message.

UserId$ String (optional). The User ID that updated the alarm.

RefId$ String (optional). A Reference ID used to distinguish identical alarms.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 549

Master BOOLEAN (optional). By default on a computer with Server
Redundancy, alarms sent by the standby computer's Event Manager
are ignored. To allow an alarm to be generated from a script on a
standby computer, set Master to True.

CimBasic
Example 'This example displays the syntax.

Sub Main()
theDate = Now()
 AlarmUpdateEx "TESTER","ALARM501","$SYSTEM", AM_ACKNOWLEDGED, theDate, FALSE "Device 501:
 Responded."
End Sub

.NET C#
Example //This example displays the syntax.

public void Main()
{ DateTime dt = new DateTime(2012, 06, 18, 2, 5, 5);
Cimplicity.AlarmUpdateEx("TESTER", "TESTALARMGEN", "$SYSTEM", Cimplicity.AM_ACKNOWLEDGED, dt,
 true, "csAG Test")}

VB .NET
Example 'This example displays the syntax.

Public Sub Main()
 Dim DT2 As DateTime
 DT2 = New DateTime (2012,7,10,20,20,30,789)
 Cimplicity.AlarmUpdateEx("ALARMGENERATEUPDATE", "CB1", "$SYSTEM",
 Cimplicity.AM_RESET + Cimplicity.AM_ACKNOWLEDGED, DT2, True, "Updated", "OPERATOR")
End Sub

Guidelines: AlarmGenerateEx and AlarmUpdateEx

• Message$ limitations and guidelines.
• Non-Point alarm requirements.
• Point alarm guidelines.

Note: Guidelines also apply to AlarmGenerate (page 540) and AlarmUpdate (page 545)
.

Message$ Limitations and Guidelines

Messages that display in the Alarm Viewer draw from the following sources and have the following
limitations.

The message, which is a string, is substituted into the first variable field of the alarm's configured
message.

Message: User-defined alarm The substituted string will be the first %s in the Alarm Definition dialog box>Alarm
Message field.

Message : Point alarm ID The substituted string will be the first variable field (%VAL, %ID) in an Alarm Definition dialog
box (or Point Properties dialog box)>Alarm Message field. However, if a point alarm ID is used in an AlarmGenerateEx
(page 542) or AlarmUpdateEx script, because the alarm is not a $CIMBASIC alarm, the message will most likely not
display as you would expect. Examples The entry in the Alarm Message field includes text and more than one variable
POINT01 is %VAL : %STATE If the code:

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 550

Does not include a message
• Text from the field will display; Variable

values will not display.
• The first variable position will be blank; BAD

FIELD might display for the other variables.

POINT01 is :BAD FIELD

Does include a message "Point in alarm state."
• Text will display; the message in the code

will display in the first variable position.
• BAD FIELD might display for other

variables.

POINT01 is Point in alarm state. BAD FIELD

Non-Point Alarm Requirements

The alarm definition (in an Alarm Definition dialog box) for a non-point alarm must include the
following values.

Alarm type $CIMBASIC alarm.

Alarm message %s

Point Alarm Guidelines

When an alarm is generated using a point alarm ID, the alarm that is generated is actually no longer a
point alarm.

However, like its point alarm counterpart, it also is not a $CIMBASIC alarm.

• The alarm message (page 549) may not display correctly.
• A unique alarm in CIMPLICITY is defined by the Alarm ID, Resource ID and Reference ID

combination.

Each unique alarm can be displayed as a distinct entry in the Alarm Viewer.

If the actual point alarm is in alarm state and displays in the Alarm Viewer, using the same alarm ID
in:

• AlarmGenerateEx (page 542) will generate a separate alarm from the point alarm.
• AlarmUpdateEx will acknowledge and/or reset the actual alarm depending on the command(s).

Note: If only the generated alarm is listed AlarmUpdateEx will acknowledge and/or reset that alarm.

• Non-unique alarms are stacked, so that the user only sees the most recent occurrence. In general,
the Resource ID is used to control the routing of alarms to users.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 551

• The Reference ID is used by an application to distinguish between different instances of the
same alarm.

ChangePassword (statement)

Syntax ChangePassword Project$, OldPassword$, NewPassword$

Description To change a password for a currently logged in user on a specified project.

Comments Parameter Description

Project$ String. The project to change the password on. An empty string indicates the current
default project.

OldPassword
$

String. The old password of the user.

NewPassword
$

String. The new password of the user.

Example
Sub Main()
 ChangePassword "CIMPDEMO", "OLDPASS", "NEWPASS"
End Sub

Note The user must be logged into the specified project or the function will fail.

CimChangeApprovalData (Object)

Overview The CimChangeApprovalData object contains information about Change Approval information (e.g.Performer
and Verifier User ID, Password and Comments for Point Operations).

Example
Dim obj As New CimAlmChangeApprovalData
 obj.PerformerUserid = "OPERATOR"
 obj.PerformerPassword = ""
 obj.PerformerComment= "bool=1 from BCE"
 obj.VerifierUserid = "MANAGER"
 obj.VerifierPassword = ""
 obj.VerifierComment= "bool=1 from BCE"

CimEMAlarmEvent.AlarmID (property, read)

Syntax AlarmEvent.AlarmId

Description String. Returns the Alarm ID of the Alarm that triggered the event.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 552

Example
Sub Main()
 Dim AlarmEvent as CimEmAlarmEvent
 Set AlarmEvent = CimGetEMEvent().AlarmEvent()
 PointSet "LAST_ALARM_ID", AlarmEvent.AlarmID
 End if
End Sub

CimEMAlarmEvent.FinalState (property, read)

Syntax AlarmEvent.FinalState

Description Integer. Returns the final state of the alarm after the requested action. For example, if the user
acknowledged the alarm and the deletion requirements for the alarm only require acknowledgement then
the final state would be AM_DELETED.

Valid States are :

• AM_GENERATED
• AM_ACKNOWLEDGED
• AM_RESET
• AM_DELETED

Example
Sub Main()
 Dim AlarmEvent as CimEmAlarmEvent
 Set AlarmEvent = CimGetEMEvent().AlarmEvent()
 If AlarmEvent.FinalState = AM_ACKNOWLEDGED then
 PointSet "ALARM_MESSAGE", "Alarm is Acknowledged"
 End if
End Sub

CimEMAlarmEvent.GenTime (property, read)

Syntax AlarmEvent.GenTime

Description Date. Returns the day and time the alarm was generated.

Example
Sub Main()
 Dim AlarmEvent as CimEmAlarmEvent
 Set AlarmEvent = CimGetEMEvent().AlarmEvent()
 PointSet "TEXT_ALARM_GEN_TIME", cstr(AlarmEvent.GenTime)
 End if
End Sub

CimEMAlarmEvent.Message (property, read)

Syntax AlarmEvent.Message

Description String. Returns the text of the Alarm Message of the alarm that triggered the event.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 553

Example
Sub Main()
 Dim AlarmEvent as CimEmAlarmEvent
 Set AlarmEvent = CimGetEMEvent().AlarmEvent()
 PointSet "LAST_ALARM_MESSAGE", AlarmEvent.Message
 End if
End Sub

CimEMAlarmEvent (object)

Overview The CimEMAlarmEvent object provides information for scripts invoked from an alarm event.

Example
Dim alarmEvent As CimEmAlarmEvent
Set alarmEvent = CimGetEMEvent().AlarmEvent()
PointSet "ALARM_MESSAGE", alarmEvent.Message

Note CimEMAlarmEvent can only be used from the Event Manager. It is not valid in CimView/CimEdit.

CimEMAlarmEvent.PrevState (property, read)

Syntax AlarmEvent.PrevState

Description Integer. Returns the previous state of the alarm. Valid States are :

• AM_GENERATED
• AM_ACKNOWLEDGED
• AM_RESET
• AM_DELETED

Example
Sub Main()
 Dim AlarmEvent as CimEmAlarmEvent
 Set AlarmEvent = CimGetEMEvent().AlarmEvent()
 If AlarmEvent.PrevState = AM_ACKNOWLEDGED then
 PointSet "ALARM_PREVSTATE", "ACKNOWLEDGED"
 End if
End Sub

CimEMAlarmEvent.RefID (property, read)

Syntax AlarmEvent.RefID

Description String. Returns the Reference ID of the alarm that triggered the event.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 554

Example
Sub Main()
 Dim AlarmEvent as CimEmAlarmEvent
 Set AlarmEvent = CimGetEMEvent().AlarmEvent()
 PointSet "LAST_ALARM_REF_ID", AlarmEvent.RefID
 End if
End Sub

CimEMAlarmEvent.ReqAction (property, read)

Syntax AlarmEvent.ReqAction

Description Integer. Returns the action requested on the alarm. For example, if the user had acknowledged the alarm
in the Alarm Viewer the requested action would be AM_ACKNOWLEDGED.

Example
Sub Main()
 Dim AlarmEvent as CimEmAlarmEvent
 Set AlarmEvent = CimGetEMEvent().AlarmEvent()
 If AlarmEvent.ReqAction = AM_ACKNOWLEDGED then
 PointSet "ALARM_MESSAGE", "Alarm has been Acknowledged"
 End if
End Sub

CimEMAlarmEvent.ResourceID (property, read)

Syntax AlarmEvent.ResourceID

Description String. Returns the Resource ID of the alarm that triggered the event.

Example
Sub Main()
 Dim AlarmEvent as CimEmAlarmEvent
 Set AlarmEvent = CimGetEMEvent().AlarmEvent()
 PointSet "LAST_ALARM_RESOURCE_ID", AlarmEvent.ResourceID
 End if
End Sub

CimEMEvent.ActionID (property, read)

Syntax Event.ActionID

Description String. Returns the Action ID that is a running the script.

Example
Sub Main()
 Dim event as CimEMEvent
 Set event = CsimGetEMEvent()
 PointSet "LAST_ACTION_ID", event.ActionID
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 555

CimEMEvent.AlarmEvent (function)

Syntax Event.AlarmEvent

Description Returns CimEMAlarmEvent. Returns the Alarm Event object that triggered the action, or empty if action
was not triggered by an alarm.

Example
Sub Main()
 Dim event as CimEMEvent
 Set event = CimGetEMEvent()
 If event.Type = EM_ALARM_GEN then
 Dim alarmEvent as CimEMAlarmEvent
 Set AlarmEvent = event.AlarmEvent()
 ' Process the alarm
 End If

End Sub

CimEMEvent.EventID (property, read)

Syntax Event.EventID

Description String. Returns the EventID that triggered the event.

Example
Sub Main()
 Dim event as CimEMEvent
 Set event = CimGetEMEvent()
 PointSet "LAST_EVENT_ID", event.EventId
End Sub

CimEMEvent (object)

Overview An object used by the Event Manager to hold information about the event that triggered the action.

Example
Sub Main()
 Dim event as CimEMEvent
 Set event = CimGetEMEvent()
 PointSet "LAST_EVENT_ID", event.EventId
End Sub

Note CimEMEvent can only sbe used from the Event Manager. It is not valid in CimView/CimEdit.

CimEMEvent.ObjectID (property, read)

Syntax Event.ObjectID

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 556

Description String. If the script is invoked from an object event, the Object ID invoking the action is returned. If the
script is invoked from a non-object event, an empty string is returned

Example
Sub Main()
 Dim event as CimEMEvent
 Set event = CimGetEMEvent()
 PointSet "LAST_OBJECT_ID", event.ObjectID
End Sub

CimEMEvent.PointEvent

Syntax Event.PointEvent

Description Returns CimEMPointEvent. Returns the Point Event object that triggered the action, or empty if action
was not triggered by point event.

Example
Sub Main()
 Dim event as CimEMEvent
 Set event = CimGetEMEvent()
 Dim pointEvent as CimEMPointEvent
 Set pointEvent = event.PointEvent()
End Sub

CimEMEvent.TimeStamp (property, read)

Syntax Event.TimeStamp

Description Date. Returns the Time Stamp at which the event occurred.

Example
Sub Main()
 Dim event as CimEMEvent
 Set event = CimGetEMEvent()
 PointSet "LAST_EVENT_TIME", cstr(eent.TimeStamp)
End Sub

CimEMEvent.Type (property, read)

Syntax Event.Type

Description Integer. Returns the type of event that triggered the action. Valid values are:

EM_ALARM_GEN Alarm Generated

EM_ALARM_ACK Alarm Acknowledged

EM_ALARM_RST Alarm Reset

EM_ALARM_DEL Alarm Deleted

EM_POINT_CHANGE Point Changed

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 557

EM_POINT_UNAVAIL Point Unavailable

EM_POINT_EQUALS Point Equals

EM_POINT_UPDATE Point Updated

EM_POINT_TRANS_HIGH Point Transition to High

EM_POINT_TRANS_LOW Point Transition to Low

EM_TIMED Timed Event

EM_RUN_ONCE Run Once

EM_TRIGGERED Externally trigged by BCEUI or Action Calendar

Consult the Event Editor documentation for more details.

Example
Sub Main()
 Dim event as CimEMEvent
 Set event = CimGetEMEvent()
 If event.Type = EM_ALARM_GEN then
 Dim alarmEvent as CimEMAlarmEvent
 Set AlarmEvent = event.AlarmEvent()
 ' Process the alarm
 End If

End Sub

CimEMPointEvent.Id

Syntax PointEvent.Id

Description String. Returns the Point ID of the point that triggered the event.

Example
Sub Main()
 Dim PointEvent as CimEmPointEvent
 Set PointEvent = CimGetEMEvent().PointEvent()
 ' perform processing
 ' reset the event point to 0
 PointSet PointEvent.Id, 0
End Sub

Note CimEMPointEvent can only be used from the Event Manager. It is not valid in CimView/CimEdit

CimEMPointEvent (object)

Overview An Event Manager Object used to contain information about a Point Event

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 558

Example
Sub Main()
 Dim PointEvent as CimEmPointEvent
 Set PointEvent = CimGetEMEvent().PointEvent()
 ' perform processing
 ' reset the event point to 0
 PointSet PointEvent.Id, 0
End Sub

CimEmPointEvent.Quality (property, read)

Syntax CimEMPointEvent.Quality

Description Long. Returns the 16-bit quality mask for the point that triggered the event.

Example
Sub Main()
 Dim p as new CimEMPointEvent
 Set p = CimGetEmEvent().PointEvent()
 X = p.Quality
End Sub

CimEmPointEvent.QualityAlarmed (property, read)

Syntax CimEMPointEvent.QualityAlarmed

Description Boolean. Returns TRUE if the point that triggered the event is in alarm, FALSE otherwise.

Example
Sub Main()
 Dim p as new CimEMPointEvent
 Set p = CimGetEmEvent().PointEvent()
 if p.QualityAlarmed then
 DoSomething
 End If
End Sub

CimEmPointEvent.QualityAlarms_Enabled (property, read)

Syntax CimEMPointEvent.QualityAlarms_Enabled

Description Boolean. Returns TRUE if alarming for the point that triggered the event is enabled, FALSE otherwise.

Example
Sub Main()
 Dim p as new CimEMPointEvent
 Set p = CimGetEmEvent().PointEvent()
 if p.QualityAlarms_Enabled then
 DoSomething
 End If
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 559

CimEmPointEvent.QualityDisable_Write (property, read)

Syntax CimEMPointEvent.QualityDisable_Write

Description Boolean. Returns TRUE if setpoints have been disabled for the point that triggered the event, FALSE
otherwise.

Example
Sub Main()
 Dim p as new CimEMPointEvent
 Set p = CimGetEmEvent().PointEvent()
 if p.QualityDisable_Write Then
 DoSomething
 End If
End Sub

CimEmPointEvent.QualityLast_Upd_Man (property, read)

Syntax CimEMPointEvent.QualityLast_Upd_Man

Description Boolean. Returns TRUE if the value of the point that triggered the event came from a manual update
rather than a device read.

Example
Sub Main()
 Dim p as new CimEMPointEvent
 Set p = CimGetEmEvent().PointEvent()
 If p.QualityLast_Upd_Man then
 DoSomething
 End If
End Sub

CimEmPointEvent.QualityManual_Mode (property, read)

Syntax CimEMPointEvent.QualityManual_Mode

Description Boolean. Returns TRUE if the point that triggers the event was in Manual Mode, otherwise FALSE.

Example
Sub Main()
 Dim p as new CimEMPointEvent
 Set p = CimGetEmEvent().PointEvent()
 if p.QualityManual_Mode then
 ProcessManualMode
 End if
End Sub

CimEmPointEvent.QualityIs_In_Range (property, read)

Syntax CimEMPointEvent.QualityIs_In_Range

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 560

Description Boolean. Returns TRUE if the value of the point that triggered the event is in range, FALSE if the point is
out of range. When a point is out of range its value is unavailable.

Example
Sub Main()
 Dim p as new CimEMPointEvent
 Set p = CimGetEmEvent().PointEvent()
 if p.QualityIs_In_Range = FALSE then
 DoSomething
 End If
End Sub

CimEmPointEvent.QualityStale_Data (property, read)

Syntax CimEMPointEvent.QualityStale_Data

Description Boolean. Returns TRUE if the value of the point that triggered the event is stale, otherwise FALSE.

Example
Sub Main()
 Dim p as new CimEMPointEvent
 Set p = CimGetEmEvent().PointEvent()
 if p.QualityStale_Data = TRUE
 DoSomething
 End If
End Sub

CimEmPointEvent.QualityIs_Available (property, read)

Syntax CimEMPointEvent.QualityIs_Available

Description Boolean. Returns TRUE if the value of the point that triggered the event is available, FALSE if the value is
unavailable.

Example
Sub Main()
 Dim p as new CimEMPointEvent
 Set p = CimGetEmEvent().PointEvent()
 if p.QualityIs_Available = FALSE then
 DoSomething
 End If
End Sub

CimEMPointEvent.State (property, read)

Syntax PointEvent.State

Description Integer. Returns the state of the point. Can be used to determine if the point is available. See Point.State
for a complete description of states.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 561

Example
Sub Main()
 Dim PointEvent as CimEmPointEvent
 Set PointEvent = CimGetEMEvent().PointEvent()
 If PointEvent.State = CP_UNAVAILABLE THEN
 LogStatus CIM_FAILURE,"Main()", _
 "Point " & Point.Id & "is unavailable"
 end
 End if
End Sub

CimEMPointEvent.TimeStamp (property, read)

Syntax PointEvent.TimeStamp

Description Date. Returns the date and time of the point change that triggered the event.)

Example
Sub Main()
 Dim PointEvent as CimEmPointEvent
 Set PointEvent = CimGetEMEvent().PointEvent()
 PointSet "LAST_EVENT_TIME", cstr(PointEvent.TimeStamp)
End Sub

CimEmPointEvent.UserFlags (property, read}

Syntax CimEMPointEvent.UserFlags

Description Long. Returns the value of the 16-bit user defined flags for the point that triggered the event.

Example
Sub Main()
 Dim p as new CimEMPointEvent
 Set p = CimGetEmEvent().PointEvent()
 X = p.UserFlags
End Sub

CimEMPointEvent.Value (property, read)

Syntax PointEvent.Value

Description Variant. Returns the value of the point that triggered the event.

Example
Sub Main()
 Dim PointEvent as CimEmPointEvent
 Set PointEvent = CimGetEMEvent().PointEvent()
 PointSet "OUTPUT_POINT", PointEvent.Value + 100
End Sub

CimGetEMEvent (function)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 562

Syntax CimGetEMEvent()

Description Returns a CimEMEvent object. A function to return the event object that causes the action to run. Only
valid from Event Manager.

Example
Sub Main()
 Dim event as CimEMEvent
 Set event = CimGetEMEvent()
 PointSet "LAST_EVENT_TIME", cstr(event.TimeStamp)
End Sub

Note CimGetEMEvent can only be used from the Event Manager. It is not valid in CimView/CimEdit.

CimIsMaster (function)

Syntax CimIsMaster

Description In a computer with Server Redundancy, to determine if the computer is operating in Active or Standby
mode. This function returns TRUE if the computer is currently the active computer. This function returns
FALSE if the computer is currently the standby.

Example
Sub Main()
 If CimIsMaster then
 MoveCrane
 End if
End Sub

CimLogin (statement)

Syntax CimLogin project$

Description Initiates a login for the specified project. Similar in effect to selecting login from the Login Panel. Only
valid when the user is actively using points or viewing alarms from the project, otherwise it has no effect.
Initiating a login will cause the CIMPLICITY login box to be displayed.

Comments Parameter Description

project$ String. The project to login to.

Example
Sub Main()
 CimLogin "CIMPDEMO"
End Sub

CimLogout (statement)

Syntax CimLogout project$

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 563

Description Logs the user out of the specified project. Similar in effect to selecting logout from the Login Panel.
When the user is logged out of the project, all points from the project will be unavailable and no alarm
information will be available. If the user is not logged into the project, the call has no effect.

Comments Parameter Description

project$ String. The project to logout of.

Example
Sub Main()
 CimLogout "CIMPDEMO"
End Sub

CimProjectData.Attributes (property, read/write)

Syntax CimProjectData.Attributes

Description String. The list of attributes, separated by commas, of the entity to return for each item matching the
filter criteria. The Attribute IDs are case sensitive and must be entered in the case documented in
CimProjectData.Entity .

CimBasic
Example Dim d as new CimProjectData

d. Attributes = "POINT_ID,RESOURCE_ID,DESCRIPTION"

.Net
Example CimProjectData cpd = new CimProjectData();

cpd.Attributes = "POINT_ID,RESOURCE_ID";

CimProjectData.Filters (property, read/write)

Syntax CimProjectData.Filters

Description String. The filter set to be used to determine which items to return. Each filter contains an Attribute
ID and Value pair. You can use "*" and "?"as wildcard characters. The filters are documented in
CimProjectData.Entity . Filters must be in uppercase even when matching against lowercase data.

Example
Dim d as new CimProjectData
d.Filters = "POINT_ID=P*",DEVICE_ID=TESTP?C"

CimProjectData.GetNext (function)

Syntax CimProjectData.GetNext(p1$ [,p2$ [,p3$…) as Boolean

Description This function returns the specified attributes for the next item that matches the filter criteria. If a record is
found, a value of TRUE is returned, otherwise a value of FALSE is returned. The function takes a variable
number (20 maximum) of string parameters. The values returned into the parameters are defined by the
attributes specified for the object.

Comments Parameter Description

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 564

p1$ String. First attribute for the object.

: :

p20$ String. Twentieth attribute for the object.

Example 1 The following sample script returns all the data items for the PID1 object.

Sub Main()
 Dim browse as new CimProjectData
 Browse.Project = "MY_PROJ"
 Browse.Entity = "OBJECT_INF"
 Browse.Attributes = DATA_ITEM"
 Browse.Filters = "OBJECT_ID=PID1"
 Dim dataItem as String
Top:
 If Browse.GetNext(dataItem) = False then end
 Msgbox dataitem
 Goto top
End Sub

Example 2 The following sample script returns all points for a device:

Sub Main()
 Dim browse as new CimProjectData
 Browse.Project = "MY_PROJ"
 Browse.Entity = "POINT"
 Browse.Attributes = "POINT_ID,RESOURCE_ID"
 Browse.Filters = "DEVICE_ID=PLC1"
Top:
 If Browse.GetNext(p$,r$) = False then end
 Msgbox "Point Id " & p$ & " Resource id " & r$
 Goto top
End Sub

CimProjectData.Entity (property, read/write)

Syntax CimProjectData.Entity

Description String. The entity to obtain data for. Below is a list of the available entities and their attributes

Example Dim d as New CimProjectData d.Entity = "POINT"

Entity List

ACTION MEASSYSTEM PORT

ALARM_BLK_GROUP MEASUNIT PROJECTS

ALARM_CLASS OBJECT PROTOCOL

ALARM_DEF OBJECT_INF RESOURCE

AMLP POINT ROLE

CLASS POINT_ALSTR SSPC

CLIENT POINT_DISP SYS_PARMS

DEVICE POINT_ENUM UAFSETS

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 565

EVENT POINT_ENUM_FLD USER

EVENT_ACTION POINT_TYPE USER_FIELDS

GLB_PARMS

ACTION

Contains Action information

Attribute ID Filter Description

ACTION_ID Yes Action ID

ACTION_TYPE No Action Type

POINT_ID No Point ID targeted by the action

PT_VAL No Point value

PROC_OF_SRCPT No Source point,

ALARM_BLK_GROUP

Contains Alarm Blocking Group Information.

Attribute ID Filter Description

BLOCK_GROUP_ID Yes Alarm Blocking Group ID

DESCRIPTION Yes Description of the group.

PEER_BLOCK Yes Blocking Mode: If you select Peer Blocking mode, only the first alarm of a set of alarms
with equal priority displays for that group.

ALARM_CLASS

Contains Alarm Class information.

Attribute ID Filter Description

CLASS_ID Yes Class ID

CLASS_TITLE Yes Class title

CLASS_ORDER No Class order

CLASS_ALARM_FG No The foreground color to use for points of this class that are in alarm state.

CLASS_ALARM_BG No The background color to use for points of this class that are in alarm state.

CLASS_NORMAL_FG No The foreground color to use for points of this class that are in normal state.

CLASS_NORMAL_BG No The background color to use for points of this class that are in normal state.

CLASS_ACK_FG No The foreground color to use for points of this class that are in acknowledged
state.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 566

CLASS_ACK_BG No The background color to use for points of this class that are in
acknowledged state.

CLASS_WAVE_FILE No The WAV file to play from the Alarm Sound Manager.

CLASS_BEEP_FREQ No Frequency of beeps from the Alarm Sound Manager.

CLASS_BEEP_DURATION No Duration of beeps from the Alarm Sound Manager.

CLASS_BEEP_DELAY No Delay between beeps from the Alarm Sound Manager.

CLASS_ALARM_BLINK_RATE No Delay between blinks when in an Alarm state.

CLASS_ALARM_BLINK_FG No The foreground color to use when in an Alarm state.

CLASS_ALARM_BLINK_BG No The background color to use when in an Alarm state.

CLASS_NORMAL_BLINK_RATE No Delay between blinks when in a Normal state.

CLASS_NORMAL_BLINK_FG No The foreground color to use when in a Normal state.

CLASS_NORMAL_BLINK_BG No The background color to use when in a Normal state.

CLASS_ACK_BLINK_RATE No Delay between blinks when in an Acknowledged state.

CLASS_ACK_BLINK_FG No The foreground color to use when in an Acknowledged state.

CLASS_ACK_BLINK_BG No The background color to use when in an Acknowledged state.

CLASS_BEEP_NUMBER No The number of beeps sounded for the alarm.

ALARM_DEF

Contains Alarm information.

Attribute ID Filter Description

ALARM_ID Yes Alarm ID

CLASS_ID Yes Alarm Class of the alarm.

ALARM_MSG Yes Returns the configured alarm message on the alarm.

ALARM_TYPE_ID Yes Alarm Type ID of the alarm.

DESCRIPTION Yes Description of the alarm.

Sample Script

Dim objCimProjectData As CimProjectData
Dim strOptionalProject As String
Dim AlID As String
Dim AlarmMessage As String
Set objCimProjectData = New CimProjectData
objCimProjectData.Project = strOptionalProject
objCimProjectData.Entity = "ALARM_DEF"
objCimProjectData.Filters = "CLASS_ID=HIGH"
objCimProjectData.Attributes = "ALARM_ID,ALARM_MSG" 'Set the attribute to
 retrieve

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 567

'get The alarm info
 While objCimProjectData.GetNext(AlID,AlarmMessage) = True
 MsgBox AlID
 MsgBox AlarmMessage
Wend

AMLP

Contains Alarm Printer information.

Attribute ID Filter Description

AMLP_NAME Yes Alarm printer name.

AMLP_PORT No Alarm printer port.

PAGE_WIDTH No Page width.

PAGE_LENGTH No Page length.

DATE_FORMAT No Date format.

TIME_FORMAT No Time format.

CLASS

Contains Class information.

Attribute ID Filter Description

CLASS_ID Yes Class ID.

DESCRIPTION Yes Description of the class.

CLIENT

Contains Client information.

Attribute ID Filter Description

NODE_ID Yes Computer name.

USER_ID No Default User ID.

TRUSTED No Trusted computer.

DEVICE

Contains Device information.

Attribute ID Filter Description

DEVICE_ID Yes Device ID.

RESOURCE_ID Yes Resource ID for the device.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 568

DESCRIPTION Yes Device description.

PORT_ID Yes Port ID for the device.

EVENT

Contains Event information.

Attribute ID Filter Description

EVENT_ID Yes Event ID.

EVENT_TYPE No Event type.

EM_ENABLED No Event enabled flag.

ID No Event source identifier.

RESOURCE_ID No Resource ID of the event.

PT_VAL No For Point Equal event, the value of the point.

SERVICE_ID No

EVENT_ACTION

Contains Event-Action information.

Attribute ID Filter Description

EVENT_ID Yes Event ID.

ACTION_ID Yes Action ID for the event.

LOG_FLAG No Flag indicating if the event-action is to be logged.

EA_SERVICE_ID Yes

GLB_PARMS

Contains Global Parameter information for the project.

Attribute ID Filter Description

PARM_ID Yes Global Parameter ID.

PARM_TYPE No Type of the global parameter.

PARM_VALUE No Value of the global parameter.

MEASUNIT

Contains Measurement Unit information.

Attribute ID Filter Description

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 569

UNIT_ID Yes Identifier for the Measurement Unit.

DESCRIPTION Yes Description displayed for the measurement unit.

LABEL Yes Label displayed for the measurement unit.

MEASSYSTEM

Contains Measurement System Information

Attribute ID Filter Description

UNIT_ID Yes Identifier for the Measurement System.

DESCRIPTION Yes Description displayed for the measurement system.

LABEL Yes Label displayed for the measurement system.

OBJECT

Contains object information.

Attribute ID Filter Description

OBJECT_ID Yes Object ID.

CLASS_ID Yes Class ID for the object.

DESCRIPTION Yes Object description.

OBJECT_INF

This is a specialized entity used to extract information from a specified object. The filter for this
entity is OBJECT_ID=MY_OBJECT, where MY_OBJECT is replaced with the object name you
wish to read. Since the function returns specialized attribute information, only one of the attributes
may be used at a time.

This entity may not be used from the Event Manager or without a specified running project.

Attribute ID Filter Description

DATA_ITEM No Returns all data items for the object. Each data item returns by a GetNext call.

ATTRIBUTE, VALUE No Returns the attribute for the object. If VALUE is specified, it must be the second
attribute, and the value of the attribute will be returned

CLASS_ID No The Class ID of the object.

DEFAULT_GRAPHIC No Returns the name of the default graphic for the object's class. Must be specified with
GRAPHICS_FILE Example obj.Attributes= "GRAPHICS_FILE,DEFAULT_GRAPHIC"

GRAPHICS_FILE No The Graphics File specified for the objects class

HELP_FILE No The Help File specified for the objects class

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 570

POINT

Contains Point information.

Attribute ID Filter Description

POINT_ID Yes Point ID

DEVICE_ID Yes Device ID for the point, where the point data originates. If the point is a global point, the
device is "$GLOBAL". If the point is an equation point, the device is $DERIVED.

RESOURCE_ID Yes Resource ID of the point.

POINT_TYPE_ID Yes Point Type ID of the point (UINT, REAL, etc.)

DESCRIPTION Yes Description of the point.

DISPLAY_LIMITS_HI No High display limit of the point.

DISPLAY_LIMITS_LO No Low display limit of the point.

DISPLAY_LIMITS No Low and high display limits of the point separated by a hyphen.

DISPLAY_FORMAT No Display format for the point.

ELEMENTS No Number of array elements.

HAS_LOG No State of the "Log Data" checkbox on the point properties

ADDRESS No Device address of the point.

ADDRESS_OFFSET No Address offset for the point.

HAS_EU No Set to 1 if the point has EU Conversion, otherwise set to 0.

ALARM_HI No High alarm limit for the point.

ALARM_LO No Low alarm limit for the point.

WARNING_HI No High warning limit for the point.

WARNING_LO No Low warning limit for the point.

ACCESS_FILTER Yes If the point is an enterprise point, this field is set to E.

READ_WRITE No If point is read/write.

MODIFIED No Data and time in string format that the point was last edited.

DATA_TYPE No Point or SCAPI.

POINT_CLASS No Point class

ORIGIN No Device or derrived (virtual)

DATA_LENGTH No Data length

NEED _UPDATE No Update criteria

UNIT_ID No Measurement units

SET_NAME No Attribute set

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 571

ENUM_ID No Point enumeration

LEVEL No Security level.

POINT_ALSTR

Contains Alarm String information.

Attribute ID Filter Description

ALARM_STR_ID No Alarm String ID.

ALARM_HI_STR No String for Alarm High state.

ALARM_LOW_STR No String for Alarm Low state.

WARNING_HI_STR No String for Warning High state.

WARNING_LO_STR No String for Warning Low state.

NORMAL_STR Yes String for Normal state.

ALARM_HIGH_SEVERITY No Alarm High Severity level.

ALARM_LOWEVERITY No Alarm Low Severity level.

WARNING_HI_SEVERITY No Warning High Severity level.

WARNING_LOW_SEVERITY No Warning Low Severity level.

NORMAL_SEVERITY No Normal Severity level.

POINT_DISP

Contains Point Display information.

Attribute ID Filter Description

POINT_ID Yes Point ID.

SCREEN_ID No The screen associated with the point.

DISPLAY_LIM_LOW No The low limit for the point value display. Values below this limit will display as asterisks
(***).

DISPLAY_LIM_HIGH No The high limit for the point value display. Values above this limit will display as asterisks
(***).

POINT_ENUM

Contains Point Enumeration information.

Attribute ID Filter Description

ENUM_ID Yes Point Enumeration ID.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 572

DESCRIPTION Yes Description of the enumeration.

POINT_ENUM_FLD

Contains Point Enumeration Field information.

Attribute ID Filter Description

ENUM_ID Yes Enumeration ID for the field.

VALUE Yes The numerical value of the enumeration.

TEXT Yes The text assigned to this enumeration value.

SETPOINT_ALLOWED Yes Indicates if the point data field represented by this enumeration field can be set.

POINT_TYPE

Contains Point Type information.

Attribute ID Filter Description

POINT_TYPE_ID Yes The Point Type ID

DATA_TYPE No The numeric data type code for the point type.

DATA_LENGTH No The numeric data length for the point type.

PORT

Contains Port information.

Attribute ID Filter Description

PORT_ID Yes The Port ID.

PROTOCOL_ID No Identifier for the communication protocol used by the port.

DESCRIPTION No Description displayed for that port.

PROJECTS

Contains information on Remote Projects.

Attribute ID Filter Description

PROJECT_NAME Yes Project Name

USER_ID No The User ID to log into the project.

PASSWORD No Encrypted password for project login.

ENABLE No Indicates if the project is enabled.

EXCLUSIVE No Indicates if the project is exclusive.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 573

CONCPOINTS No For an Enterprise Server, indicates if points are collected.

CONCALARMS No For an Enterprise Server, indicates if alarms are collected.

RESOURCE _ID No For an Enterprise Server, the remote project's resource name.

DEVICE_ID No For an Enterprise Server, the remote project's device name.

PROTOCOL

Contains Protocol information.

Attribute ID Filter Description

PROTOCOL_ID Yes Protocol ID

RESOURCE

Contains Resource information.

Attribute ID Filter Description

RESOURCE_ID Yes The Resource ID.

DESCRIPTION No Description of the resource.

RESOURCE_TYPE No The Resource Type: SYSTEM or RESOURCE.

ALARM_MGR_ID No The Alarm Manager process that receives alarms for this resource.

ROLE

Contains Role information.

Attribute ID Filter Description

ROLE_ID Yes The Role ID.

SSPC

Contains Statistical Process Control Information.

Attribute ID Filter Description

SPC_GROUP Yes A group, or subgroup, of SPC measurements.

SPC_FILE No SPC Configuration Document file name.

SYS_PARMS

Contains global parameter information for the system.

Attribute ID Filter Description

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 574

PARM_ID Yes System Parameter ID

PARM_VALUE No Value of the system parameter.

UAFSETS

Valid Attribute Set Identifier

Attribute ID Filter Description

SET_NAME Yes Set Name

DESCRIPTION No Description of the valid set.

USER

Contains User Information.

Attribute ID Filter Description

USER_ID Yes The User ID.

ROLE_ID Yes The users Role ID.

PASSWORD No The users encrypted password.

USER_NAME No The users name.

ENABLE No Indicates if the user account is enabled or disabled.

USER_FIELDS

Contains Field Information for Point Attribute Sets.

Attribute ID Filter Description

SET_NAME Yes Set Name.

FIELD_NAME No Field Name.

START_BIT No Start Bit.

FIELD_SIZE No Field Size.

READ_WRITE No Indicates if the field is read-only or read/write. 0 = Read only 2 = Read/Write

UPD_DEVCOMM No Write to DevComm - Data will be sent to the associated devcom when this attribute is
set.

SAVE_WARMDATA No Preserve value - Indicates that this field should be saved on project shutdown.

CimProjectData (object)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 575

Overview The CimProjectData object provides the ability to search and return specific pieces of a project's
configuration. The underlying APIs used by the CimProjectData object are the same as those used to
browse point configuration on a remote project. In general, this object provides a convenient way to
retrieve a set of attributes based on specified filter criteria. This object provides a read-only capability. To
write configuration, please see the help file for the CIMPLICITY Configuration Object Model.

Example
(CimBasic) Sub Main()

 ' This example retrieves all points beginning with A for Device MY_PLC
 ' in project MY_PROJECT and displays the point id and resource id of
 ' each matching item.
 Dim d as new CimProjectData
 d.Project = "MY_PROJECT"
 d.Entity = "POINT"
 d.Filters = "POINT_ID=A*,DEVICE_ID=MY_PLC"
 d.Attributes = "POINT_ID,RESOURCE_ID"
 Dim p as string
 Dim r as String
 top:
 if d.GetNext(p,r) = TRUE then
 MsgBox "Point Id = " & p & " Resource Id = " & r
 goto top
 End if
End Sub

Example
(.NET) using System;

using System.Collections.Generic;
using Proficy.CIMPLICITY;
public class CPD
{
 public void Main()
 {
 try
 {
 CimProjectData cpd = new CimProjectData();

 cpd.Project = "MY_PROJECT";
 cpd.Entity = "POINT";
 cpd.Attributes = "POINT_ID,RESOURCE_ID";
 cpd.Filters = "POINT_ID=PGM*";

 String[] vals = new String[2]; // returned attributes matching the filters
 Cimplicity.Trace("Get project points with IDs starting with \"PGM\"");

 int count = 0;

 while (cpd.Next(vals) == Cimplicity.COR_SUCCESS)
 {
 Cimplicity.Trace("ID: " + vals[0] + ", Resource: " + vals[1]);

 count++;
 }

 Cimplicity.Trace("Finished getting project points.");
 }
 catch (Exception x)
 {
 Cimplicity.Trace("Failure: " + x.Message);
 }
 }
}

CimProjectData.Project (property, read/write)

Syntax CimProjectData.Project

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 576

Description String. Get/set the project to browse data from. Must be specified when used from CimView. For use in
the Event Manager, the project name should be empty to browse the local project.

Example
Dim d as new CimProjectData
d.project = "MY_PROJECT"

CimProjectData.Reset (method)

Syntax CimProjectData.Reset

Description Resets the list so that a new set of search criteria, attributes, or project may be specified.

Example
d.reset

CimRemoveUnusedPoints (method)

Syntax CimRemoveUnusedPoints

Description Removes unused points that have been created as a result of Variable assignments.

Comments The use of variables in expressions allows a user to assign points to animations at runtime. As the
program makes various variable assigns and adds new points to CimView, it leaves other points in a
state that no objects are using them. CimRemoveUnusedPoints can be used to remove these unused points
from the screen, which reduces the number of updates, CimView receives from PTMAP, thus improving
performance.

Example
Sub Cleanup
CimRemoveUnusedPoints
End Sub

DoQINTMath (function)

Syntax DoQINTMath param1,param2,param3,param4,param5,param6,param7

Description To do the mathematics on a LONGLONG or QINT datatype in CIMPLICITY.

Param1 Double. High value of target 64-
bit value

Param2 Double. Low value of 64-bit
target value

Param3 Integer. Param3 is the input
operator. Values represent the
following.

0 +

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 577

1 -

2 *

3 /

4 %

Param4 Double. High value of source 1.

Param5 Double. High value of source 1.

Param6 Double . High value of source
2.

Param7 Double. Low value of Source 2.

Example
Sub Main()
 Dim qlowSrc1 as Double
 Dim qhighSrc1 as Double

 Dim qlowSrc2 As Double
 Dim qhighSrc2 As Double
 Dim qtargetlow As Double
 Dim qtargethigh As Double

 Dim qstr as String
DoQINTMath
 qtargethigh,qtargetlow,0,qhighSrc1,qlowSrc1,qhighSrc2,qlowSrc2
 - Addition
qtargethigh,qtargetlow,1,qhighSrc1,qlowSrc1,qhighSrc2,qlowSrc2
 - Subtraction

End Sub

See also DoUQINTMath (page 577) (function). Point.QuadValueAsString (page
599) (property, read), Point.QuadValueAsString (page 599) (property,
write), Point.SetQuadIntValue (page 606) (function).

DoUQINTMath (function)

Syntax DoUQINTMath param1,param2,param3,param4,param5,param6,param7

Description To do the mathematics on a ULONGLONG or UQINT datatype in CIMPLICITY.

Param1 Double. High value of target 64-
bit value

Param2 Double. Low value of 64-bit
target value

Param3 Integer. Param3 is the input
operator. Values represent the
following.

0 +

1 -

2 *

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 578

3 /

4 %

Param4 Double. High value of source 1.

Param5 Double. High value of source 1.

Param6 Double . High value of source 2.

Param7 Double. Low value of Source 2.

Example
Sub Main()
 Dim qlowSrc1 as Double
 Dim qhighSrc1 as Double

 Dim qlowSrc2 As Double
 Dim qhighSrc2 As Double
 Dim qtargetlow As Double
 Dim qtargethigh As Double

 Dim qstr as String
DoUQINTMath
 qtargethigh,qtargetlow,0,qhighSrc1,qlowSrc1,qhighSrc2,qlowSrc2 -
 Addition
qtargethigh,qtargetlow,1,qhighSrc1,qlowSrc1,qhighSrc2,qlowSrc2 -
 Subtraction

End Sub

See also DoQINTMath (page 576) (function).

GetCurTimeHR (function)

Syntax GetCurTimeHR

Description Date. To get the current time in MN_DD_YYYY_HH_MM_SS_TTTTTT format

Example
Sub Main()
 Dim timestr as String
 timestr = GetCurTimeHR
 MsgBox "Current time = " & timestr
End Sub

See also GetTimeComponentsHR (page 584) (function).

GetKey (function)

Syntax a$ = GetKey (key$, string$)

Description To search for a keyword and returns its value. This is of use particularly from the Basic Control Engine to
extract the EVENT and ACTION, which caused the script to run. An empty string is returned if the key is
not found.

Comments Parameter Description

key$ String. The keyword to search for.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 579

string$ String. The string to search for the keyword. The format of this string is keyword followed by
an equal sign and the value. A comma separates multiple keyword value combinations.

Example
Sub Main()
 event_id$= GetKey("EVENT", command$)
 action_id$ = GetKey("ACTION", command$)
 ' Name$ will contain PETE after this statement.
 name$ = GetKey("NAME","NAME=PETE,LOCATION=ALBANY")
End Sub

GetMemoryInfoSymbolSpace (statement)

Syntax GetMemoryInfoSymbolSpace used, free, total

Description This statement obtains information on the memory usage for storing the names of the symbols for public
variables used in scripts at the module level.

Parameter Description

used Long. The amount of memory in bytes
that has been used for public variable
space storage.

free Long. The amount of free space to
hold new variable names.

total Long. The amount of memory
available for public variable names.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 580

Example
Public testPublicLong As Long
Public testPublicString As String
Private pv_test As Long
Private pv_testString As String
Type ExampleRect
 left As Integer
 top As Integer
 right As Integer
 bottom As Integer
End Type
Public dd As ExampleRect
Sub OnMouseUp(x As Long, y As Long, flags As Long)
 Dim ssUsed As Long
 Dim ssFree As Long
 Dim ssMax As Long
 Dim psUsed As Long
 Dim psFree As Long
 Dim psMax As Long
 Dim SymUsed As Long
 Dim SymFree As Long
 Dim SymMax As Long
 Dim handlesUsed As Long
 Dim handlesFree As Long
 Dim handlesMax As Long
 Dim memFlags As Long
 testPublicLong = 1200
 pv_testString = 1200
 testPublicString = "constant string to show usage of string space by constants"
 pv_testString = "More data, more data"
 GetMemoryInfoStringSpaceHandles handlesUsed, handlesFree, handlesMax
 GetMemoryInfoStringSpace ssUsed, ssFree, ssMax, memFlags
 GetMemoryInfoPublicSpace psUsed, psFree, psMax
 GetMemoryInfoSymbolSpace SymUsed, SymFree, SymMax
 MsgBox "The current memory information: " + Chr$(13)_
 + "Handles Used = " + Format$(handlesUsed) + Chr$(13)_
 + "Handles Free = " + Format$(handlesFree) + Chr$(13)_
 + "Handles Max = " + Format$(handlesMax) + Chr$(13)_
 + "String Space Used = " + Format$(ssUsed) + Chr$(13)_
 + "String Space Free = " + Format$(ssFree) + Chr$(13)_
 + "String Space Max = " + Format$(ssMax) + Chr$(13)_
 + "Public Space Used = " + Format$(psUsed) + Chr$(13)_
 + "Public Space Free = " + Format$(psFree) + Chr$(13)_
 + "Public Space Max = " + Format$(psMax) + Chr$(13)_
 + "Symbol Space Used = " + Format$(SymUsed) + Chr$(13)_
 + "Symbol Space Free = " + Format$(SymFree) + Chr$(13)_
 + "Symbol Space Max = " + Format$(SymMax)
End Sub

See Also GetMemoryInfoStringSpaceHandles (statement) (page 580), GetMemoryInfoStringSpace (statement)
(page 581), GetMemoryInfoPublicSpace (statement) (page 582)

GetMemoryInfoStringSpaceHandles (statement)

Syntax GetMemoryInfoStringSpaceHandles used, free, total

Description This statement obtains information on the handle usage for string space.

Parameter Description

used Long. The number of handles that have
been used.

free Long. The number of handles that are
free.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 581

total Long. The total number of handles
(32736).

Example
Option Explicit
Sub OnMouseUp(x As Long, y As Long, flags As Long)
 Dim mymsg As String
 Dim used As Long, free As Long, total As Long, outFlags As Long
 Dim charCount
 Dim i
 Dim myarray(100) As String
 mymsg = ""
 mymsg = mymsg & Chr$(13) & "---- BEFORE ----"
 GetMemoryInfoStringSpace used, free, total, outflags
 mymsg = mymsg & Chr$(13) & "SPACE used:" & used & ", free:" & free & ", total:" & total
 mymsg = mymsg & ", outFlags:" & outFlags
 GetMemoryInfoStringSpaceHandles used, free, total
 mymsg = mymsg & Chr$(13) & "HANDLES used:" & used & ", free:" & free & ", total:" & total
 ' Use up some string space and handles
 charCount = 0
 For i = LBound(myarray) To UBound(myarray) Step 1
 myarray(i) = "ABCDEFGHIJKLMNOPQRSTUVWXYZ " & i & " ABCDEFGHIJKLMNOPQRSTUVWXYZ "
 charCount = charCount + Len(myarray(i))
 Next i
 mymsg = mymsg & Chr$(13)
 mymsg = mymsg & Chr$(13) & "---- AFTER populating, elements:" & (UBound(myarray) -
 LBound(myarray)) _
 & " char count:" & charCount & " ----"
 GetMemoryInfoStringSpace used, free, total, outFlags
 mymsg = mymsg & Chr$(13) & "SPACE used:" & used & ", free:" & free & ", total:" & total
 mymsg = mymsg & ", outFlags:" & outFlags
 GetMemoryInfoStringSpaceHandles used, free, total
 mymsg = mymsg & Chr$(13) & "HANDLES used:" & used & ", free:" & free & ", total:" & total
 MsgBox mymsg, ebOKOnly+ebInformation, "Memory Info"
End Sub

See Also GetMemoryInfoSymbolSpace (statement) (page 579), GetMemoryInfoStringSpace (statement) (page
581), GetMemoryInfoPublicSpace (statement) (page 582)

GetMemoryInfoStringSpace (statement)

Syntax GetMemoryInfoStringSpace used, free, total[, outFlags]

Description This statement obtains information on the memory usage for string space.

Parameter Description

used Long. The number of used bytes in the string space.

free Long. The number of free bytes in the string space.

total Long. The number of total bytes in the string space.

outFlags Long. The internal information about the string space.
This parameter is unused.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 582

Example
Option Explicit
Sub OnMouseUp(x As Long, y As Long, flags As Long)
 Dim mymsg As String
 Dim used As Long, free As Long, total As Long, outFlags As Long
 Dim charCount
 Dim i
 Dim myarray(100) As String
 mymsg = ""
 mymsg = mymsg & Chr$(13) & "---- BEFORE ----"
 GetMemoryInfoStringSpace used, free, total, outflags
 mymsg = mymsg & Chr$(13) & "SPACE used:" & used & ", free:" & free & ", total:" & total
 mymsg = mymsg & ", outFlags:" & outFlags
 GetMemoryInfoStringSpaceHandles used, free, total
 mymsg = mymsg & Chr$(13) & "HANDLES used:" & used & ", free:" & free & ", total:" & total
 ' Use up some string space and handles
 charCount = 0
 For i = LBound(myarray) To UBound(myarray) Step 1
 myarray(i) = "ABCDEFGHIJKLMNOPQRSTUVWXYZ " & i & " ABCDEFGHIJKLMNOPQRSTUVWXYZ "
 charCount = charCount + Len(myarray(i))
 Next i
 mymsg = mymsg & Chr$(13)
 mymsg = mymsg & Chr$(13) & "---- AFTER populating, elements:" & (UBound(myarray) -
 LBound(myarray)) _
 & " char count:" & charCount & " ----"
 GetMemoryInfoStringSpace used, free, total, outFlags
 mymsg = mymsg & Chr$(13) & "SPACE used:" & used & ", free:" & free & ", total:" & total
 mymsg = mymsg & ", outFlags:" & outFlags
 GetMemoryInfoStringSpaceHandles used, free, total
 mymsg = mymsg & Chr$(13) & "HANDLES used:" & used & ", free:" & free & ", total:" & total
 MsgBox mymsg, ebOKOnly+ebInformation, "Memory Info"
End Sub

See Also GetMemoryInfoSymbolSpace (statement) (page 579),GetMemoryInfoStringSpaceHandles (statement)
(page 580), GetMemoryInfoPublicSpace (statement) (page 582)

Note The sum of the used and free parameter values will not be equal to the value of the total parameter. This
is because of the overhead that is used to manage the allocated blocks.

GetMemoryInfoPublicSpace (statement)

Syntax GetMemoryInfoPublicSpace used, free, total

Description This statement obtains information on the memory usage for storing the values for public variables used in
scripts at the module level.

Parameter Description

used Long. The amount of memory in bytes
that has been used for public variable
space storage.

free Long. The amount of free space to hold
new variables.

total Long. The amount of memory available
for public variables.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 583

Example
Public testPublicLong As Long
Public testPublicString As String
Private pv_test As Long
Private pv_testString As String
Type ExampleRect
 left As Integer
 top As Integer
 right As Integer
 bottom As Integer
End Type
Public dd As ExampleRect
Sub OnMouseUp(x As Long, y As Long, flags As Long)
 Dim ssUsed As Long
 Dim ssFree As Long
 Dim ssMax As Long
 Dim psUsed As Long
 Dim psFree As Long
 Dim psMax As Long
 Dim SymUsed As Long
 Dim SymFree As Long
 Dim SymMax As Long
 Dim handlesUsed As Long
 Dim handlesFree As Long
 Dim handlesMax As Long
 Dim memFlags As Long
 testPublicLong = 1200
 pv_testString = 1200
 testPublicString = "constant string to show usage of string space by constants"
 pv_testString = "More data, more data"
 GetMemoryInfoStringSpaceHandles handlesUsed, handlesFree, handlesMax
 GetMemoryInfoStringSpace ssUsed, ssFree, ssMax, memFlags
 GetMemoryInfoPublicSpace psUsed, psFree, psMax
 GetMemoryInfoSymbolSpace SymUsed, SymFree, SymMax
 MsgBox "The current memory information: " + Chr$(13)_
 + "Handles Used = " + Format$(handlesUsed) + Chr$(13)_
 + "Handles Free = " + Format$(handlesFree) + Chr$(13)_
 + "Handles Max = " + Format$(handlesMax) + Chr$(13)_
 + "String Space Used = " + Format$(ssUsed) + Chr$(13)_
 + "String Space Free = " + Format$(ssFree) + Chr$(13)_
 + "String Space Max = " + Format$(ssMax) + Chr$(13)_
 + "Public Space Used = " + Format$(psUsed) + Chr$(13)_
 + "Public Space Free = " + Format$(psFree) + Chr$(13)_
 + "Public Space Max = " + Format$(psMax) + Chr$(13)_
 + "Symbol Space Used = " + Format$(SymUsed) + Chr$(13)_
 + "Symbol Space Free = " + Format$(SymFree) + Chr$(13)_
 + "Symbol Space Max = " + Format$(SymMax)
End Sub

See Also GetMemoryInfoStringSpaceHandles (statement) (page 580), GetMemoryInfoStringSpace (statement)
(page 581), GetMemoryInfoPublicSpace (statement) (page 582)

GetSystemWindowsDirectory (function)

Syntax
d$ = GetSystemWindowsDirectory

Description Returns the true Windows directory and not the per user Windows directory when running under Terminal
Services.

Example
Sub Main()
 Direct$ = GetSystemWindowsDirectory
 MsgBox "GetSystemWindowsDirectory = " & direct$
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 584

GetTimeComponentsHR (function)

Syntax GetTimeComponentsHR param1, param2, param 3 ….9

Description Components of the time. Current time divided into time components of year, month, day, hour, min, sec
and nanoseconds.

Param1 Double. High value of input time.

Param2 Double. Low value of input time.

Param3 Integer. Timecomponent.

Param4 Integer. Timecomponent.

Param5 Integer. Timecomponent.

Param6 Integer. Timecomponent.

Param7 Integer. Timecomponent.

Param8 Integer. Timecomponent.

Param9 Long. Nanosecond time component.

Example
Sub Main()

Dim yy As Integer
Dim mm As Integer
Dim dd As Integer
Dim hh As Integer
Dim min As Integer
Dim sec As Integer
Dim nano As Long

Dim localpoint As New Point
Dim result As Boolean

localpoint.id = "\\$LOCAL\$LOCAL.DATETIME_VARUPDATE"
result = localpoint.GetQuadIntValue(qhigh,qlow)
GetTimeComponentsHR qhigh,qlow,yy,mm,dd,hh,min,sec,nano
End Sub

See also GetCurTimeHR (page 578) (function), SetTimecomponentsHR (page 622) (function)

GetTSSessionId (function)

Syntax
id& = GetTSSessionId

Description The Session ID of the Terminal Services client. This is 0 if running on the console or if Terminal Services
is not running.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 585

Example
Sub Main()
 myid& = GetTSSessionId
 MsgBox "Terminal Services Session Id = " & myid&
End Sub

IsTerminalServices (function)

Syntax
IsTerminalServices

Description Returns True if this computer is running Terminal Services.

Example
Sub Main()
 MsgBox "Terminal Services = " & IsTerminalServices
End Sub

LogStatus (property, read/write)

Syntax LogStatus Severity , Procedure$, Message$ [, error_code [, error_reference]]

Description To provide the programmer with the ability to log errors to the CIMPLICITY Status Log. To view the errors,
use the CIMPLICITY Status Log Viewer.

Comments Parameter Description

Severity Integer. The severity of the error.

• CIM_SUCCESS - An Informational Error
• CIM_WARNING - A warning message
• CIM_FAILURE - A failure message

Procedure$ String. The name of the Basic Procedure which logged the error.

Message$ String. The error message to log.

error_code Long. (optional). A user-defined error code.

error_reference Long. (optional). A user-defined error reference. Used to distinguish the difference
between two errors with the same error_code.

Example
Sub Main()
 on error goto error_handler

 ..
 Exit Sub
error_handler :
 ' error$, err, and erl are BASIC variables which contain the
 ' error text, error code and error line respectively.
 LogStatus CIM_FAILURE, "main()", error$, err, erl
 Exit Sub
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 586

Point.AlarmAck (property, read)

Syntax Point.AlarmAck

Description Boolean. When used in combination with the Point.OnAlarmAck method, a Boolean is returned
indicating if the point's alarm is in an Acknowledged state.

Example
Sub Main()
 Dim x as new Point
 x.ID = "Some_point"
 x.OnAlarmAck
top:
 x.GetNext
 Trace "Alarm Ack state is " & x.AlarmAck
End Sub

Point.Cancel (method)

Syntax Point.Cancel

Description To cancel the currently active OnChange , OnAlarm , OnTimed or OnAlarmAck request.

Example
Sub Main()
 Dim t as new Point
 t.Id = "TIME"
 ' Read the next two values of the point
 t.OnChange
 for i = 1 to 2
 t.GetNext
 next I
 ' Cancel the onchange request.
 t.Cancel
 ' Get the point value every three seconds
 t.OnTimed 3
 for i = 1 to 2
 t.GetNext
 next I
End Sub

See Also Point.OnChange (page 598) (method), Point.OnTimed (page 598) (method), Point.OnAlarm (page
596) (method), Point.OnAlarmAck (page 597) (method)

Point.ChangeApproval (property, write)

Syntax Point.ChangeApproval = a

Description To set the Change Approval information for a point. Important: Change Approval must be set to an object
of type CimChangeApprovalData in order to perform set point operations on a point that requires change
approval..

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 587

Example
Sub Main()
 Dim MyPoint As New Point
 Dim obj As New CimChangeApprovalData
'Init Point
 Set MyPoint.Id = "MYPOINT"
'Init CimChangeApprovalData with prompts
 Select Case MyPoint.ChangeApprovalInfo
 Case CP_CHANGEAPPROVALPERFORM
 obj.PerformerUserid = AskBox("Performer Userid")
 obj.PerformerPassword = AskPassword("Performer Password")
 Case CP_CHANGEAPPROVALPERFORMVERIFY
 obj.PerformerUserid = AskBox("Performer Userid")
 obj.PerformerPassword = AskPassword("Performer Password")
 obj.VerifierUserid = AskBox("Verifier Userid")
 obj.VerifierPassword = AskPassword("Verifier Password")
 Case CP_CHANGEAPPROVALNONE
End Select
'Copy our CimChangeApprovalData into the Point's ChangeApproval
 Set MyPoint.ChangeApproval = obj
'Set the point
 MyPoint.SetValue = InputBox("Setpoint")

End Sub

See also CimChangeApprovalData (page 551) (Object), AlarmUpdateCA (page 546) (Method),
PointChangeApprovalInfo (page 587) (property, read).

Point.ChangeApprovalInfo (property, read)

Syntax Point.ChangeApprovalInfo

Description Integer. To determine the level of change approval that is required to perform an operation.

Example
Sub OnMouseUp(x As Long, y As Long, flags As Long)
 Dim MyPoint As New Point
'Init Point
 Set MyPoint.Id = "MYPOINT"
'Check ChangeApprovalInfo to see what is required for approval
 Select Case MyPoint.ChangeApprovalInfo
 Case CP_CHANGEAPPROVALPERFORM
 MsgBox "This Point requires a Performer for approval!"
 Case CP_CHANGEAPPROVALPERFORMVERIFY
 MsgBox "This Point requires a Performer and Verifier for approval!"
 Case CP_CHANGEAPPROVALNONE
 MsgBox "This Point does not require ChangeApproval!"
 End Select

End Sub

See also AlarmUpdateCA (page 546) (Method), CimChangeApprovalData (page 551) (Object),
Point.ChangeApproval (page 586) (property, write)

Point.DataType (property, read)

Syntax Point.DataType

Description Integer. To return the numeric data type of the point.

Comments The following are the possible return values.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 588

Return Value Description

CP_DIGITAL A digital or Boolean value. Range True or False

CP_STRING A character string.

CP_USHORT An unsigned short (8-Bit) integer.

CP_UINT An unsigned (16-Bit) integer.

CP_UDINT An unsigned long (32-Bit) integer, returned as a double precision floating point number.

CP_SHORT A signed short (8-bit) integer.

CP_INT A signed (16-bit) integer.

CP_DINT A signed long (32-bit) integer.

CP_REAL A double precision floating point.

CP_BITSTRING A bitstring. Can only be returned as a character string.

CP_STRUCT A structure point. Structure points are not currently supported.

Example
if MyPoint.DataType = CP_STRING then
 a$ = MyPoint.Value
else
 a% = MyPoint.Value
end if

See Also Point.PointTypeId (page 599) (property, read)

Point.DisplayFormat (property, read)

Syntax Point.DisplayFormat

Description String. To return a string containing the configured display format for the point.

Point.DownloadPassword (property, read)

Syntax Point.DownLoadPassword

Description Boolean. To determine if a download password is required to set the point.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 589

Example
' Prompt the user for the download password if required to set
' the point.
Sub Main()
 Dim p as new Point
 p.Id = "CP_UINT"
 p.Value = 10
 if p.DownLoadPassword then
 pass$ = AskPassword("DownLoad Password:")
 p.Set pass$
 else
 p.Set
 end if
End Sub

See also Point.SetPointPriv (page 606) (property, read); Point.InUserView (page 595) (property, read).

Point.Elements (property, read)

Syntax Point.Elements

Description Integer. To return the number of elements configured for the point. For array points this will be greater
than 1, for non-array points the value will be 1.

Example
Sub Main()
 Dim MyPoint as new Point
 MyPoint.Id = "ARRAY_POINT"
 for x = 0 to MyPoint.Elements - 1
 MyPoint.Value(x) = x
 next x
 MyPoint.Set
End sub

Point.EnableAlarm (method)

Syntax Point.EnableAlarm enable

Description To enable or disable alarming on the point. Can be used to temporarily disable alarming on a point.

Comments Parameter Description

Enable Boolean. A value of TRUE enables alarming for the point and value of FALSE disables
alarming for the point.

Example
Sub Main()
 Dim myPoint As New point
 myPoint.Id = "ALARM_POINT"
 ' Disable alarm for point.
 myPoint.EnableAlarm FALSE
End Sub

Point.Enabled (property, read)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 590

Syntax Point.Enabled

Description Boolean. To determine if the point is enabled to be collected from the PLC.

' Return if the point is disabled.
If MyPoint.Enabled = FALSE then
 Exit Sub
end if

Point.EuLabel (property, read)

Syntax Point.EuLabel

Description String. To retrieve the Engineering Units Label for a point.

Example
a$ = MyPoint.EuLabel

or

if MyPoint.EuLabel = "Litres" then
 ...
end if

Point.Get (statement)

Syntax Point.Get

Description To get the current value of the point from the CIMPLICITY Point Manager and store it in the object. You
may inspect the value through the Value and RawValue properties.

Example
Sub Main()
 Dim MyPoint as new Point
 MyPoint.Id = "\\PROJECT1\POINT1"
 MyPoint.Get
 MsgBox "The value is " & MyPoint.Value
End Sub

See also Point.Value (page 612) (method), Point.OnChange (page 598) (method), Point.OnTimed (page 598)
(method).

Point.GetArray (statement)

Syntax Point.GetArray array [, startElement [, endElement [, fromElement]]]

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 591

Description To retrieve an array point's values directly into a Basic array using Engineering Units Conversion if
applicable. There are several rules to keep in mind:

• If the array is undimensioned, the array will be re-dimensioned to the same size as the point.
• If the array is dimensioned smaller than the point, only that many elements will be copied into the

array.
• If the array is larger than the point, all elements of the point are copied, and the rest of the array is left

as is.

If the startElement is specified, the function will start copying data into the array at this element and will
continue until the end of the point is reached or the array is full whichever occurs first. If the endElement
is specified, the function will stop copying data into the array after populating this element or when the
end of the point is reached. If the fromElement is specified, the values copied into the array start at this
element in the point array and continue as described above. Note: You must get the point value using the
Get or GetNext method prior to using the GetArray method. The GetArray method does not retrieve
the current value from the Point Manager. Instead, it retrieves the current value in the Point Object, which
was generated during the last Get or GetNext . See the example below.

Comments Parameter Description

array Array. A dimensioned or un-dimensioned Basic Array to which the point data will be
copied.

startElement Integer. (optional) The first array element to which data will be copied.

endElement Integer. (optional) The last array element to which data will be copied.

fromElement Integer. (optional) The first point element from which data is to be copied.

Example
Sub Main()
 Dim values() as integer
 Dim p as new Point ' Declare the point object
 p.Id = "ARRAY_POINT" ' Set the Id
 p.Get ' Get value from CIMPLICITY
 p.GetArray values ' Copy the object into values
End Sub

See Also Point.SetArray (page 604) (method); Point.GetRawArray (page 593) (method); Point.HasEuConv
(page 594) (property, read); Point.Value (page 612) (property, read/write); Point.RawValue (page
602) (property, read/write).

Point.GetNext (function)

Syntax Point.GetNext [(timeout)]

Description Boolean. A function, to read the next value of a point with a specified timeout in milliseconds. Returns
True if the point was read, False if it timed out.

Example
Sub Main()
 Dim MyPoint as new Point
 MyPoint.Id = "TIME" ' Set the Id
 MyPoint.OnChange ' Request the value on change
 MyPoint.GetNext ' The current value is returned immediately.
 if MyPoint.GetNext(1000) then ' Wait 1 second for the next value.
 MsgBox MyPoint.Value ' Display the value.
 Else
 MsgBox "Timeout" ' Point didn't change in one second.
 end if
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 592

See also Point.OnChange (page 598) (method); Point.OnTimed (page 598) (method); Point.OnAlarm (page
596) (method); Point.OnAlarmAck (page 597) (method); Point.Cancel (page 586) (method).

Point.GetNext (statement)

Syntax Point.GetNext

Description To wait for and get the next value of the point. This method returns when a point update is received for the
point, based on a previously submitted OnChange, OnAlarm, OnTimed or OnAlarmAck call. If the point
never changes, the call never returns. To wait with a timeout, see the GetNext(function.)

Example
' Calculate the average of the next two point values.
Sub Main()
 Dim MyPoint as new Point
 MyPoint.Id = "TANK_TEMPERATURE" ' Set the Id
 MyPoint.OnChange ' Request point onchange
 MyPoint.GetNext ' Retrieve the first value.
 x = MyPoint.Value ' Record the value.
 MyPoint.GetNext ' Wait for the next value.
 x1 = MyPoint.Value ' Record the value
 ave# = (x + x1)/ 2 ' Calculate the average
 MsgBox "The average was " & str$(ave)
End Sub

See Also Point.OnChange (page 598) (method); Point.OnAlarm (page 596) (method); Point.OnTimed (page
598) (method); Point.OnAlarmAck (page 597) (method)..

Point.GetQuadIntValue (function)

Syntax Point.GetQuadIntValue param1,param2

Description Will return the value of a 64-bit QINT or QUINT point in the form of two 32-bit double integers.

Param1 Double. High value.

Param2 Double. Low value.

Example
Sub OnMouseUp(x As Long, y As Long, flags As Long)
'Declare variables
 Dim qhigh As Double
 Dim qlow As Double
 Dim result As Boolean
 Dim localpoint As New Point
'Initialize

localpoint.id = "\\$LOCAL\$LOCAL.DATETIME_VARUPDATE"
'Gets the value of a QuadInt and places it in our two 32 bit Basic doubles
result = localpoint.GetQuadIntValue(qhigh,qlow)
If result = True Then
 MsgBox qhigh
 Msgbox qlow
 Else
 MsgBox "Error!"
 End If
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 593

See also Point.SetQuadIntValue (page 606) (function)

Point.GetRawArray (statement)

Syntax Point.GetRawArray array [, startElement [, endElement [, fromElement]]]

Description To retrieve an array points value directly into a Basic array bypassing Engineering Units Conversion.

Comments There are several rules to keep in mind.

• If the array is undimensioned, the array will be re-dimensioned to the same size as the point.
• If the array is dimensioned smaller than the point, only that many elements will be copied into the

array.
• If the array is larger than the point, all elements of the point are copied, and the rest of the array is left

as is.

If the startElement is specified, the function will start copying data into the array at this element and will
continue until the end of the point is reached or the array is full whichever occurs first. If the endElement
is specified, the function will stop copying data into the array after populating this element or when the
end of the point is reached. If the fromElement is specified, the values copied into the array start at this
element in the point array and continue as described above.

Parameter Description

array Array. A dimensioned or un-dimensioned Basic Array to which the point data will be
copied.

startElement Integer. (optional) The first array element to which data will be copied.

endElement Integer. (optional) The last array element to which data will be copied.

fromElement Integer. (optional) The first point element from which data is to be copied.

Example
Sub Main()
 Dim rawValues() as integer
 Dim p as new Point ' Declare the point object
 p.Id = "ARRAY_POINT" ' Set the Id
 p.Get ' Get value from CIMPLICITY
 p.GetRawArray rawValues ' Copy the object into values
End Sub

See Also Point.GetArray (page 590) (method); Point.SetRawArray (page 606) (method); Point.HasEuConv
(page 594) (property/read); Point.Value (page 612) (property, read/write); Point.RawValue (page
602) (property, read/write).

Point.GetTimeStampHR (statement)

Syntax Point.GetTimeStampHR param1,param2

Description Date. To retrieve the Microsecond timestamp into 2 double 32-bit values. The timestamp indicates the
time at which the point's value was read from the PLC.

Param1 Double. High value of the time

Param2 Double. Low value of the time.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 594

Example
Sub Main()
 Dim x as new Point
 Dim qhigh as Double
 Dim qlow as Double
 a$ = InputBox$("Enter a point id")
 x.Id = a$
 x.GetTimeStampHR(qhigh,qlow)
End Sub

See also Point.QuadValueAsString (page 599) (property, read), Point.QuadValueAsString (page 599) (property,
write,) Point.SetQuadIntValue (page 606) (function), Point.TimeStampHR (page 593) (property, read),
GetTimeComponentsHR (page 584) (function), GetCurTimeHR (page 578) (function).

Point.GetValue (property, read)

Syntax Point.GetValue

Description To get a snapshot of the point value from the Point Manager and return it. This operation combines the
Get Method and Value Property into a single command.

If the point is unavailable (due to the device being down, remote server unavailable, etc.) an error will
be generated if you attempt to access the value (since the value is unavailable.) See the Point.State
property if you need to determine if the point is available or not.

Example
Sub Main()
 Dim MyPoint as new Point ' Declare the point object
 MyPoint.Id = "TANK_LEVEL" ' Set the point id
 x = MyPoint.GetValue ' Read and return the value.
End Sub

Point.HasEuConv (property, read)

Syntax Point.HasEuConv

Description Boolean. To determine if the point has Engineering Units conversion configured.

Example
Sub Main()
 Dim MyPoint as new Point
 MyPoint.Id = "DEVICE_POINT_1"
 if MyPoint.HasEuConv then
 MsgBox "Has Eu Conversion"
 else
 MsgBox "No Eu Conversion"
 end if
End Sub

See also Point.SetRawArray (page 606) (method); Point.SetArray (page 604) (method); Point.GetArray (page
590) (method); Point.GetRawArray (page 593) (method); Point.Value (page 612) (property, read/
write); Point.RawValue (page 602) (property, read/write).

Point.Id (property, read/write)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 595

Syntax Point.Id

Description String. To get or set the object's CIMPLICITY Point ID. The function generates an error if the point is not
configured or the remote server is not available.

Comments If an error is generated, one of the following error codes may be reported.

Err Description

CP_POINT_NOTFOUND The Point ID specified is invalid and was not found.

Example
Sub Main()
 Dim MyPoint as new Point
 MyPoint.Id = "\\PROJECT1\POINT1" ' Set the id
End Sub

sub processPoint(MyPoint as Point)
 if MyPoint.Id = "GEF_DEMO_COS" then ' Compare the Id
 ...
 end if
End Sub

Point.InUserView (property, read)

Syntax Point.InUserView

Description Boolean. To determine if the point is in the user's view.

• If Resource Setpoint Security is checked in the Point Setup dialog box for the point's project and
the point's resource is not in the user's view, then FALSE is returned.

• If Level Setpoint Security is checked in the Point Setup dialog box and the point's level is greater
than the level of the user's role, then FALSE is returned.

• Otherwise, TRUE is returned.
• If the point is not in the user's view, a run time error will be generated if you try to set it.

Example
Sub Main()
 Dim MyPoint as new Point
 MyPoint.Id = "TEST_POINT"
 if MyPoint.InUserView = TRUE
 MyPoint.SetValue = 10
 else
 MsgBox "Point not in user view, setpoint not allowed"
 end if
End Sub

See also Point.SetPointPriv (page 606) (property, read); Point.DownLoadPassword (page 588) (property, read).

Point.Length (property, read)

Syntax Point.Length

Description Integer. To return the length in Bytes of the point value. This is valid only for character strings.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 596

See also Point.Elements (page 589) (property, read)

Point (object)

Overview The Point object provides an object-oriented interface to CIMPLICITY real-time point data. Through the
object, you may set and read point values. Methods are supplied to receive the point value as it changes,
periodically, or when the alarm state changes.

Example 1
Dim MyPoint as new Point ' Creates a new empty point object

2
Dim ThisPoint as Point ' Creates a pointer to a point object

Set ThisPoint = MyPoint ' Now the two object are equal (BCE)

Notes In the above example, a point object is created two different ways.

1 Uses a new keyword; this is typically the method you will use. This constructs a point object, at which
time you can set the ID of the point and use it.

2 Creates a reference to a point and sets it to empty.

A runtime error will occur if you attempt to access methods of the object, since it is currently unassigned.
You can assign the reference to a particular object by using the SET command. In general, you will use this
with the PointGetNext function, which takes a list of point objects and returns the first one that changes.

Important: Point objects in .NET scripting must be explicitly disposed of by doing either of the
following:

• Calling the Point.Dispose() method
• Putting them inside the using block.

Failing to do so will freeze the IDE (page 159) when the script is finished running.

Point.OnAlarm (statement)

Syntax Point.OnAlarm [cond1 [, cond2 [, cond3 [, cond4]]]]

Description To request the point's value when its alarm state changes. If no parameters
are specified, the value will be returned whenever the alarm state changes.
The four optional parameters can be used to restrict which alarm conditions will
be reported to the application.

Comments Call GetNext to obtain the next value of the point. Only one of the
OnChange , OnAlarm , OnTimed or OnAlarmAck requests may be active
at a time. Optional Parameters

Value Description

CP_ALARM Send the value whenever the point changes into or
out of an Alarm (Hi or Low) state.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 597

CP_WARNING Send the value whenever the point changes into or
out of a Warning (Hi or Low) or Alarm (Hi or Low)
state.

CP_ALARM_HIGH Send the value whenever the point changes into or
out of an Alarm High state.

CP_ALARM_LOW Send the value whenever the point changes into or
out of an Alarm Low state.

CP_WARNING_HIGH Send the value whenever the point changes into or
out of a Warning High or Alarm High state.

CP_WARNING_LOW Send the value whenever the point changes into or
out of a Warning Low or Alarm Low state.

Example
Sub Main()
 Dim MyPoint as new Point
 MyPoint.Id = "TANK_LEVEL"
 MyPoint.OnAlarm
Top:
 MyPoint.GetNext
 if MyPoint.State = CP_ALARM_HIGH then
 MsgBox "Alarm High"
 elseif MyPoint.State = CP_ALARM_LOW then
 MsgBox "Alarm Low"
 elseif MyPoint.State = CP_WARNING_HIGH then
 MsgBox "Warning High"
 elseif MyPoint.State = CP_WARNING_LOW then
 MsgBox "Warning Low"
 elseif MyPoint.State = CP_UNAVAILABLE then
 MsgBox "Unavailable"
 else
 MsgBox "Normal"
 end if
 goto top
End Sub

See Also Point.GetNext (page 592) (method); Point.Cancel (page 586) (method);
Point.OnAlarmAck (page 597) (method).

Notes
The point value is sent when the point goes to warning or alarm state (based
on the selected value), and then point value is sent again when the point goes
back to normal state.

Due to a current limitation, selecting ALARM_HIGH and WARNING_LOW
, for example, will return the point for all alarm and warning states. In other
words, the High and Low end up applying to both the Alarm and Warning.

Point.OnAlarmAck (statement)

Syntax Point.OnAlarmAck

Description To receive the point's value when the alarm acknowledgment state changes.

Only one of the OnChange , OnAlarm , OnTimed or OnAlarmAck requests may be active at a
time.

See also Point.GetNext (page 592) (method); Point.Cancel (page 586) (method); Point.OnAlarm (page
596) (method).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 598

Point.OnChange (statement)

Syntax Point.OnChange

Description To request the point's value on change. The next value of the point may be received by calling the
GetNext method or function. The current value of the point is returned immediately. Any subsequent
GetNext call will block until the point's value changes.

Only one of the OnChange , OnAlarm , OnTimed or OnAlarmAck requests may be activate at a
time.

Example Read the point value on change forever.

Sub Main()
 Dim MyPoint as new Point ' Declare the point object
 MyPoint.Id = "TANK_LEVEL" ' Set the Id
 MyPoint.OnChange ' Request the value on change
top :
 MyPoint. GetNext ' Get the value
 Trace MyPoint.Value ' trace it to the output window
 goto top ' repeat forever
End Sub

See also Point.GetNext (page 592) (method); Point.OnTimed (page 598) (method); Point.Cancel (page 586)
(method).

Point.OnTimed (statement)

Syntax Point.OnTimed time_period

Description To poll the points value periodically. A new value will be sent to the application every time_period
seconds. The application should call GetNext to retrieve the next value.

Comments Unlike the OnChange method, you may miss values of the point if it changes in between your polls.
Use the OnChange method to receive the point whenever it changes. OnTimed is useful if the point is
rapidly changing and you are only interested in its value in a periodic manner. Only one of the OnChange
, OnAlarm , OnTimed or OnAlarmAck requests may be active at a time.

Parameter Description

time_period Integer. Time period in seconds to read the point.

Example
Sub Main()
 Dim MyPoint as new Point ' Declare the point object
 MyPoint.Id = "TANK_LEVEL" ' Set the point Id
 MyPoint.OnTimed 60 ' Request value every minute
Top :
 MyPoint.GetNext ' Read the value
 Trace MyPoint.Value ' Put it out to the trace buffer
 goto top ' Repeat forever
End Sub

See Also Point.GetNext (page 592) (method); Point.OnChange (page 598) (method); Point.Cancel (page 586)
(method).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 599

Point.PointTypeId (property, read)

Syntax Point.PointTypeId

Description String. To retrieve the character based Point Type ID.

Example
Sub Main()
 Dim MyPoint as new Point
 MyPoint.Id = "CP_DIGITAL"
 if MyPoint.PointTypeId = "DIGITAL" then
 MsgBox "It is a digital point"
 else
 MsgBox "Point Type ID is : " & MyPoint.PointTypeId
 end If
End Sub

See Also Point.DataType (page 587) (property, read)

Point.QuadValueAsString (property, read)

Syntax Point.QuadValueAsString

Description String. To return the string for the point values that are QINT,UQINT. Converts LONGLONG or
ULONGLONG values of datatypes QINT or UQINT into strings and returns them.

Example
Sub Main()
 Dim p as new Point
 Dim val as String
 p.Id = "UQINT"
 val = p.QuadValueAsString
 MsgBox val
End Sub

See also Point.QuadValueAsString (page 599) (property, write), write,) Point.SetQuadIntValue (page 606)
(function), Point.TimeStampHR (page 593) (property, read).

Point.QuadValueAsString (property, write)

Syntax Point.QuadValueAsString

Description Boolean. To take string of digits and convert them into 64-bit values and set the point values.

Example
Sub Main()
 Dim p as new Point
 Dim val as String
 p.Id = "UQINT"
 p.QuadValueAsString = "1234567899876543212" ‘Sets the
 value of the point that has type UQINT.
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 600

See also Point.QuadValueAsString (page 599) (property, read),Point.SetQuadIntValue (page 606) (function),
Point.TimeStampHR (page 593) (property, read), GetTimeComponentsHR (page 584) (function),
GetCurTimeHR (page 578) (function).

Point.Quality (property, read)

Syntax Point.Quality

Description Long. Return the 16-bit quality mask for the point.

Example
Sub Main()
 Dim p as new Point
 p.Id = "VALVE_1"
 p.Get
 MsgBox cstr(p.Quality)
End Sub

Point.QualityAlarmed (property, read)

Syntax Point.QualityAlarmed

Description Boolean. Returns TRUE if the point is in alarm, FALSE otherwise.

Example
Sub Main()
 Dim p as new Point
 p.Id = "VALVE_1"
 p.Get
 if p.QualityAlarmed then
 MsgBox "Point is in alarm"
 End If
End Sub

Point.QualityAlarms_Enabled (property, read)

Syntax Point.QualityAlarms_Enabled

Description Boolean. Returns TRUE if alarming for the point is enabled, FALSE otherwise.

Example
Sub Main()
 Dim p as new Point
 p.Id = "VALVE_1"
 p.Get
 if p.QualityAlarms_Enabled then
 MsgBox "Alarming is enabled"
 End If
End Sub

Point.QualityDisable_Write (property, read)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 601

Syntax Point.QualityDisable_Write

Description Boolean. Returns TRUE if setpoints have been disabled for the point, FALSE otherwise.

Example
Sub Main()
 Dim p as new Point
 p.Id = "VALVE_1"
 p.Get
 if p.QualityDisable_Write Then
 MsgBox "Writing disabled for point"
 End If
End Sub

Point.QualityIs_Available (property, read)

Syntax Point.QualityIs_Available

Description Boolean. Returns TRUE if the points value is available, FALSE if the value is unavailable.

Example
Sub Main()
 Dim p as new Point
 p.Id = "VALVE_1"
 p.Get
 if p.QualityIs_Available = FALSE then
 MsgBox "Point is not available"
 End If
End Sub

Point.QualityIs_In_Range (property, read)

Syntax Point.QualityIs_In_Range

Description Boolean. Returns TRUE if the current value of the point is in range, FALSE if the point is out of range.
When a point is out of range its value is unavailable.

Example
Sub Main()
 Dim p as new Point
 p.Id = "VALVE_1"
 p.Get
 if p.QualityIs_In_Range = FALSE then
 MsgBox "Point is out of range"
 End If
End Sub

Point.QualityLast_Upd_Man (property, read)

Syntax Point.QualityLast_Upd_Man

Description Boolean. Returns TRUE if the current value of the point came from a manual update rather than a device
read.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 602

Example
Sub Main()
 Dim p as new Point
 p.Id = "VALVE_1"
 p.Get
 if p.QualityLast_Upd_Man then
 MsgBox "Last Update Manual"
 End If
End Sub

Point.QualityManual_Mode (property, read)

Syntax Point.QualityManual_Mode

Description Boolean. Returns TRUE if the point has been placed into Manual Mode, otherwise FALSE.

Example
Sub Main()
 Dim p as new Point
 p.Id = "VALVE_1"
 p.Get
 if p.QualityManual_Mode then
 PointSet "VALVE_1_STATE", "In Manual"
 Else
 PointSet "VALVE_1_STATE", ""
 End If
End Sub

Point.QualityStale_Data (property, read)

Syntax Point.QualityStale_Data

Description Boolean. Returns TRUE if the value of the point is stale, otherwise FALSE.

Example
Sub Main()
 Dim p as new Point
 p.Id = "VALVE_1"
 p.Get
 if p.QualityStale_Data = TRUE
 MsgBox "Value is stale"
 End If
End Sub

Point.RawValue (property, read/write)

Syntax Point.RawValue [(index)]

Description Same as Point.Value except bypasses Engineering Units conversion if configured for the point. Will
return into any type subject to some restrictions. All numeric types may be returned into any other numeric
type and into string types. String and BitString types can only be returned into string types. If the variable
being returned into does not have a type, the variable will be changed to the appropriate type, based on
the point type.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 603

Comments The option base determines if the first element of an array point will be zero or one. If you do not
explicitly set the option base , all arrays in Basic start at 0. If you set it to 1, all arrays in Basic start at 1.
See the example below.

.RawValue does not return the underlying numerical value for an enumerated point. If you want to obtain
the underlying numerical value.

1. Define a point with the .ID field set to <point_id>.$RAW_VALUE .
2. Reference the .value field of this point.

Parameter Description

index Integer. (optional) The array element to access. Range depends on the option base
setting.

Example 1 ' Increment the points raw value by one.

Sub Main()
 Dim MyPoint as new Point ' Declare the point object
 MyPoint.Id = "TANK_LEVEL" ' Set the Id
 MyPoint.Get ' Read the point
 x = MyPoint.RawValue ' Return the raw value
 MyPoint.RawValue = x + 1 ' Set the raw value
 MyPoint.Set ' Write the value.
End sub
' Find the maximum raw value in the array.
Option base 1 ' Arrays start at one.
Sub Main()
 Dim MyPoint as new Point ' Declare point object
 MyPoint.Id = "ARRAY_POINT" ' Set the Point Id
 MyPoint.Get ' Get the value of the point
 max = MyPoint.RawValue(1) ' Get first value (option base = 1)
 for I = 2 to MyPoint.Elements ' Loop through all elements
 if MyPoint.RawValue(I) > max then max = MyPoint.RawValue(I)
 next I
End Sub
' Set all elements of the array to 10
option base 0 ' Arrays start at 0 (default)
Sub Main()
 Dim MyPoint as new Point ' Declare the object
 MyPoint.Id = "ARRAY_POINT" ' Set the Id
 ' Loop through all elements. Since arrays are set to start
 ' at 0, the index of the last element is one less than the
 ' count of the elements.
 for I = 0 to MyPoint.Elements - 1
 MyPoint.RawValue(I) = 10 ' Set the raw value
 next I
 ' Values are not written to CIMPLICITY until this
 ' set is executed.
 MyPoint.Set ' Write the point
End Sub

Example 2 'Access both the enumerated text and the underlying numerical 'value for a point.

Sub Main()
 Dim p1 As New point
 Dim p2 As New point
 'get the enumerated value
 p1.id = "ENUMERATEDPOINT"
 p1.get
 trace "enumerated text for " & p1.id & " is " & p1.value
 'get the underlying numerical value
 p2.id = "ENUMERATEDPOINT.$RAW_VALUE"
 p2.get
 'yes, we really mean p1.id, with p2.value!!!
 trace "underlying numeric value for " & p1.id & " Is " & p2.value
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 604

Note Point.Value (page 612) (property, read/write)

Point.ReadOnly (property, read)

Syntax Point.ReadOnly

Description Boolean. To determine if the point is read only.

Example
Sub Main()
 Dim MyPoint as new Point ' Declare the point object
 MyPoint.Id = "TANK_LEVEL" ' Set the Id
 if MyPoint.ReadOnly then ' Is the point read-only?
 MsgBox "Point cannot be set, point is read-only"
 else
 MyPoint.SetValue = 10 ' Set the value and write to CIMPLICITY.
 end if
End Sub

Point.Set (statement)

Syntax Point.Set [downloadPassword]

Description To write the point's value out to the CIMPLICITY project. An optional download password can be supplied.

Comments The values set into the Point using the Value, RawValue, SetArray and SetRawArray methods are not written
out to the CIMPLICITY project until they are committed with a Set statement.

Parameter Description

downloadPassword String. (optional) The download password for the project.

Example
Sub Main()
 Dim MyPoint as new Point ' Declare the point object
 MyPoint.Id = "TANK_LEVEL" ' Set the Id
 MyPoint.Value = 10 ' Set the value
 MyPoint.Set ' Write the value out to CIMPLICITY
End Sub

See Also Point.SetValue (page 607) (property, read), PointSet (page 604) (method)

Note

Point.SetArray (statement)

Syntax Point.SetArray array [, startElement [, endElement [, fromElement]]]

Description To set an array point's values directly from a Basic array.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 605

Comments There are several rules to keep in mind:

• If the array is dimensioned smaller than the point, only that many elements will be copied into the
point.

• If the array is larger than the point, all elements of the array are copied, and the rest of the array is
ignored.

If the startElement is specified, the function will start copying data from the array at this element and will
continue until the end of the array is reached or the point is full whichever occurs first. If the endElement is
specified, the function will stop copying data from the array after copying this element or when the point is
full. If the fromElement is specified, the values copied from the array start at this element in the point array
and continue as described above.

Parameter Description

array Array. A dimensioned or undimensioned Basic Array from which the point data will be
copied.

startElement Integer. (optional) The first array element from which data will be copied.

endElement Integer. (optional) The last array element from which data will be copied.

fromElement Integer. (optional) The first point element to which data is to be copied.

Example
' Read an array point, sort the elements by value and write them
' out to CIMPLICITY sorted.
Sub Main()
 Dim x() as integer 'Declare the value array
 Dim MyPoint as new Point 'Declare the point object
 MyPoint.id = "POINTNAME" 'Assign point to script
 MyPoint.Get 'Get the point value
 MyPoint.GetArray x 'Transfer point element into array
 ArraySort x 'Sort the array
 MyPoint.SetArray x 'Transfer to array into the point
 MyPoint.Set 'Transfer the sorted data to CIMPLICITY.
End Sub

See Also Point.SetRawArray (page 606) (method); Point.Value (page 612) (property, read/write),
Point.GetArray (page 590) (method); Point.Set (page 604) (method).

Note The SetArray method only updates the internal value of the point object. The Set method must be
executed to write the value out to the CIMPLICITY project.

Point.SetElement (statement)

Syntax Point.SetElement index, [download password]

Description To write a single element of the point to the Point Manager.

Comments Parameter Description

Index Integer. The index of the element to write.

download password String. (optional) download password

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 606

Example
'Set only the third element of an array
Sub Main()
Dim MyPoint As New Point 'Declare the point object
MyPoint.Id = "INT_ARRAY"
MyPoint.Value(3) = 10 'Assign the value of the third element
MyPoint.SetElement 3 'Write only the third element
End Sub

Point.SetpointPriv (property, read)

Syntax Point.SetpointPriv

Description Boolean. To determine if the user accessing the point has Setpoint privilege.

Example
Sub Main()
 Dim MyPoint as new Point
 MyPoint.Id = "TANK_LEVEL"
 if MyPoint.SetpointPriv = FALSE then
 MsgBox "You do not have the setpoint privilege"
 else
 MyPoint.SetValue = InputBox$("Setpoint Value:")
 end if
End Sub

See also Point.DownloadPassword (page 588) (property, read); Point.InUserView (page 595) (property, read).

Point.SetQuadIntValue (function)

Syntax Point.SetQuadIntValue(qhigh,qlow)

Description To set the point's value in a CIMPLICITY project. This operation combines the Value and Set operations
into one command. The SetQuadIntValue function takes two double values to set the value of any 64 bit
data type QINT or UQINT.

Example
' To set the value of any point with data type QINT or UQINT
‘follow the example below.
Sub Main()
 Dim qstr As String
 Dim qhigh as Double
 Dim qlow as Double
 Dim MyPoint as new Point 'Declare the point object
 MyPoint.Id = "QINT" 'Set the Id
 qstr = "1000000899876543212"
 QINTFromString qstr,qhigh,qlow
 SetQuadIntValue (qhigh,qlow)
 End Sub

See also Point.QuadValueAsString (page 599) (property, read),Point.QuadValueAsString (page 599) (property,
write), Point.SetQuadIntValue (page 606) (function), Point.TimeStampHR (page 593) (property,
read);Point.GetQuadIntValue (page 592) (function)

Point.SetRawArray (statement)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 607

Syntax Point.SetRawArray array [, startElement [, endElement [, fromElement]]]

Description To set an array point's values directly from a Basic array, bypassing Engineering Units Conversion.

Comments There are several rules to keep in mind:

• If the array is dimensioned smaller than the point, only that many elements will be copied into the
point.

• If the array is larger than the point, all elements of the point are set.

If the startElement is specified, the function will start copying data from the array at this element and will
continue until the end of the array is reached or the point is full whichever occurs first. If the endElement is
specified, the function will stop copying data from the array after copying this element or when the point is
full. If the fromElement is specified, the values copied from the array start at this element in the point array
and continue as described above.

Parameter Description

array Array. A dimensioned or undimensioned Basic Array from which the point data will be
copied.

startElement Integer. (optional) The first array element from which data will be copied.

endElement Integer. (optional) The last array element from which data will be copied.

fromElement Integer. (optional) The first point element to which data is to be copied.

Example
' Copy the log value of one array point to another array point.
Sub Main()
 Dim source as new Point ' Declare source point
 Dim dest as new Point ' Declare destination point
 Dim x() as double ' Declare array
 source.Id = "INPUT" ' Set the ID of the source point
 source.Get ' Get the value of the source point
 dest.Id = "OUTPUT" ' Set the ID of the destination point
 source.GetRawArray x ' Transfer value to array
 ' Loop through array point, taking logarithm.
 for I = 0 to source.Elements - 1
 x(I) = log(x(I))
 next I
 dest.SetRawArray x ' Transfer value into destination object
 dest.Set ' Set the value to CIMPLICITY
End Sub

See Also Point.SetArray (page 604) (method); Point.RawValue (page 602) (property, read/write);
Point.GetRawArray (page 593) (method).

Note The SetRawArray method only updates the internal value of the point object. The Set method must be
executed to write the value out to the CIMPLICITY project.

Point.SetValue (property, write)

Syntax Point.SetValue = a

Description To set the point's value in a CIMPLICITY project. This operation combines the Value and Set
operations into one command. The SetValue method uses Engineering Units Conversion and cannot be
used to set elements of an array point.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 608

Example
' Ramp tank level from 0 to 100 in steps of five, with a delay
' on 100ms between each set.
Sub Main()
 Dim MyPoint as new Point 'Declare the point object
 MyPoint.Id = "TANK_LEVEL" 'Set the Id
 for I = 0 to 100 step 5 'Loop in steps of 5
 MyPoint.SetValue = I 'Set and write value to CIMPLICITY
 Sleep 100 'Sleep 100ms
 next I 'Loop
End Sub

Point.State (property, read)

Syntax Point.State

Description Integer. To return the state of the point's value.

Comments Any of the following states may be returned.

State Description

CP_NORMAL Point is in Normal State

CP_ALARM_HIGH Point is in Alarm High State.

CP_ALARM_LOW Point is in Alarm Low State.

CP_WARNING_HIGH Point is in Warning High State.

CP_WARNING_LOW Point is in Warning Low State.

CP_ALARM Point is in Alarm State.

CP_WARNING Point is in Warning State.

CP_AVAILABLE Point has gone from Unavailable to Available.

CP_UNAVAILABLE Point is Unavailable

Example
' Increment the point value by one, if the point is unavailable,
' set it to 0.
Sub Main()
 Dim MyPoint as new Point
 MyPoint.Id = "TANK_LEVEL"
 MyPoint.Get
 if MyPoint.State = CP_UNAVAILABLE then
 MyPoint.SetValue = 0
 else
 MyPoint.SetValue = MyPoint.Value + 1
 end if
End Sub

See Also Point.Get (page 590) (method); Point.GetNext (page 592) (method)

Point (subject)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 609

Overview The values of CIMPLICITY points can be used in a variety of ways by a script. You can use scripts that
act on point values to define reactions to changing conditions in your process. Points are manipulated
by the PointSet statement and PointGet function or the point object. In general, PointSet and
PointGet are useful if you require the value of the point or wish to set the point. The point object
extends your capabilities by allowing you to receive point values as they change, access array points,
provide more information about the point's configuration; and improve performance when repeatedly
setting a point.

Security The CIMPLICITY extensions to Basic provide the same security which all your CIMPLICITY applications
use; Set Point Security, Set Point Privilege, Download Password and Set Point Audit trail. In order to
discuss security, first we will need to understand when security is imposed on your access to points.
There are two categories of processes running on your CIMPLICITY Server; User Applications and
Resident Processes. User Applications are applications run by the user, that usually provide a user
interface. Examples of such programs are CimView, CimEdit, Alarm Viewer and Program Editor. In
order for the application to access a point on the local CIMPLICITY project or a remote CIMPLICITY
project, a user login is required. The CIMPLICITY privileges defined for your User ID define your
capabilities. Resident Processes are processes that are started as part of your CIMPLICITY project.
Examples of resident processes are the Database Logger, Point Manager and scripts automatically
run by the Basic Control Engine. Since a resident process is a trusted part of your system, a resident
process is not required to obtain a login in order to access points in their project. If the resident process
wishes to access a point on a remote system, a remote project must be configured to supply the
resident process with the User ID and Password with which to log in to the remote system.

Performance The CIMPLICITY extensions to Basic provide a high performance mechanism to interact with your Point
Database. However, there are several considerations to keep in mind when designing your application
to obtain the highest performance possible. First, is the Set Point Audit Trail. For each CIMPLICITY role,
you may configure whether or not the user will generate an audit trail for each setpoint. The audit trail
is composed of a $DOWNLOAD event containing information on who set the point. This information is
sent to your event log and can provide a detailed audit trail of who and what was set. However, the audit
trail imposes significant overhead (20 times slower), since the record is logged to the database for each
setpoint. This is particularly noticeable when running setpoints in a loop in the Program Editor. However,
when the script is run from the Basic Control Engine, a $DOWNLOAD event will not be generated since
a resident process is trusted. If you do not require an audit trail is it recommended that you disable it
through role configuration (this is the default).

Second, is the difference between a PointSet statement and using the Point Object. With a Point
Object, you create the object once and initialize its point information once (data type, elements, etc.).
Subsequent operations on the Point are very fast, since the point characteristics are contained in the
object. Conversely, PointSet and PointRead must fetch the point information on each execution (in
benchmark testing this is 2 times slower.) Consider the following example :

' Example One
sub slow_set()
 for I = 0 to 100
 PointSet "MY_POINT", I
 next I
End Sub
' Example two
sub fast_set
 Dim MyPoint as new Point
 MyPoint.Id = "MY_POINT"
 for I = 0 to 100
 MyPoint.SetValue = I
 next I
End Sub

The subroutine fast_set ramps the point ten times faster than the slow_set routine. While the second
example at first may appear more complex, you will find that the object interface provides much more
flexibility. As a rule, use PointGet and PointSet when you need to read or set the point's value once
within your script.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 610

Polling CIMPLICITY provides a high performance Point Interface. As a result, improperly written applications
can degrade the overall performance of a system. One common issue is polling a point to wait for it to
change. Consider the following example. Incorrect Code

Poll:
 If PointGet("POLL_POINT") = 0 then
 Sleep 100
 Goto poll
 End If

The sleep statement causes a 100ms delay between polls. However many extra polls are still being
performed. Correct and Most Efficient Code

Dim p as new point
p.Id = "POLL_POINT"
p.Onchange
Poll:
 Wait_for
 p.GetNext
 if p.Value=0 then goto wait for

In this example, the script requests the value of the point as it changes. When the point changes, the
GetNext statement returns. When the point is not changing the script is waiting and using no system
resources.

Error
Handling

Basic provides a flexible error handling capability with the On Error command. The CIMPLICITY
extensions to Basic are designed to use the built in error handling capability. When an error occurs while
executing your CIMPLICITY command, a Basic Run Time error is generated. There are many ways you
can implement error handling. Among these are :

• No error handling. When an error occurs, the script's execution halts and the error is reported
(in the Program Editor, this is via a Message Box, and in the control engine by logging an error
message to the status log).

• Error Handler. When an error occurs, the script's execution moves to the defined error handler.
Within the error handler, the user can report the error or try to recover.

• In line error checking. When an error occurs, the script's execution continues on the next program
statement. The user can check the err variable to determine if an error occurred.

In the fast_set example above a run time error could be generated on the setting of the ID or the
setting of the value. Since the routine provides no error handling, when an error occurs, the routine exits
and returns to the calling routine. If no error handler is found as the program returns up the call stack,
a default error handler reports the run-time error. If you run the script from the Program Editor, a dialog
box opens, and if it is run from the Basic Control Engine, a Status Log message is created.

Consider the two examples below:

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 611

Sub inline_errorcheck()
 ' When an error occurs continue execution at the next statement
 on error resume next
 PointSet "BAD_POINT", 10
 ' Did an error occur?
 If err <> 0 then
 ' clear the error
 err = 0
 Exit Sub
 End if
 PointSet "BAD_POINT1", 10
 if err <> 0 then
 err = 0
 Exit Sub
 end if
End Sub
sub outline_errorcheck()
 ' When an error occurs goto the error handler
 on error goto error_handler
 PointSet "BAD_POINT", 10
 PointSet "BAD_POINT1", 10
 Exit Sub
error_handler:
 MsgBox "Error"
 Exit Sub
End Sub

You can choose how to handle or not handle error conditions.

Point.TimeStamp (property, read)

Syntax Point.TimeStamp

Description Date. To retrieve the timestamp into a Basic Date Object. The timestamp indicates the time at which the
point's value was read from the PLC.

Example
Sub Main()
 Dim x as new Point
 a$ = InputBox$("Enter a point id")
 x.Id = a$
 x.OnChange
top :
 x.GetNext
 Trace str$(x.TimeStamp) & " " & x.Value
 goto top
End Sub

See also Point.Get (page 590) (method); Point.GetNext (page 592) (method).

Point.TimeStampHR (property, read)

Syntax Point.TimeStampHR

Description Date. To retrieve the Microsecond timestamp into a string object. The timestamp indicates the time at
which the point's value was read from the PLC.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 612

Example
Sub Main()
 Dim x as new Point
 a$ = InputBox$("Enter a point id")
 x.Id = a$
 x.OnChange
top :
 x.GetNext
 Trace str$(x.TimeStampHR) & " " & x.Value
 goto top
End Sub

See also Point.Get (method); Point.GetNext (method), Point.GetTimeStampHR (method).

Point.UserFlags (property, read)

Syntax Point.UserFlags

Description Long. Returns the value of the 16-bit user defined flags for the point.

Example
Sub Main()
 Dim p as new Point
 p.Id = "VALVE_1"
 p.Get
 MsgBox cstr(p.UserFlags)
End Sub

Point.Value (property, read/write)

Syntax Point.Value [(index)]

Description To retrieve or set the value in the point object. The optional index may be supplied to access values of
an array point. The first element of the array is at the zero index. The value property uses Engineering
Units conversion if supplied by the point. To bypass Engineering Units conversion, use the RawValue
property.

Automatic conversion will be performed between data types as needed. The only exceptions are String
and BitString points, which can only be assigned from Strings.

Example
' This subroutine show automatic type conversion
Sub Main()
 Dim MyPoint as new Point 'Declare the point object
 MyPoint.Id = "INTEGER_POINT" 'Set the Id, Point Type is INTEGER
 ' The string value of "10" is automatically converted to a integer
 ' value of 10 and place in point object.
 MyPoint.Value = "10"
 MyPoint.Set ' Write the point
 ' The floating point value of 10.01 is truncated to 10 and place
 ' in the point
 MyPoint.Value = 10.01
 MyPoint.Set ' Write the point
End Sub

See also Point.RawValue (page 602) (property, read/write); Point.GetArray (page 590) (method);
Point.GetRawArray (page 593) (method).

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 613

Notes
• To retrieve the point value, the Point.Get method must be invoked first. Once the value has been

read, it can be accessed many times without having to retrieve it from the Point Manager on each
reference. If the point hasn't been read, an exception is generated.

• When setting a value, the value is not written to the device until the Set method is invoked.

PointGet (function)

Syntax PointGet (pointId$)

Description To read a particular point and return the value.

Comments Parameter Description

pointId$ String. The Point ID to get the value from.

Example
' Prompt user for point id, get the point value and display
' it into a message box.
Sub Main()
 MsgBox "Value is " & PointGet(InputBox$("Enter Point Id"))
End Sub

See Also PointGetMultiple (page 614) (function)

Important: For CIMPLICITY Machine Edition's array point names

Enclose CIMPLICITY Machine Edition array point names (that are passed through CIMPLICITY
Plant Edition Basic) in the the ASCII encoding for single quotes Chr$(39).

The reason is as follows:

CIMPLICITY Machine Edition returns array points as single values using the form name[index].

When a CIMPLICITY Machine Edition's array point name:

• Is not enclosed in Chr$(39), BASIC will parse this out as a reference to an array element. You
will receive an error indicating a bad point name.

• Is enclosed in Chr$(39) the point will not be parsed in the PointSet and PointGet BASIC
procedures. The name will be passed straight through to Machine Edition.

Note: You cannot directly put a single quote (') on an argument line because the single quote in
Basic denotes that the remainder of the line is a comment.

Examples

• val = PointGet("MyPointName")

Result

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 614

PointGet receives. MyPointName

• val = PointGet(Chr$(39) & "MyPointName[10]" & Chr$(39))

Result

PointGet receives 'MyPointName[10]'

PointGetMultiple (function)

Syntax PointGetMultiple point1[,point2[,point3…]]

Description Request data from up to 30 points in a single snapshot request. If the function fails, an error is generated.

Comments
(CimBasic)

If you need to get data from several points, use this function rather than issuing a single PointGet
command for each point. For the example below, it is six times more efficient to use PointGetMultiple ,
since the data is retrieved from the Point Manager in a single request, rather than six separate PointGet
requests.

Parameter Description

pointn Point objects for which data is going to be requested. Up to 30 may be specified as function
parameters.

Example
(CimBasic) Sub Main()

 Dim x As New Point: x.Id = "R1"
 Dim x1 As New Point: x1.Id = "R2"
 Dim x2 As New Point: x2.Id = "R3"
 Dim x3 As New Point: x3.Id = "R4"
 Dim x4 As New Point: x4.Id = "R5"
 Dim x5 As New Point: x5.Id = "R6"

 PointGetMultiple x,x1,x2,x3,x4,x5
End Sub

Comments
(.NET)

PointGetMultiple has been ported to .NET as follows:

void Cimplicity.PointGetMultiple(Point[] points);

PointGetMultiple takes an array of Point objects, which is different from CimBasic where CimBasic
functions take variable arguments with each being a Point object. Otherwise .NET and CimBasic behavior
is the same for this function.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 615

Example
(.NET) using System;

using System.Collections.Generic;
using Proficy.CIMPLICITY;
public class PGM
{
 public void Main()
 {
 Point[] array = new Point[3];

 using (Point one = new Point(), two = new Point(), three = new Point())
 {
 one.Id = "PGM_01";
 one.OnChange();

 two.Id = "PGM_02";
 two.OnChange();

 three.Id = "PGM_03";
 three.OnChange();

 array[0] = one;
 array[1] = two;
 array[2] = three;

 try
 {
 Cimplicity.PointGetMultiple(array);

 foreach (Point p in array)
 {
 Cimplicity.Trace(p.Id + " -> " + p.Value.ToString());
 }
 }
 catch (Exception x)
 {
 Cimplicity.Trace("Failure: " + x.Message);
 }
 }
 }
}

See Also PointGet (page 590) (method)

PointGetNext (function)

Syntax 1 PointGetNext(timeOutMs, point1 [,... [, point16])

Syntax 2 PointGetNext(timeOutMs, PointArray)

Description To return the next point value from a list of points with a timeout.

Comments
(CimBasic)

Timeout values (milliseconds) can be as follows:

-

1

0

Positive

Integer

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 616

Point1 is a point object with an outstanding request. Up to 16 points can be specified on the function call.
Alternatively, the user may pass an array of point objects. The function returns the object whose value
changed or empty. Parameter: timeOutMs, pointn, PointArray.

Example
(CimBasic) ' Trace the values of 2 point as they change or trace timeout if neither

' point change in 1 second.
Sub Main()
 Dim Point1 as new Point ' Declare Point Object
 Dim Point2 as new Point ' Declare Point Object
 Point1.Id = "TANK_LEVEL" ' Set the Id
 Point2.Id = "TANK_TEMP" ' Set the Id
 Point1.OnChange ' Register OnChange request
 Point2.OnChange ' Register OnChange request
 Dim Result as Point ' Declare result pointer
Top :
 ' Set result equal to result of waiting on Point1 and Point2
 ' to change for 1 second
 Set Result = PointGetNext(1000, Point1, Point2)
 if Result is Nothing then ' Nothing is returned if timeout
 Trace "TimeOut"
 Else
 ' Otherwise Result is Point1 or Point2 depending on which one
 ' changed last.
 Trace Result.Id & " " & str$(Result.TimeStamp) & Result.Value
 end if
 goto top
End Sub

Comments
(.NET)

PointGetNext has been ported to .NET as follows:

Point Cimplicity.PointGetNext(int TimeOutMs, Point[] points);

PointGetNext takes an array of Point objects, which is different from CimBasic where CimBasic functions
take variable arguments with each being a Point object. Otherwise .NET and CimBasic behavior is the
same for this function.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 617

Example
(.NET) using System;

using System.Collections.Generic;
using Proficy.CIMPLICITY;
public class PGN
{
 public void Main()
 {
 Point[] array = new Point[3];

 using (Point one = new Point(), two = new Point(), three = new Point())
 {
 one.Id = "PGN_1";
 one.OnChange();

 two.Id = "PGN_2";
 two.OnChange();

 three.Id = "PGN_3";
 three.OnChange();

 array[0] = one;
 array[1] = two;
 array[2] = three;

 try
 {
 Point result;

 do
 {
 result = Cimplicity.PointGetNext(30000, array);

 if (result != null)
 {
 Cimplicity.Trace("Point that changed is " + result.Id);
 }
 } while (result != null);
 }
 catch (Exception x)
 {
 Cimplicity.Trace("Failure: " + x.Message);
 }
 finally
 {
 Cimplicity.Trace("No more changes after 30 seconds");
 }
 }
 }
}

PointSet (statement)

Syntax PointSet pointId$, value

Description To set a point's value.

Comments Parameter Description

pointId$ String. The point ID to set.

value Value to set it to.

Example
Sub Main()
 PointSet InputBox$("Point Id:"), InputBox$("Value:")
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 618

Important: For CIMPLICITY Machine Edition's array point names

Enclose CIMPLICITY Machine Edition array point names (that are passed through CIMPLICITY
Plant Edition Basic) in the the ASCII encoding for single quotes Chr$(39).

The reason is as follows:

CIMPLICITY Machine Edition returns array points as single values using the form name[index].

When a CIMPLICITY Machine Edition's array point name:

• Is not enclosed in Chr$(39), BASIC will parse this out as a reference to an array element. You
will receive an error indicating a bad point name.

• Is enclosed in Chr$(39) the point will not be parsed in the PointSet and PointGet BASIC
procedures. The name will be passed straight through to Machine Edition.

Note: You cannot directly put a single quote (') on an argument line because the single quote in
Basic denotes that the remainder of the line is a comment.

Examples

• PointSet "MyPointName", val

Result

PointSet sets MyPointName to the value of val.

• PointSet Chr$(39) & "MEArrayPointName[10]" & Chr$(39), val

Result

PointSet sets the element with the index 10 of the Machine Edition array point
MEArrayPointName to the value of val.

Important: This syntax will not work for Plant Edition array points.

• PointSet "PEArrayPointName[10]", val

Result

PointSet sets the element with the index 10 of the Plant Edition array point PEArrayPointName to
the value of val

PointSetMultiple (function)

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 619

Syntax PointSetMultiple point1[,point2[,point3…]]

Description Performs setpoints for up to 30 points in a single setpoint request. If a failure occurs the function returns
false, otherwise true is returned.

Comments If you need to set the value of multiple points, use this function rather than issuing multiple single setpoint
requests for faster script execution. The point ErrCode property will be set to a non-zero value for a
setpoint that failed. The point ErrMsg property will contain the associated error message.

There are two variants of PointSetMultiple. The first variant takes all the points declared in the argument
list. The second variant takes an array.

Example 1
This example in Basic demonstrates both variants, argument list and array.

Sub Main()
 Dim status As Boolean
 Dim sp1 As New Point: sp1.Id = "SP1"
 Dim sp2 As New Point: sp2.Id = "SP2"
 Dim sp3 As New Point: sp3.Id = "SP3"
 Dim sp4 As New Point: sp4.Id = "SP4"
sp1.Value = 1
sp2.Value = 2
sp3.Value = 3
sp4.Value = 4
status = PointSetMultiple(sp1,sp2,sp3,sp4)
 If status = False Then
 If sp1.ErrCode <> 0 Then
 MsgBox sp1.ErrMsg
 End If
 End If
 ’r; Using an array
Dim points(1 To 4) As Point
Set points(1) = sp1
Set points(2) = sp2
Set points(3) = sp3
Set points(4) = sp4
status = PointSetMultiple(points)
End Sub

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 620

Example 2 This example in C# demonstrates only the array variant.

using System;
using System.Collections.Generic;
using Proficy.CIMPLICITY;
public class GetSetNET
{
 public void Main()
 {
 int status;
 Point[] array = new Point[4];
 using (Point sp1 = new Point(),sp2 = new Point(),sp3 = new Point(),sp4 = new
 Point())
 {
 sp1.Id = "SP1";
 sp2.Id = "SP2";
 sp3.Id = "SP3";
 sp4.Id = "SP4";
 array[0] = sp1;
 array[1] = sp2;
 array[2] = sp3;
 array[3] = sp4;
 sp1.Value = 1;
 sp2.Value = 2;
 sp3.Value = 3;
 sp4.Value = 4;
 status = Cimplicity.PointSetMultiple(array);
 }
 }
}

PointSetMultipleEx (function)

Syntax PointSetMultipleEx point1[,point2[,point3…]]

Description Performs setpoints for up to 30 points in a single setpoint request, using the provided setpoint password.
If a failure occurs the function returns false, otherwise true is returned.

Comments If you need to set the value of multiple points, use this function rather than issuing multiple single setpoint
requests for faster script execution. The point ErrCode property will be set to a non-zero value for a
setpoint that failed. The point ErrMsg property will contain the associated error message.

There are two variants of PointSetMultiple. The first variant takes all the points declared in the argument
list. The second variant takes an array.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 621

Example 1 This example in Basic demonstrates both variants, argument list and array.

Sub Main()
 Dim status As Boolean
 Dim pwd As String
 pwd = "mypassword"
 Dim sp1 As New Point: sp1.Id = "SP1"
 Dim sp2 As New Point: sp2.Id = "SP2"
 Dim sp3 As New Point: sp3.Id = "SP3"
 Dim sp4 As New Point: sp4.Id = "SP4"
 sp1.Value = 1
sp2.Value = 2
sp3.Value = 3
sp4.Value = 4
status = PointSetMultipleEx(pwd,sp1,sp2,sp3,sp4)
 If status = False Then
 If sp1.ErrCode <> 0 Then
 MsgBox sp1.ErrMsg
 End If
 End If
 ’r; Using an array
Dim points(1 To 4) As Point
Set points(1) = sp1
Set points(2) = sp2
Set points(3) = sp3
Set points(4) = sp4
status = PointSetMultipleEx(pwd,points)
End Sub

Example 2 This example in C# demonstrates only the array variant.

using System;
using System.Collections.Generic;
using Proficy.CIMPLICITY;
public class GetSetNET
{
 public void Main()
 {
 int status;
 Point[] array = new Point[4];
 using (Point sp1 = new Point(),sp2 = new Point(),sp3 = new
 Point(),sp4 = new Point())
 {
 sp1.Id = "SP1";
 sp2.Id = "SP2";
 sp3.Id = "SP3";
 sp4.Id = "SP4";
 array[0] = sp1;
 array[1] = sp2;
 array[2] = sp3;
 array[3] = sp4;
 sp1.Value = 1;
 sp2.Value = 2;
 sp3.Value = 3;
 sp4.Value = 4;
 status = Cimplicity.PointSetMultipleEx("MyPassword",array);
 }
 }
}

Error
Message Point.ErrCode

Integer value containing the error code for a failed call to PointSetMulitple or PointSetMultipleEx, or zero
for a successful operation.

Point.ErrMsg

String value containing the error message for a failed call to PointSetMulitple or PointSetMultipleEx, or
empty string for a successful operation

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 622

See Also PointSetMultiple (function) (page 618)

SetTimecomponentsHR (function)

Syntax SetTimeComponentsHR param1, param2, param 3 ….9

Description Given components of the time. Current time divided into time components of year, month, day, hour, min,
sec and nanoseconds.

Param1 Double. High value of input time.

Param2 Double. Low value of input time.

Param3 Integer. Timecomponent.

Param4 Integer. Timecomponent.

Param5 Integer. Timecomponent.

Param6 Integer. Timecomponent.

Param7 Integer. Timecomponent.

Param8 Integer. Timecomponent.

Param9 Long. Nanosecond time component.

Example
Sub OnMouseUp(x As Long, y As Long, flags As Long)
'Declare variables
 Dim yy As Integer
 Dim mm As Integer
 Dim dd As Integer
 Dim hh As Integer
 Dim min As Integer
 Dim sec As Integer
 Dim nano As Long
 Dim qlow As Double
 Dim qhigh As Double
'Initialize Objects
 yy = 2011
 mm = 7
 dd = 13
 min = 43
 sec = 10
 nano = 0

SetTimeFromComponentsHR qhigh,qlow,yy,mm,dd,hh,min,sec,nano
 MsgBox qhigh
 MsgBox qlow
End Sub

See also GetTimeComponentsHR (page 584) (function)

QINTFromString (function)

Syntax QINTFromString param1,param2,param3

Description To convert one numeric string into QINT , split it’s value into 2 doubles and return them.

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 623

Param1 String.

Param2 Reference to Double.

Param3 Reference to Double.

Example
Sub Main()
 Dim qlow as Double
 Dim qhigh as Double
 Dim qstr as String
 Dim MyPoint as new Point ' Declare the point object
 MyPoint.Id = "QINT" ' Set the point id
 qstr = "1000000899876543212"
 QINTFromString qstr,qhigh1,qlow1

 ret = MyPoint.SetQuadIntValue(qhigh,qlow)
End Sub

See also UQINTFromString (page 625) (function).

StringFromQINT (function)

Syntax StringFromQINT param1,param2,param3

Description To convert two doubles into one signed 64-bit value and finally to a string

Param1 String.

Param2 Double.

Param3 Double.

Example
Sub Main()
 Dim qlow as Double
 Dim qhigh as Double
 Dim qstr as String
 Dim MyPoint as new Point ' Declare the point object
 MyPoint.Id = "QINT" ' Set the point id
 ret = MyPoint.GetQuadIntValue(qhigh,qlow)
 qstr = StringFromQINT(qhigh,qlow) 'Get the value as
 ‘string from two doubles qhigh and
 ‘qlow

End Sub

See also DoQINTMath (page 576) (function), DoUQINTMath (page 577)
(function), Point.QuadValueAsString (page 599) (property,
read), Point.QuadValueAsString (page 599) (property, write),
Point.SetQuadIntValue (page 606) (function), StringFromUQINT (page
623) (function).

StringFromUQINT (function)

Syntax StringFromUQINT param1,param2,param3

Description To convert two doubles into one signed 64-bit value and finally to a string

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 624

Param1 String.

Param2 Double.

Param3 Double.

Example
Sub Main()
 Dim qlow as Double
 Dim qhigh as Double
 Dim qstr as String
 Dim MyPoint as new Point ' Declare the point object
 MyPoint.Id = "QINT" ' Set the point id
 ret = MyPoint.GetUQuadIntValue(qhigh,qlow)
 qstr = StringFromUQINT(qhigh,qlow) 'Get the value as
 ‘string from two doubles qhigh and
 ‘qlow

End Sub

See also DoQINTMath (page 576) (function), DoUQINTMath (page 577)
(function), Point.QuadValueAsString (page 599) (property,
read), Point.QuadValueAsString (page 599) (property, write),
Point.SetQuadIntValue (page 606) (function), StringFromQINT (page
623) (function).

Trace (statement)

Syntax Trace a$

Description Traces (prints) a string to the trace output. By default, when running in the Program Editor, tracing will be
output to the trace window. When running from the Event Manager, tracing must be specifically enabled
(TraceEnable) in order for tracing to occur.

Example
Sub Main()
 Dim x as new Point
 a$ = InputBox$("Enter a point id")
 x.Id = a$
 x.OnChange
top :
 x.GetNext
 Trace str$(x.TimeStamp) & " " & x.Value
 goto top
End Sub

TraceEnable/TraceDisable (statement)

Syntax TraceEnable file$ TraceDisable

Description TraceEnable enables tracing to a file. The file will be located in your project's log directory. Tracing to a
file is only supported from the event manager. The trace output will be written to the log directory. Tracing
has a performance impact since the file is opened and closed for each write. Tracing is intended for debug
use only and should be removed from production code.

TraceDisable disables tracing to a file

Basic Control Engine and Scripting Reference | 3 - Basic Control Engine Language Reference | 625

Example
Sub Main()
 if PointSet("TRACE_TRIGGER") = TRUE then
 TraceEnable "MY_LOG"
 end if
 Trace "Trace Message 1"
 Trace "Trace Message 2"
 TraceDisable
End Sub

UQINTFromString (function)

Syntax UQINTFromString param1,param2,param3

Description To convert one numeric string into UQINT , take a positive value with the highest value that can be taken
by ULONGLONG and return it.

Param1 String.

Param2 Reference to Double.

Param3 Reference to Double.

Example
Sub Main()
 Dim qlow as Double
 Dim qhigh as Double
 Dim qstr as String
 Dim MyPoint as new Point ' Declare the point object
 MyPoint.Id = "QINT" ' Set the point id
 qstr = "1000000899876543212"
 UQINTFromString qstr,qhigh1,qlow1

 ret = MyPoint.SetQuadIntValue(qhigh,qlow)
End Sub

See also QINTFromString (page 622) (function)

Chapter 4. Basic Control Engine User Interface

About the BCEUI

Use the Basic Control Engine User Interface (BCEUI) to connect to CIMPLICITY projects in your
enterprise and monitor events. With this user interface, you can:

• View the status of actions executed by selected events in various projects.
• Pause, resume, and stop scripts executed by events.
• Manually trigger events.
• Configure a view of projects and events and save the configuration in a file for recall.

The BCEUI window displays the status of actions triggered by events that are currently being
monitored by BCEUI. You can use the Paused option to display this list in dynamic or paused mode.

• In dynamic mode, the list is automatically refreshed as events occur or change status.
• In paused mode, the list remains fixed until you update it. To update the list, you can select

Refresh from the View menu, or press F5.

Note the following about the display:

• Actions for all running projects that BCEUI is connected to are displayed in black.
• If BCEUI is connected to a CIMPLICITY project and monitoring events, and the project stops:
• All events for the project are grayed out in the Properties dialog box.
• Triggering is disabled for events in the stopped project.
• A $Disconnected event displays in the main window with a message telling you which project is

stopped. This event runs and tries to reconnect to the project until either the project starts or you
close your BCEUI session.

• All unfinished actions in the main window are grayed out to indicate that their current status is
unknown.

• When a CIMPLICITY project that BCEUI is attempting to connect to restarts, grayed actions
are redisplayed in black and refreshed to their current status.

Open the BCEUI Window

1. Select Project>Basic Control Engine>BCE User Interface in the Workbench left pane.

2. Select BCE User Interface in the Workbench right pane.

Basic Control Engine and Scripting Reference | 4 - Basic Control Engine User Interface | 627

3. Do one of the following.

A Click Edit>Properties on the Workbench menu bar.

B Click the Properties button on the Workbench toolbar.

C In the Workbench left pane:
a. Right-click BCE User Interface.
b. Select Properties on the Popup menu.

D In the Workbench right pane:

Either Or

Double click BCE User Interface. a. Right-click BCE User Interface.
b. Select Properties on the Popup menu.

E Press Alt+Enter on the keyboard.

4. Right-click BCE User Interface.

5. Select Properties on the Popup menu.

6. Right-click BCE User Interface.

7. Select Properties on the Popup menu.

BCEUI Menus

BCEUI Menus

Basic Control Engine and Scripting Reference | 4 - Basic Control Engine User Interface | 628

You can use the menu options to save and restore event monitoring configurations, add or list events,
pause, stop or resume scripts, trigger events, pause and resume dynamic updates, refresh the display
and access Help.

The menus are:

File menu

Events menu

Scripts menu

View menu

Help menu

BCEUI File Menu

The File menu functions are:

New Creates a new BCEUI document.

Open Opens an existing BCEUI document in your currently active BCEUI window.

Save Saves the current BCEUI document to a file.

Save
As…

Saves the current BCEUI document to a file. Use this option if you want to specify the pathname of the
saved file.

Recent
File

Displays a list of recently opened BCEUI document files for easy retrieval.

Exit Exits the CIMPLICITY BCEUI viewer.

BCEUI Events Menu

The Events menu functions are:

List Opens the Properties dialog box, from which you can add, delete or trigger events.

Basic Control Engine and Scripting Reference | 4 - Basic Control Engine User Interface | 629

Add Opens the Select an Event browser, from which you can connect to a project and select events to add to the list
of monitored events.

BCEUI Scripts Menu

The Scripts menu functions are:

Pause Pauses any currently selected running scripts.

Resume Resumes any currently selected paused scripts.

Stop Stops any currently selected scripts that are paused or running.

BCEUI View Menu

The View menu functions are:

Toolbar Enables/disables display of the Toolbar.

Status Bar Enables/disables display of the Status Bar.

Paused Toggles between dynamic and paused view.

Refresh Updates the paused view.

Clear Finished Actions Clears finished actions from the event list.

BCEUI Help Menu

The Help menu functions are:

Help Topics Displays the main Help windows for the BCEUI.

About BCEUI Displays the program identification, version number and copyright for the BCEUI.

Basic Control Engine and Scripting Reference | 4 - Basic Control Engine User Interface | 630

BCEUI Window Pop-up Menu

1. Select a running or paused script.
2. Press the right mouse button.

BCEUI Toolbar

You can use the Toolbar option on the View menu to turn on and off the display of the BCEUI
Toolbar. You can fix the Toolbar in the BCEUI window or display it in a separate window at your
discretion.

The buttons on the BCEUI Toolbar are:

New Creates a new BCEUI document.

Open Opens an existing BCEUI document.

Save Saves the current BCEUI document to a file.

Event List Opens the Properties dialog box, from which you can add, delete or trigger events.

Add Events Opens the Select an Event browser, from which you can connect to a project and select events
to add to the list of monitored events.

Stop Scripts Stops any currently selected scripts that are paused or running.

Pause Scripts Pauses any currently selected running scripts.

Resume
Scripts

Resumes any currently selected paused scripts.

Pause View Toggles between dynamic and paused view.

Clear Finished
Actions

Clears finished actions from the view.

About Displays the program identification, version number and copyright for the BCEUI.

BCEUI Shortcut Keys

The following are the more commonly used keystrokes that are available for your use in the BCEUI:

Ctrl+N Creates a new BCEUI view.

Ctrl+O Opens an existing BCEUI document.

Basic Control Engine and Scripting Reference | 4 - Basic Control Engine User Interface | 631

Ctrl+S Saves the current BCEUI document to a file.

F5 Updates the paused view.

F1 Opens the Help window for the BCEUI.

BCEUI Viewer

BCEUI Viewer

To create a BCEUI view, you need to:

• Use the Select an Event browser to connect to a project and select events to add to the BCEUI
event list.

• Use the Properties dialog box to list monitored events, add or remove events from the view, and
trigger events manually.

After you create a BCEUI view, you can select script actions and pause, resume, or stop the scripts.

Once you create a BCEUI view, you can save it. You can recall saved views at any time.

1
(page
632)

Select events.

2
(page
632)

Toggle the auto browse.

3
(page
633)

Connect to a project.

4
(page
633)

Select events.

5
(page
633)

Use the event list.

6
(page
634)

Set the maximum number of completed actions.

7
(page
635)

Add events to the View.

8
(page
635)

Remove events from the view.

Basic Control Engine and Scripting Reference | 4 - Basic Control Engine User Interface | 632

9
(page
635)

Trigger events.

1. Select Events in the Browser

When you select Add from the Events menu or click the Add Events button on the Toolbar, the
Select an Event browser opens.

From the Select an Event browser, you can:

• Enable/disable Auto Browse.
• Change the display attributes.
• Connect to a project.
• Select events from the project for monitoring.

After you select events and click OK, the Properties dialog box automatically opens so that you can
add the selected events to your view. If you click Cancel, the Select an Event browser closes and the
main BCEUI window is redisplayed.

2. Toggle the Auto Browse

By default, the Auto Browse option is disabled. If you enable the Auto Browse option, whenever you
open the Select a Event dialog box, the events for the first project in the Project list are automatically
displayed in the list window.

Basic Control Engine and Scripting Reference | 4 - Basic Control Engine User Interface | 633

If Auto Browse is enabled, a check mark is displayed to its left in the View menu.

1. Select the View menu.
2. Select the Auto Browse option.

3. Connect to a Project

1. Click the drop-down list button to the right of the Project field to see the list of currently
available projects.

2. Select a project from the list.
3. Click Browse to see the list of events available for the project.

4. Select Events

1. Highlight the events you want to select. You may use the Shift and Ctrl keys when selecting
multiple events.

2. Click OK to transfer your selection to the BCEUI event list and close the Select an Event
browser.

5. Use the Event List

Do one of the following to open the Properties dialog box.

• Select List from the Events menu, or
• Click the Event List button on the toolbar, or
• Click OK on the Select a Event browser after selecting events.

Result: The Properties dialog box opens.

Basic Control Engine and Scripting Reference | 4 - Basic Control Engine User Interface | 634

Use this dialog box to:

• Set the maximum number of completed actions to be displayed by the view.
• Add events to the monitored list.
• Delete events from the monitored list.
• Trigger events.

Note: Note the following:

• Triggering is enabled only for events in connected projects that are running.
• All events for projects that are running and BCEUI is connected to are displayed in black.
• Events in the list that belong to projects that are not currently running or that become

disconnected are grayed out.
• When you add events for a new project, they are grayed out in the Properties dialog box because

BCEUI has not connected to the project yet.
• The first time you select an event for a newly selected project, then select Apply, BCEUI

connects to the project. When the connection completes successfully, all the events for the
project are displayed in black.

• You can select events for projects that are not currently running or that are disconnected. When
the project starts, BCEUI will automatically connect with the project and start monitoring the
events.

6. Set the Maximum Number of Completed Actions

The default maximum number of completed actions that the BCEUI window can display is 100. You
can choose less or more than this number. Once the list reaches its maximum, the oldest completed
action is removed when the newest one is added.

Basic Control Engine and Scripting Reference | 4 - Basic Control Engine User Interface | 635

1. Enter the number in the Max. complete items field.
2. Click OK or Apply.

7. Add Events to the View

1. Select the events you want to monitor from the list of events in the Select an Event browser.
You can use the Shift and Ctrl keys to select multiple events.

2. Click Apply to add the events to the view and keep the Properties dialog box open, or click OK
to add the events to the view and close the Properties dialog box.

8. Remove Events from the View

1. Select the events in the list that you want to remove. You can use the Shift and Ctrl keys to
select multiple events. You can also click Select All to select all events in the list.

2. Click Delete.

The events you select are removed from the BCEUI window and the Properties dialog box.

They will not appear again in Properties dialog box until you add them in the Select a Event
browser, and they will not be monitored again in the BCEUI window until you select them for
viewing in the Properties dialog box.

9. Trigger Events

Your role must have the Trigger Event privilege enabled for you to be able to trigger events for a
particular project.

1. Select the events in the list that you want to trigger. You can use the Shift and Ctrl keys to
select multiple events. You can also click Select All to select all events in the list.

2. Click Trigger.

The Confirm Trigger Action message box opens and displays the first event to trigger.

3. Click one of the following

Yes to All Trigger all the selected events.

Yes Trigger this event.

No Cancel the trigger for this event.

Basic Control Engine and Scripting Reference | 4 - Basic Control Engine User Interface | 636

Cancel Cancel your request

Note: If you click Yes or No and you are triggering multiple events, you are automatically
prompted to confirm the next trigger action.

The statuses of the events you trigger are displayed in the BCEUI window.

Control Scripts

Control Scripts

Your role must have the Script Control privilege enabled for you to be able to pause, resume and stop
scripts in the BCEUI window in specific projects.

You can do the following:

• Pause running scripts. (Only Basic scripts)
• Resume paused scripts. (Only Basic scrips)
• Stop running or paused scripts. (All scripts)

Pause Scripts

1. Select the actions whose scripts you want to pause in the BCEUI window. You can use the Shift
and Ctrl keys to select multiple actions.

You may safely select multiple scripts, even if some of the scripts you select cannot be paused
(such as stopped scripts or scripts that are already paused). Such scripts will not be affected by
the Pause Scripts request.

2. Do one of the following.
• Select Pause from the Scripts menu, or
• Click the Pause Scripts button on the toolbar, or
• Click Pause from the Window Pop-up menu.

The Confirm Pause dialog box opens.

Basic Control Engine and Scripting Reference | 4 - Basic Control Engine User Interface | 637

3. Click one of the following.

Yes to All Pause all the selected scripts.

Yes Pause this script.

No Cancel the pause request for this script.

Cancel Cancel your request.

Note: If you click Yes or No and you are pausing multiple scripts, you are automatically
prompted to confirm the next script in the list.

Resume Scripts

1. Select the actions whose scripts you want to resume in the BCEUI window. You can use the
Shift and Ctrl keys to select multiple actions.

2. Do one of the following.
• Select Resume from the Scripts menu, or
• Click the Resume Scripts button on the toolbar, or
• Select Resume from the Window Pop-up menu.

The Confirm Resume dialog box opens.

3. You may select one of the following.

Yes to All Resume all the selected scripts.

Yes Resume this script.

No Cancel the resume request for this script.

Cancel Cancel your request.

Note: If you click Yes or No and you are resuming multiple scripts, you are automatically
prompted to confirm the next script in the list.

Basic Control Engine and Scripting Reference | 4 - Basic Control Engine User Interface | 638

Stop Scripts

1. Select the actions whose scripts you want to stop in the BCEUI window. You can use the Shift
and Ctrl keys to select multiple actions.

2. Do one of the following.
• Select Stop from the Scripts menu, or
• Click the Stop Scripts button on the toolbar, or
• Select Stop from the Window Pop-up Menu.

The Confirm Stop dialog box opens.

3. Click one of the following.

Yes to All Stop all the selected scripts.

Yes Stop this script.

No Cancel the stop request for this script.

Cancel Cancel your request.

Note: If you click Yes or No and you are stopping multiple scripts, you are automatically
prompted to confirm the next script in the list.

The status of the scripts for the events you select changes from Paused or Running to Stopped and
the message field for each stopped script displays the line number where the script was stopped.

Note: Once you stop a script, you cannot restart it with the Resume command.

Chapter 5. Event Editor

About the Event Editor

You use the Event Editor to define actions to take in response to events that occur in a process. One
event may invoke multiple actions, or one action may be invoked by many events.

An event can be defined as a changing point or alarm state, or even a time of day.

Based on an event, you can perform the following actions:

• Set point values
• Acknowledge or clear alarms
• Create log file entries
• Invoke specific user-defined actions
• Invoke Basic Control Engine scripts to execute user-defined logic

At run-time, the Basic Control Engine monitors for events and executes the configured actions.

The Basic Control Engine is based on a multi-threaded design, which allows the system to invoke
and execute multiple Basic Control Engine scripts concurrently.

The order of execution of event actions is a sequential execution from top to bottom.

Note: The script is run in parallel with all actions that are being executed for the event. In other
words, the Basic Control Engine does not wait for the script to complete before it initiates the next
action defined for the event.

Any action can be invoked by any event.

A few of the ways actions and events may be combined are:

Combined Actions and Events Description

Point Actions Based on Point Events Passes information between points.

Point Actions Based on Alarm Events Allow a physical indication of an alarm, such as activating a light on
a control panel.

Events Whose Actions Call A User-Defined
Routine or Script

Defines custom functions that are invoked in response to configured
system events.

Note: The Basic Control Engine calls a startup script when the Event Manager starts up and
a termination script when it shuts down. These scripts are initially null (that is, they do not do

Basic Control Engine and Scripting Reference | 5 - Event Editor | 640

anything). You can use these scripts to perform initialization and termination tasks, such as restoring
and saving the value of a global variable. The two scripts are:

• EM_INIT.BCL
• EM_TERM.BCL

You will find copies of these scripts in your project's \scripts directory.

Event Editor Configuration

Event Editor Configuration

Step 1
(page
640)

Open the Event Editor.

Step 2
(page
641)

Review Event Editor features.

Step 3
(page
646)

Create an event.

Step 4
(page
659)

Create an action.

Step 5
(page
671)

Associate actions with an event.

Step 6
(page
672)

Copy, filter, select display fields for events and actions.

Step 1. Open the Event Editor

1. Select Project>Basic Control Engine>Event Editor in the Workbench left pane.

2. Select Event Editor in the Workbench right pane.

3. Do one of the following.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 641

A Click Edit>Properties on the Workbench menu bar.

B Click the Properties button on the Workbench toolbar.

C In the Workbench left pane:

Either Or

Double click Event Editor. a. Right-click Event Editor.
b. Select Properties on the Popup menu.

D In the Workbench right pane:

Either Or

Double click Event Editor. a. Right-click Event Editor.
b. Select Properties on the Popup menu.

E Press Alt+Enter on the keyboard.

4. Right-click Event Editor.

5. Select Properties on the Popup menu.

6. Right-click Event Editor.

7. Select Properties on the Popup menu.

Step 2. Review Event Editor Features

Step 2. Review Event Editor Features

Basic Control Engine and Scripting Reference | 5 - Event Editor | 642

Option
2.1 (page
642)

Event Editor menus.

Option
2.2 (page
645)

Event Editor toolbar.

Option
2.3 (page
646)

Event Editor shortcut keys.

Option 2.1. Event Editor Menus

You can use the menu options to create new events and actions, modify, delete or copy selected
events and actions, reorder the actions for an event, display the attributes for an event or action,
toggle dynamic updates, and access Help.

• File menu
• Edit menu
• View menu
• Tools menu
• Help menu

File menu

Option Selected
Pane

View Description

New Event... Left Event
(page
646)

Creates a new Event. This option is displayed if the Event pane is active.

New
Event_Action...

Right Event
(page
671)

Creates a new action for the currently selected Event. This option is displayed
if the Event pane is active, and you have clicked the mouse once in the Action
pane.

New Action... Left Action
(page
659)

Creates a new Action. This option is displayed if the Action pane is active.

Exit Exits the Event Editor.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 643

Edit Menu

1 An event is selected.

2 An action is selected.

Modify Event Opens the Modify Event dialog box, and lets you change the Event Type and associated fields.

Modify Action Opens the Modify Action dialog box, and lets you change the Action Type and associated fields.

Delete Event Deletes the selected Event from the list of available Events

Delete Event-
Action

Removes the selected Action from the list of Actions for the selected Event.

Delete Action Deletes the Action. This function will remove the Action from all Events that use it and remove it from
the list of available Actions.

Copy Event Copies the selected Event to a new Event. You can also choose to copy the Actions.

Move Up While viewing Event-Actions, controls the execution order of the selected Action by moving it up in the
list of Actions for the Event.

Move Down While viewing Event-Actions, controls the execution order of the selected Action by moving it down in
the list of Actions for the Event.

Alarm Filter Opens the Alarm Setup dialog box and lets you set the filter for the alarms the Event Manager will
respond to.

Note: Scripts run a-synchronously, so their order in the list does not guarantee their order of
execution. Other actions, like Setpoint , can be ordered.

View menu

Basic Control Engine and Scripting Reference | 5 - Event Editor | 644

1 An event is selected.

2 An action is selected.

Toolbar Toggles the display of the Toolbar.

Status Bar Toggles the display of the Status Bar.

Search If you are displaying By Event, opens the Event Search dialog box. If you are displaying By Action,
opens the Action Search dialog box.

Event
Attributes...

If you are displaying By Event, opens the Configure Display Attributes dialog box for Events, and lets you
select Event attributes to display in the window.

Action
Attributes...

If you are displaying By Action, opens the Configure Display Attributes dialog box for Actions, and lets
you select Action attributes to display in the window.

All Actions Displays all Actions in the Action pane. You can then select Actions and drag them into an Event.

By Event Displays Event and Action information by Event.

By Action Displays Event and Action information by Action.

Tools menu

Log Enable or disables logging of Events and Actions.

Dynamic Enables or disables Dynamic Configuration of points, alarms, etc., when configuring Events or Actions.

Update Dynamically updates the Basic Control Engine with the current Event configuration and scripts used by the
Actions in the configuration. The Basic Control Engine normally loads and compiles your scripts at project
startup. If you modify a script and save it to disk while your project is running, the Basic Control Engine will
not load the modified script until you perform an Update or the until project is stopped and restarted.

Help menu

Index Displays the main Help window for the Event Editor.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 645

Using Help Displays the main Help window for Windows operating system.

About Eventmgr Cfg... Displays the program identification, version number, and copyright for the Event Editor.

Option 2.2. Event Editor Toolbar

1. Click View on the Event Editor menu bar.

2. Do one of the following.
• Check Toolbar to display the toolbar.
• Clear Toolbar to hide the toolbar.

The buttons on the Tools toolbar are as follows.

rect 28, 0, 55, 129 (page 645)
rect 54, 3, 74, 131 (page 645)
rect 76, 4, 95, 130 (page 645)
rect 95, 4, 125, 128 (page 645)
rect 125, 3, 151, 129 (page 645)
rect 154, 3, 183, 132 (page 645)
rect 184, 8, 210, 134 (page 645)
rect 210, 4, 229, 131 (page 646)
rect 227, 5, 255, 132 (page 646)
rect 256, 2, 280, 129 (page 646)
rect 284, 3, 308, 131 (page 646)
rect 305, 2, 330, 132 (page 646)
rect 335, 4, 366, 134 (page 646)

1 Event is selected

2 Action is selected

A New Creates a new Event or Action record.

B Copy Makes a copy of the selected event or action.

C Delete Deletes the selected event(s) or action(s)

D Modify Modifies the selected event or action

E Search Searches for specified events or actions.

F Attributes Opens the Field Chooser dialog box for events or actions.

G Dynamic Enables/disables dynamic configuration updates.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 646

H About Displays program information, version number, and copyright.

I Show all actions Shows all actions.

J Action order up Moves the selected action up in the list for an event.

K Action order down Moves the selected action down in the list for an event.

L Toggle Logging Enables/disables event action logging.

M Update Updates Control Manager runtime.

Option 2.3. Event Editor Shortcut Keys

The following are the more commonly used keystrokes that are available for your use in the Event
Editor:

Keystroke Description

Ctrl+N Creates a new Event, Event-Action, or Action.

Ctrl+M Modifies an Event or Action.

Del Deletes an Event or Action.

Ctrl+C Copies an Event or Action.

Ctrl+S Searches for selected Events or Actions.

Ctrl+L Toggles logging for Events and Actions.

F1 Opens the Help window for the Event Editor.

Ctrl+F Opens the Alarm Setup dialog box.

Step 3. Configure an Event

Step 3. Configure an Event

Step 3.1
(page
646)

Create an event.

Step 3.2
(page
657)

Enter advanced event specifications.

Step 3.1. Create an Event

Step 3.1. Create an Event

Basic Control Engine and Scripting Reference | 5 - Event Editor | 647

1. Click View on the CIMPLICITY Event Editor menu bar.

2. Select By Event (page 644).

3. Do one of the following.

Method 1

Click the New button on the Event Editor toolbar.

Method 2

a. Right-click the Event Editor left pane.
b. Select New Event on the popup menu.

Method 3

Select New Event on the Event Editor File menu (page 642).

Method 4

Press Ctrl+N on the keyboard.

A New Event dialog box opens.

4. Enter a name in the Event ID field.

Note: The event ID can be a maximum of 256 characters and mixed case.

5. Click OK.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 648

An expanded New Event dialog box opens.

6. Select an Event in the Event Type field.

7. Configure the event you select.

Events are:

• Alarm Acknowledged
• Alarm Deleted
• Alarm Generated
• Alarm Reset
• Point Change
• Point Equals
• Point Transition High
• Point Transition Low
• Point Unavailable
• Point Update
• Run Once
• Timed

Note: You can modify these fields in the Modify Event (page 673) dialog box.

The dialog box closes and the new event appears in the Event list in the CIMPLICITY Event Editor
window.

Alarm Acknowledged Events

An Alarm Acknowledged Event occurs when the alarm identified in the Alarm ID field for the
Event is acknowledged.

Fields are as follows.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 649

Field Description

Alarm ID ID of an alarm or wild card to specify a group of alarms that will trigger this event when the alarm is
acknowledged.

Opens the Alarm browser.

Displays popup menu to create a new alarm, browse for or edit an existing alarm

Resource With: The event will be generated:

No entry Whenever the alarm is acknowledged.

An entry When the alarm is acknowledged for that resource

Opens the Resource browser.

Displays popup menu to create a new resource, browse for or edit an existing resource.

Class ID Alarm classification that will evaluate this event. Note: This field is unavailable if an Alarm ID is selected

Opens an Alarm Class browser.

Displays popup menu to create a new alarm class, browse for or edit an existing alarm class.

Enabled Checked Enables the event.

Clear Disables the event.

Note: Alarms can be acknowledged manually by operators, or automatically via software.

Alarm Deleted Events

An Alarm Deleted Event occurs when the alarm identified in the Alarm ID field for the Event is
deleted.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 650

Field Description

Alarm ID ID of an alarm or wild card to specify a group of alarms that will trigger this event when the alarm is deleted.

Opens the Alarm browser.

Displays popup menu to create a new alarm, browse for or edit an existing alarm

Resource With: The event will be generated:

No entry Whenever the alarm is acknowledged.

An entry When the alarm is acknowledged for that resource

Opens the Resource browser.

Displays popup menu to create a new resource, browse for or edit an existing resource.

Class ID Alarm classification that will evaluate this event. Note: This field is unavailable if an Alarm ID is selected

Opens an Alarm Class browser.

Displays popup menu to create a new alarm class, browse for or edit an existing alarm class.

Enabled Checked Enables the event.

Clear Disables the event.

Note: Alarms may be deleted manually by operators, or automatically via software.

Alarm Generated Events

An Alarm Generated Event occurs when the alarm identified in the Alarm ID field for the Event
is generated.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 651

Field Description

Alarm ID ID of an alarm or wild card to specify a group of alarms that will trigger this event when the alarm is
generated.

Opens the Alarm browser.

Displays popup menu to create a new alarm, browse for or edit an existing alarm

Resource With: The event will be generated:

No entry Whenever the alarm is acknowledged.

An entry When the alarm is acknowledged for that resource

Opens the Resource browser.

Displays popup menu to create a new resource, browse for or edit an existing resource.

Class ID Alarm classification that will evaluate this event. Note: This field is unavailable if an Alarm ID is selected

Opens an Alarm Class browser.

Displays popup menu to create a new alarm class, browse for or edit an existing alarm class.

Enabled Checked Enables the event.

Clear Disables the event.

Note: All alarm events allow wild cards for pattern matching. Valid wild cards are * and ?. In
the above example, the event "Alarm" will occur whenever a HIGH Class alarm occurs.

Alarm Reset Events

An Alarm Reset Event occurs when the alarm identified in the Alarm ID field for the Event is
reset.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 652

Field Description

Alarm ID ID of an alarm or wild card to specify a group of alarms that will trigger this event when the alarm is reset.

Opens the Alarm browser.

Displays Popup menu to create a new alarm, browse for or edit an existing alarm

Resource With: The event will be generated:

No entry Whenever the alarm is acknowledged.

An entry When the alarm is acknowledged for that resource

Opens the Resource browser.

Displays Popup menu to create a new resource, browse for or edit an existing resource.

Class ID Alarm classification that will evaluate this event. Note: This field is unavailable if an Alarm ID is selected

Opens an Alarm Class browser.

Displays Popup menu to create a new alarm class, browse for or edit an existing alarm class.

Enabled Checked Enables the event.

Clear Disables the event.

Note: Alarms can be reset manually by operators, or automatically via software.

Point Change Events

A Point Change Event occurs when value of the point identified in the Point ID changes.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 653

Note: Point value changes to and from the unavailable value are not Point Change events. Use
the Point Update (page 656) event to detect these changes.

Field Description

Point ID ID of a point that will trigger this event when the point value changes.

Opens the Point browser.

Displays Popup menu to create a new alarm, browse for or edit an existing alarm

Enabled Checked Enables the event.

Clear Disables the event.

Point Equals Events

A Point Equals Event occurs when value of the point identified in the Point ID field equals the
value in the Value field.

Field Description

Point ID ID of a point that will trigger this event when the value equals the value in the Value field.

Opens the Point browser.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 654

Displays Popup menu to create a new point, browse for or edit an existing point.

Value Value that will trigger the event.

Enabled Checked Enables the event.

Clear Disables the event.

Point Transition High Events

A Point Transition High Event occurs when value of the Digital type point identified in the Point
ID field transitions to HIGH (that is, it changes value from 0 to 1).

The code explicitly runs the action for transition high (or transition low events) if the value was
unavailable.

Field Description

Point ID ID of a point that will trigger this event when the point value transitions to HIGH. If
the point is an array point, you can specify the element that will trigger this event.
To specify an element, append the index in brackets at the end of the Point ID (for
example, ARRAY_PT[3]). If you do not specify the element for an array point, the first
element is assumed.

Opens the Point browser.

Displays Popup menu to create a new point, browse for or edit an existing point.

Enabled Checked Enables the event.

Clear Disables the event.

Point Transition Low Events

A Point Transition Low Event occurs when value of the Digital type point identified in the Point
ID field transitions to LOW (that is, it changes value from 1 to 0).

Basic Control Engine and Scripting Reference | 5 - Event Editor | 655

The code explicitly runs the action (for transition high or) transition low events if the value was
unavailable.

Field Description

Point ID ID of a point that will trigger this event when the point value transitions to LOW. If
the point is an array point, you can specify the element that will trigger this event.
To specify an element, append the index in brackets at the end of the Point ID (for
example, ARRAY_PT[3]). If you do not specify the element for an array point, the first
element is assumed.

Opens the Point browser.

Displays Popup menu to create a new point, browse for or edit an existing point.

Enabled Checked Enables the event.

Clear Disables the event.

Point Unavailable Events

A Point Unavailable Event occurs when value of the point identified in the Point ID field
becomes unavailable.

Field Description

Basic Control Engine and Scripting Reference | 5 - Event Editor | 656

Point ID ID of a point that will trigger this event when the point becomes unavailable.

Opens the Point browser.

Displays Popup menu to create a new point, browse for or edit an existing point.

Value Value that will trigger the event.

Enabled Checked Enables the event.

Clear Disables the event.

Point Update Events

A Point Update Event occurs when value of the point identified in the Point ID field is updated.
The rate at which the point is updated is a function of its Update criteria, which will be one of the
following:

Update Criteria The point is updated:

On Scan At each scan interval.

On Change When its value changes.

On Demand On request by a CIMPLICITY process.

On Demand On Scan The point is updated at each scan interval while it is being requested by a CIMPLICITY
process.

On Demand On
Change

When its value changes while it is being requested by a CIMPLICITY process.

Poll Once When the point is polled, which is once at startup.

Unsolicited Whenever the device determines that an update is needed.

Field Description

Point ID ID of a point that will trigger this event when the point value updates.

Opens the Point browser.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 657

Displays Popup menu to create a new point, browse for or edit an existing point.

Enabled Checked Enables the event.

Clear Disables the event.

Note: Point value changes to and from the unavailable value are also Point Update (page 656)
events.

Run Once

The Event Type, Run Once , is invoked once when the Event Manager starts.

Field Description

Enabled Checked Enables the event.

Clear Disables the event.

Timed Events

1. Enter 12:15:00 AM in the Event Time field
2. Enter 01:00:00 in the Event Int field.
3. Enter 12:00:00 AM in the Event Time field.
4. Enter 00:15:00 in the Event Int field.
5. Enter 02:30:00 AM in the Event Time field.
6. Enter 00:00:00 in the Event Int field.

The event is scheduled at 2:30 AM everyday.

Step 3.2. Enter Advanced Event Specifications

The various options in the Advanced section in the New Event dialog box are as follows.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 658

Option Description

Script
Execution

In Parallel Runs a script each time an event is invoked. More than one copy of the script may run at a
time. You must use critical sections to control access to resources.

The maximum number of scripts that run in parallel is undefined. Thus, several threads are
created to execute the scripts in parallel, thereby requiring more computing resources.

In the
thread
pool

Runs the script in threads from a thread pool. The thread pool is created when the EMRP
process starts.

The scripts also run in parallel, but the number of threads is limited to the size of the thread
pool. For details on the thread pool size and how to configure it, see Running a script in
parallel (in the thread pool).

In
Sequence (Default) When an event is triggered, if an existing instance of the event is still executing, the

script will be queued to start after the current script is done.

The maximum number of script actions that can run simultaneously is CE_MAX_THREADS
+ CE_POOL_THREADS.

Maximum
Queue

If the option In sequence is selected, you must specify a maximum queue size. In this case, when more
than 20 events are queued, the oldest will be discarded.

Generate
Alarm on
Overflow

(Default) If the sequential queue overflows, select this check box to generate an $EM_QUEUE alarm.

If your event is an alarm event, generating an alarm may cause your event to trigger again and generate
another alarm. This will cause a circular cycle of alarms.

Log
Error on
Overflow

(Default) If the sequential queue overflows, check to generate a message in the status log.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 659

Step 4. Create an Action

Step 4. Create an Action

1. Click View on the Event Editor menu bar.

2. Select by Action (page 644).

3. Do one of the following.

Method 1

Click the New button on the Event Editor toolbar.

Method 2

a. Right-click the Event Editor left pane.
b. Select New Action on the popup menu.

Method 3

Select New Acton on the Event Editor File menu (page 642).

Method 4

Press Ctrl+N on the keyboard.

A New Action dialog box opens.

4. Enter a name in the Action ID field.

Note: The action ID can be a maximum of 256 characters and mixed case.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 660

Important: The name must begin with a letter, not a number.

5. Enter the name of the new Action in the Action ID field and click OK.

An expanded New Action dialog box opens.

6. Select an action in the Action type field.

7. Configure the action you select.

Alarm Look-Up

Log Only

Point Alarm Acknowledge

Point Alarm Disable

Point Alarm Enable

Recipe Upload/Download

Run Script

Set Point

Source Transition Set

Transition Set

The dialog box closes and the new action appears in the Action list in the CIMPLICITY Event Editor
window.

Note: You can modify these fields in the Modify Action (page 674) dialog box.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 661

Alarm Look-Up Actions

(Required) enter the name of the CIMPLICITY Alarm ID for which the action will be taken.

Important: When you create the Alarm ID in the Alarm Definition dialog box, you must:

1. Select $CIMBASIC in the Alarm type field.
2. Enter one %s parameter in the Alarm message field to hold the Alarm Message defined for the

Point Value.

Log Only Actions

A Log Only action logs the associated Event in the Database Logger Event Log. No other action is
taken.

Point Alarm Acknowledge Actions

A Point Alarm Acknowledge action acknowledges the alarm defined by the Alarm ID and
Resource ID.

To create this Action, enter the following information in the New Action dialog box:

rect -1, 114, 389, 150 (page 662)
rect 0, 68, 390, 104 (page 662)

Basic Control Engine and Scripting Reference | 5 - Event Editor | 662

1
(page
662)

Alarm ID

2
(page
662)

Resource

1 Alarm ID

ID of an alarm to be acknowledged.

(Optional) Click either of the following to select the alarm ID.

Browse button Opens the Alarm browser.

Popup Menu button Displays Popup menu to create a new alarm, browse for or edit an existing alarm

2 Resource

Resource of the alarm to be acknowledged.

Note: This field is automatically filled in, when an Alarm ID is entered, with the resource
assigned to the alarm.

(Optional) Click either of the following to select the alarm ID.

Browse button Opens the Resource browser.

Popup Menu button Displays Popup menu to create a new resource, browse for or edit an existing resource.

Point Alarm Disable Actions

A Point Alarm Disable action disables alarming for the point in the Point ID field.

To create this Action, enter the following information in the New Action dialog box:

Point ID

Basic Control Engine and Scripting Reference | 5 - Event Editor | 663

ID of a point for which alarming is to be disabled.

(Optional) Click either of the following to select the alarm ID.

Browse button Opens the Point browser.

Popup Menu button Displays Popup menu to create a new point, browse for or edit an existing point.

PointAlarm Enable Actions

A Point Alarm Enable action enables alarming for the point in the Point ID field.

To create this Action, enter the following information in the New Action dialog box:

Point ID

ID of a point for which alarming is to be enabled.

(Optional) Click either of the following to select the alarm ID.

Browse button Opens the Point browser.

Popup Menu button Displays Popup menu to create a new point, browse for or edit an existing point.

Recipe Upload/Download

A Recipe Upload/Download action uploads or downloads the recipe defined by a selected parameter
file.

To create this Action, enter the following information in the New Action dialog box:

Basic Control Engine and Scripting Reference | 5 - Event Editor | 664

Parameter file

Automatic actionfile that was created in Recipes.

(Optional) Click either of the following to select the alarm ID.

Browse button Opens the Select a Recipe File browser.

Popup Menu
button

Displays a Popup menu to create a new automatic action Recipe file, browse for or edit an
existing automatic action Recipe file.

The selected script name cannot exceed 48 characters. If you try to select an action with a name
longer than 48 characters CIMPLICITY will not allow you to use it.

Run Script Actions

A Run Script action executes a selected script. Event Manager supports the following types of
scripts:

• Basic Script
• C# Script
• Visual Basic .Net Script
• Python Script

The script is run in parallel with all actions that are being executed for the event. In other words,
the Basic Control Engine does not wait for the script to complete before it initiates the next action
defined for the event.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 665

To add an existing script:

1. Select the Browse button .

2. Select the script you want to add to the action.

3. Select OK.

To add a new script:

1. Select the Popup Menu button .

2. Select New.

3. Select the Script type.

4. Enter a name for the script in Script text box.

5. Select OK. The corresponding script editor opens.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 666

6. Edit and save the script.

When the event to which the script is added occurs, the script gets executed. You can view the status
of the script execution in the BCE User Interface.

Note: The selected script name cannot have more than 48 characters. If you try to select a script
with a name longer than 48 characters CIMPLICITY will display an error message and will not allow

you to use it.

Important: The Basic Control Engine loads and compiles your scripts when your project starts
up. If you modify a script and save it to disk while your project is running you need to do either of
the following to make the Basic Control Engine load the modified script.

Method 1

Click Tools on the Event Editor menu bar.

Select Update.

Method 2

Stop the project.

Restart the project.

Types of Script Execution

When a configured event with a script action is triggered, the script can be executed in the following
ways:

• In sequence
• In parallel (includes thread pool)

To configure an event with the type of script execution, see Step 3.2. Enter Advanced Event
Specifications (page 657).

Running a script in parallel vs. in sequence

You can run scripts in parallel if they wait on Input/Output (I/O) operations for extended periods of
time. This will support running more threads.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 667

You can run scripts in sequence if they interact with an external system that cannot perform multiple
operations in parallel.

The set of threads used to run scripts in parallel or in sequence are managed by a common thread
manager. The CE_MAX_THREADS global parameter controls the maximum number of threads the
thread manager will use to run scripts, and decides when and if the script will be run.

• If there are fewer than CE_MAX_THREADS scripts currently running in parallel, the script
will be run immediately.

• If there are CE_MAX_THREADS or more scripts running in parallel, the script is discarded and
a Too many executing threads, action ignored message is logged to the status log.

• If there is another script running in sequence for a configured event and there are fewer actions
queued than the maximum queue size of the configured event, the script is queued.

• If there is no other script running in sequence for a configured event and there are fewer than
CE_MAX_THREADS scripts currently running in sequence, the script is run immediately.

• If as many actions as the maximum queue size of the configured event are queued, the script
running in sequence is discarded and an alarm is generated and/or a message is logged to the
status log depending on the configuration of the event.

• If there is no other script running in sequence for a configured event and there are
CE_MAX_THREADS or more scripts currently running in sequence, the script is discarded and
a Too many executing threads, action ignored message is logged to the status log.

Running a script in parallel (in the thread pool)

You can run a CPU-intensive script in parallel in a set of threads managed by a thread pool. The
thread pool should be sized so that there is one thread per logical processor in the system. This helps
minimize the time spent in switching CPU cores.

Note: For cores that support hyperthreading, the number of logical processors is twice the
number of cores. For cores that do not support hyperthreading, the number of logical processors is
equal to the number of cores.

The CE_POOL_THREADS global parameter controls the maximum size of the thread pool, and also
decides when the script will be run.

• If there are fewer than CE_POOL_THREADS scripts currently running, the script will be run
immediately.

• If there are CE_POOL_THREADS or more scripts running, the script is queued.

To configure the CE_MAX_THREADS and CE_POOL_THREADS global parameters:

• Select Project, and then select Properties.
• In the Settings tab of the Project Properties dialog box, select Event Editor, and then select

Settings.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 668

• In the Setup dialog box, select the Set thread pool size to option, and enter a number.

Notes

• The thread pool size ranges between 0 and 200, and when calculated automatically will be twice
the number of logical processors in the system. When the size is set to 0, its size is automatically
calculated.

• CE_MAX_THREADS should be set to the expected number of simultaneous events. The
actions of the surplus events triggered will be ignored.

• The maximum number of script actions that can run simultaneously is CE_MAX_THREADS +
CE_POOL_THREADS.

• BCL and .NET scripts share the same set of threads.
• When a script is started, it can run in any available thread.
• The CE_THREAD_TIMEOUT global parameter controls the number of seconds a thread

managed for parallel and sequential events will be idle before it is freed. This period should be
long enough so that regularly executed events do not need to create threads, but short enough
so that infrequent events do not cause the event manager to consume an abnormal amount of
memory for extended periods of time.

• The CE_MIN_STANDBY_THREAD_COUNT global parameter controls the
number of threads allowed by the event manager to be idle indefinitely. Threads
that are idle for CE_THREAD_TIMEOUT seconds will not be freed if there are
CE_MIN_STANDBY_THREAD_COUNT or fewer threads in the idle state.

Variable scope and lifetime

In BCL, you can declare public or private variables at the module level, outside of any function.
In .NET, you can declare static or instance variables at the class level, outside of any function.

The following table provides the differences between BCL and .NET variables:

Variable Scope of variable
Lifetime of

variable value
Shared

Multi-
threading issues

BCL public Global, visible to all script files
(modules)

Forever, across event
instances

Yes Yes

BCL private Visible only to this script file
(module)

Forever, across event
instances

Yes Yes

.NET class
static

Visible only to this script file
(AppDomain)

Forever, across event
instances

Yes Yes

.NET class
instance

Visible only to this script file
(AppDomain)

Forever, across event
instances

No No

In the previous table:

• Scope of variable - Denotes the visibility of the variable to other script files, such as modules
and AppDomains.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 669

• Lifetime of variable value - Denotes how long the value of a variable will last.
• Shared - Denotes if two or more event instances will share the value of the variable.
• Multi-threading issues - Denotes if multi-threading issues occur when multiple instances run at

the same time.

Set Point Actions

A Set Point action sets the value of a point.

To create this Action, enter the following information in the New Action dialog box:

1 Point ID

ID of a point that will perform the set point.

(Optional) Click either of the following to select the alarm ID.

Browse button Opens the Point browser.

Popup Menu button Displays Popup menu to create a new point, browse for or edit an existing point.

2 Value

Value to set the point to.

Source Transition Set Actions

A Source Transition Set action sets the value of the point in the Point ID field to the value of the
point in the Source field.

To create this Action, enter the following information in the New Action dialog box:

Basic Control Engine and Scripting Reference | 5 - Event Editor | 670

1 Point ID

ID of a point that will perform the set point.

(Optional) Click either of the following to select the alarm ID.

Browse button Opens the Point browser.

Popup Menu button Displays Popup menu to create a new point, browse for or edit an existing point.

2 Source

Name of the Point ID the will provide the update value.

Note: If the source point is the same as the point that triggered the event, the old value of the
source point will be copied to the point ID. This lets you save a point value before it is updated. If
you want to copy the new value of the point, use the Transition Set (page 670) action.

Transition Set Actions

A Transition Set action sets the value of the point in the Point ID to the value of the point in the
Point ID field of the Event associated with this Action.

To create this Action, enter the following information in the New Action dialog box

Point ID

Basic Control Engine and Scripting Reference | 5 - Event Editor | 671

ID of a point that will be updated with the value of an associated event's point ID. Valid entries are
either a device or global point ID

(Optional) Click either of the following to select the alarm ID.

Browse button Opens the Point browser.

Popup Menu button Displays Popup menu to create a new point, browse for or edit an existing point.

Step 5. Associate Actions with an Event

1. Make sure you are displaying the Event Editor By Event. (page 643)

2. Select an event in the Event list.

3. Click the mouse once in the Action list.

4. Do the following.
a. Right-click an event in the right pane.
b. Do one of the following.
• Select New Event Action on the popup menu.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 672

• Select New Event-Action (page 642) on the File menu.
• Press Ctrl+C on the keyboard.

The New Event-Action dialog box opens.

5. Configure options are as follows.

Field Description

Event
ID

Read-only Event with which the action will be associated.

Opens the Action browser.

Displays popup menu to create a new action, browse for or edit an existing action.

Log
Flag

Checked Logs the event and action to the Database Logger Event
Management log.

Clear Disables logging.

Tip: You can also use the Toggle Logging button on the Event Editor toolbar to enable
or disable logging the selected event and action.

Step 6. Work with Existing Events and Actions

Step 6. Work with Existing Events and Actions

Basic Control Engine and Scripting Reference | 5 - Event Editor | 673

Option
6.1 (page
673)

Modify an event.

Option
6.2 (page
674)

Modify an action.

Option
6.3 (page
675)

Copy an event.

Option
6.4 (page
677)

Copy an action.

Option
6.5 (page
678)

Filter alarms and events.

Option
6.6 (page
684)

Select event display fields.

Option
6.7 (page
685)

Select action display fields.

Option
6.8 (page
687)

Search for an event.

Option
6.9 (page
688)

Search for an Action

Option 6.1. Modify an Event

1. Select an event in the Event Viewer.

Note: The action can be selected in either Event or Action view.

2. Do one of the following.

Method 1

Click the Modify button on the Event Editor toolbar.

Method 2

a. Right-click the selected event.
b. Select Modify Event on the Popup menu.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 674

Method 3

Select Modify Event on the Event Editor Edit menu (page 643).

Method 4

Press Ctrl+M on the keyboard.

A Modify Event dialog box opens with the configuration for the selected event.

3. Change any of the fields as you did when you created (page 646) the event.

Option 6.2. Modify an Action

1. Select an action in the Event Viewer.

Note: The action can be selected in either Event or Action view.

2. Do one of the following.

Method 1

Click the Modify button on the Event Editor toolbar.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 675

Method 2

a. Right-click the selected action.
b. Select Modify Action on the popup menu.

Method 3

Select Modify Acton on the Event Editor Edit menu (page 643).

Method 4

Press Ctrl+M on the keyboard.

A Modify Action dialog box opens with the configuration for the selected event.

3. Change any of the fields as you did when you created (page 659) the action.

Option 6.3. Copy an Event

1. Click View on the CIMPLICITY Event Editor menu bar.

2. Select By Event (page 644).

3. Select the Event in the Event list.

4. Do one of the following.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 676

Method 1

Click the Copy button on the Event Editor toolbar.

Method 2

a. Right-click the selected event.
b. Select Copy Event on the popup menu.

Method 3

Select Copy Event on the Event Editor Edit menu (page 643) .

Method 4

Press Ctrl+C on the keyboard

The Event Copy dialog box opens.

5. Make selections are as follows.

Selection Description

From (Read only) Selected event.

To Name of the event to which the selected event's configuration will be copied.

Add the associated
actions?

Checked Copies all actions associated with the source event to the target
event.

Unchecked Copies only the event configuration; does not copy associated
actions.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 677

6. Click OK

The dialog box closes and the new Event appears on the Event list.

Option 6.4. Copy an Action

1. Click View on the Event Editor menu bar.

2. Select by Action (page 644).

3. Do one of the following.

Method 1

Click the Copy button on the Event Editor toolbar.

Method 2

a. Right-click the selected action.
b. Select Copy action on the popup menu.

Method 3

Select Action Copy on the Event Editor Edit menu.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 678

Method 4

Press Ctrl+C on the keyboard.

The Action Copy dialog box opens.

4. Make selections are as follows.

Selection Description

From (Read only) Selected action.

To Name of the action to which the selected action's configuration will be copied.

Add the associated
events?

Checked Copies all events associated with the source action to the target
event.

Unchecked Copies only the action configuration; does not copy associated
events..

5. Click OK.

The dialog box closes and the new Action appears on the Action list.

Option 6.5. Filter Alarms and Events

The Alarm Setup dialog box lets you filter the alarms to which the Event Manager will respond.

You can filter by:

• Resource ID
• Alarm Class ID.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 679

You can also have the Event Manager respond to either or both;

• Alarm Log data
• Event Log data

Important: You must enter information in the Setup (page 680) dialog box in order to receive
alarm and/or event data.

Open the Alarm Setup Dialog box

Do one of the following to open the Alarm Setup dialog box. The Setup dialog box opens when you
use any of these methods.

Method 1:

• Open the Project Properties dialog box.
• Select the Settings tab.
• Select Event Editor.
• Click Settings.

Method 2

• Right-click an Event ID in the CIMPLICITY Event Editor left pane
• Select Alarm Filter from the pop-up menu.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 680

Method 3

• Select Alarm Filter on the CIMPLICITY Event Editor Edit (page 643) menu.
• Method 4
• Press Ctrl+F in the CIMPLICITY Event Editor.

Setup Options

Setup options are as follows.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 681

Option Description

Resource ID Resource ID for which the Event Manager can receive information.

Opens the Resource browser.

Displays window to create a new resource, browse for or
edit an existing resource.

Alarm Class ID Alarm Class for which the Event Manager can receive information.

Opens the Alarm Class browser.

Displays window to create a new alarm, browse for or edit
an existing resource.

Alarms Selected The Event Manager will
receive Alarm Log data.

Cleared The Event Manager will
not receive any Alarm Log
data.

Events Selected The Event Manager will
receive Event Log data.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 682

Option Description

Cleared The Event Manager will not
receive any Event Log data.

Maximum Concurrent
Scripts

Specifies the maximum number of scripts that can execute concurrently within the Event
Manager. When this limit is exceeded:

• An $EM_MAX_SCRIPTS alarm will be generated.
• A Too many executing threads, action ignored message will appear in the status log.

Maximum concurrent
scripts Specifies the maximum number of scripts that can execute concurrently within the Event

Manager.

When this limit is exceeded:

• An $EM_MAX_SCRIPTS alarm will be generated.
• A Too many executing threads, action ignored message will appear in the status log.

Automatically calculate
thread pool size

Sets the thread pool size to twice the number of logical processors in the system.

Set thread pool size to
Sets the thread pool size to a value between 0 and 200 that you enter.

If you enter a value that is greater than twice the number of logical processors in the
system, a warning is displayed.

.Net Assembly References
(page 172)

Additional .NET assembly references for C# and VB .NET; additional references can be
added or removed

Example 1

Enter and select the following to make the Event Manager receive all alarms and events.

Letter Option Action

Resource ID Leave blank.

Alarm class ID Leave blank.

A Alarms Check

B Events Check

Basic Control Engine and Scripting Reference | 5 - Event Editor | 683

Example 2

Enter and select the following to make the Event Manager receive only Event data for system
resources.

Letter Option Action

A Resource ID Enter $SYSTEM

Alarm class ID Leave blank.

B Alarms Clear

Events Check

Example 3

Enter the following to make the Event Manager:

• Receive event data from the $SYSTEM resource.
• Receive HIGH class alarm data only from $SYSTEM resource.

Letter Option Action

A Resource ID Enter $SYSTEM.

B Alarm class ID Enter HIGH.

C Alarms Check

D Events Check

Basic Control Engine and Scripting Reference | 5 - Event Editor | 684

Option 6.6. Select Event Display Fields

1. Click View on the CIMPLICITY Event Editor menu bar.

2. Select By Event (page 644).

3. Do one of the following.

Method 1

Click the Field Chooser button on the Event Editor toolbar.

Method 2

a. Click the right mouse button in the Event Editor left pane.
b. Select Field Chooser on the popup menu.

Method 3

Select Field Chooser on the Event Editor View menu (page 643) .

Result: The Field Chooser dialog box for the Event field columns opens.

Field Chooser features are as follows.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 685

Feature Description

Lists Available
Field

Event fields that are not currently being displayed.

Display
Fields

Event fields that are currently being displayed. The fields display in columns. Columns go
from left to right, starting at the top of the list and moving down.

Fields Selections correspond to the selections in the Event dialog boxes (page 646).

Buttons Add Add selected available fields to the Display Fields list

Remove Stops displaying selected fields by sending them back to the Available Field list.

OK Saves the selection and closes the Field Chooser

Cancels Cancels the latest selections.

Move Up Each click moves a selected field one column to the left. Note: Event ID is always the
farthest left.

Move
Down

Each click moves a selected field one column to the right.

4. Click OK when you have finished making your selections.

The Event Editor left pane displays your selections.

Option 6.7. Select Action Display Fields

1. Click View on the Event Editor menu bar.

2. Select by Action (page 644).

3. Do one of the following.

Method 1

Click the Field Chooser button on the Event Editor toolbar.

Method 2

Basic Control Engine and Scripting Reference | 5 - Event Editor | 686

a. Click the right mouse button in the Event Editor left pane.
b. Select Field Chooser on the popup menu.

Method 3

Select Field Chooser on the Event Editor View menu (page 643).

Result: The Field Chooser dialog box for the Action field columns opens.

Field Chooser features are as follows.

Feature Description

Lists Available
Field

Action fields that are not currently being displayed.

Display
Fields

Action fields that are currently being displayed. The fields display in columns. Columns go
from left to right, starting at the top of the list and moving down.

Fields Selections correspond to the selections in the Action dialog boxes (page 659).

Buttons Add Add selected available fields to the Display Fields list

Remove Stops displaying selected fields by sending them back to the Available Field list.

OK Saves the selection and closes the Field Chooser

Cancels Cancels the latest selections.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 687

Move Up Each click moves a selected field one column to the left. Note: Action ID is always the
farthest left.

Move
Down

Each click moves a selected field one column to the right.

4. Click OK when you have finished making your selections.

The Event Editor left pane displays your selections.

Option 6.8. Search for an Event

1. Click View on the CIMPLICITY Event Editor menu bar.

2. Select By Event (page 644).

3. Do one of the following.

Method 1

Click the Search button on the Event Editor toolbar.

Method 2

a. Right-click the Event Editor left pane.
b. Select Search on the popup menu.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 688

Method 3

Select Search on the Event Editor View menu (page 643).

Method 4

Press Ctrl+S on the keyboard.

A Event Search dialog box opens.

Search criteria are as follows.

Field Description

A Event ID ID or partial ID with a * wild card of the event or events you want to find.

B Id ID of a point used in an event definition.

4. Click OK.

Events that fill your criteria display in the Event Editor.

Tip: Leave the fields blank in the Event search dialog box to re-display all of the events in the
Event Editor after you have searched for selected events.

Option 6.9. Search for an Action

1. Click View on the CIMPLICITY Event Editor menu bar.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 689

2. Select By Action (page 643).

3. Do one of the following.

Method 1

Click the Search button on the Event Editor toolbar.

Method 2

a. Right-click the Event Editor left pane.
b. Select Search on the popup menu.

Method 3

Select Search on the Event Editor View menu (page 643).

Method 4

Press Ctrl+S on the keyboard.

An Action Search dialog box opens.

Search criteria are as follows.

Field Description

Basic Control Engine and Scripting Reference | 5 - Event Editor | 690

A Action ID ID or partial ID with a * wild card of the action or actions you want to find.

B Point Id ID of a point used in an action definition.

4. Click OK.

Actions that fill your criteria display in the Event Editor.

Tip: Leave the fields blank in the Event search dialog box to re-display all of the actions in the
Event Editor after you have searched for selected actions.

Optimize Event Editor Performance

You can do the following to optimize the performance of the Event Manager:

• Make entries in the Global Parameters file to change the maximum number of scripts that can
run simultaneously, or specify how long an idle thread should remain active.

Event Editor global parameters include:

CE_MAX_THREADS

CE_THREAD_TIMEOUT

• Make entries in the Basic Control Engine points file to cache frequently used points.

Each time a script uses a point, it must retrieve the point's definition. You can use the bce_points.cfg
file to pre-load point definitions into the Basic Control Engine for the Event Manager. This can
provide a performance boost.

The bce_points.cfg file is an ASCII file that needs to be located in your project's Data directory.

Basic Control Engine and Scripting Reference | 5 - Event Editor | 691

To create the bce_points.cfg file:

1. Select the Tools>Command Prompt on the Workbench Tools menu.

2. Type cd %SITE_ROOT%\data.

3. Type notepad bce_points.cfg.

Notepad opens with a blank bce_points.cfg file loaded.

4. Enter all the point IDs that you want to cache, one per line in the file.

5. Exit Notepad and save the file.

6. Stop and restart your project to have the caching take effect.

Chapter 6. Action Calendar

About the Action Calendar

Action Calendar is a feature added to CIMPLICITY, which allows you to dynamically create,
maintain, and execute a calendar schedule of manufacturing events and associated actions. Turn on
lights, heat, and equipment based on a schedule, which you configure and maintain through simple
point and click actions.

This Application Module is fully integrated with CIMPLICITY software's Base System functionality
to enhance its already powerful monitoring capability in a full range of computer integrated
manufacturing environments. Designed from the ground up as a true client / server architecture,
CIMPLICITY has always provided more than simple monitoring and control. CIMPLICITY
software's flexible system architecture and modular design also allows for easy add-on of
functionality. When you take on the challenge of an enterprise wide system, you face challenges
which simple MMI systems just cannot handle. With the CIMPLICITY Action Calendar you can
coordinate plant operations on a timed basis.

The Action Calendar Application Module, which interfaces with the Base System Point Management
facility and User Interface, allows you to easily schedule the execution events in your system
through a simple calendar based user interface. Configured events can drive real world I/O through
CIMPLICITY and turn equipment/utilities on and off based on production schedules. In addition
internal events can be activated to trigger:

• Data collection
• Data logging
• Report generation
• Execution of scripts or programs.

Managing events and activities associated with your production schedule are made easy with the
CIMPLICITY Action Calendar.

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 693

Planning for the Action Calendar

What the Action Calendar Does

The Action Calendar option gives you, the system administrator, the ability to build a set of
automated events that can be applied in one area of or throughout your plant. You can invoke events
with associated actions at specific times of a day and during day types (for example, weekdays) that
you define.

An action can be any action supported by the Event Editor. For example an action can set a point,
generate an alarm, download a recipe or even run a user written Basic Script.

Note: The Action Calendar schedules events with associated actions. It is not designed for
Production scheduling.

The Action Calendar has two major components. The:

1. Graphical User Interface (page 694) (GUI) allows users to interactively configure and view
schedule information.

2. Scheduler (page 696) is responsible for ensuring that your operations are initiated at the
appropriate times.

Action Calendar's Graphical User Interface

The Graphical User Interface, which has a familiar electronic day planner appearance:

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 694

• Provides the screens needed for you to configure all Calendar data, including areas, event
actions, and schedules.

• Lets you project what events are scheduled either today or for any date in the future, based
on existing Action Calendar configuration data.

• Lets you specify exceptions to these standard schedules, as needed, to meet production
needs for a specific date. These schedule overrides can be used to completely alter a day's
schedule (for example, to accommodate holidays), or to modify, add, or skip a single event
on a specified date.

Action Calendar's Scheduler

The Action Calendar's Scheduler is a CIMPLICITY resident process that:

• Determines the daily production schedules by:

3. Combining all standard events for the current date.

4. Applying all overrides associated with that date, until the total plant wide schedule has been
calculated.

• Initiates events based on these schedules.
• Performs periodic cleanup of the Action Calendar configuration data so that outdated

information (in particular, overrides that correspond to dates in the past) is automatically
purged from the system.

When to use Other CIMPLICITY Tools

1. If you want to schedule an event to execute every minute, use the CIMPLICITY Event Editor.
The Event Editor provides an easier way than the Action Calendar to schedule these types of
repetitive events.

2. If you want to schedule an event in less than one-second real time intervals, use a PLC or a
CIMPLICITY PC control to perform the real time control. In the Action Calendar, events can
be scheduled to the second. On a normally loaded system, your event will execute within +1
second of the target time.

Action Calendar Interface Overview

It is through the Action Calendar interface that you:

Create and define Areas with scheduled events (page 694)

• Project Schedules for each Area (page 696)

Action Calendar Areas in a Facility

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 695

The Action Calendar lets you divide your facility into any number of areas, each with its own unique
set of events and schedules.

An Area defines specific locations, stations, or work units with which schedule information may be
associated. Examples of areas are

• ASSEMBLY
• Inspection
• Factory

Each area has its own configuration data. One immediate benefit of this feature is that users only
need to be familiar with their own area, and do not need to understand the entire plant's operation in
order to create or modify schedules. Of course, you, the system administrator, may also define plant
wide areas, to schedule events for the entire factory.

For example, you may dedicate an area to factory_lights. You can then create a configuration that
will instruct the Action Calendar to turn the lights on and off throughout the plant, at the times you
designate.

The information required for an area includes definitions for:

• Events
• Day types with associated weekdays
• Schedules for the day types

Event Definitions

An Event definition (page 699) provides a list of actions to perform such as Setpoints, and assigns
a unique event name to the association.

Example

To define the event MAIN_LIGHTS_ON, associate the CIMPLICITY Point ID MASTER_LIGHTS
with a value of one (1).

Day Type Definitions

Day type definitions (page 717) (or classifications) identify the different types of days are required
to accommodate the various production needs of the plant.

Each day type within an area

• Has its own unique schedule of events
• Includes the days of the week (for example, Tuesday) that you designate
• Cannot have a day of the week (for example, Wednesday) that is assigned to a different day type

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 696

Examples of day types with assigned days include

Area A

• Weekday: Monday, Tuesday, Wednesday, Thursday, Friday
• Weekend: Saturday, Sunday

Area B

• Workday. Tuesday
• Maintenance. Friday

Schedules

A Schedule definition (page 729) specifies the sequence and timing of events associated with the
area. All times may be specified to the nearest second on a 24-hour clock.

Example

The schedule for a FACTORY area specifies the event MAIN_LIGHTS_ON to occur at 6:00:00am.

Projected Schedules for the Action Calendar

Projected Schedules

Projected schedules (page 729) display a time ordered list of events that are scheduled to occur on
a selected date.

In addition to building base schedules for each area, the Graphical User Interface provides you with
the mechanism to:

• Project what an area's schedule will look like for today or for any date in the future.
• Override any or all events associated with that date with:
• Day type overrides completely replace the set of events associated with one-day type with the

base schedule associated with a new day type.
• Event overrides affect individual events, letting you dynamically add, skip, or reschedule events

at any time.

About the Action Calendar Scheduler

1. Determines the current day of the week.

2. Determines, for each area, the appropriate configured day type.

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 697

This day type will be either the standard day type for the area or, if the day type has been
overridden, the new requested day type.

3. Reads that day type's schedule, along with any event overrides specific to today's schedule, and
merges with all other area schedules for that day.

4. Begins processing of the events once the complete schedule has been built.

Important: Some important notes about how the Action Calendar Scheduler deals with
events include:

• If any events are being scheduled during the time that the Action Calendar is actually
generating the schedule, these events will be initiated, in order, immediately upon
completion of the schedule generation.

• There will be no predictable order for events that are scheduled to execute simultaneously.
• If a single event performs more than one action, the sequence of the actions is guaranteed.

When the Calendar determines that an event needs to be initiated, it sends an event request to
the Event Manager (EM) subsystem. If the event has been configured with logging enabled,
then the success or failure of the actions will be logged.

Action Calendar Planning Configuration

Action Calendar Planning Configuration

1. Areas

2. Events with associated actions

3. Day types with assigned days

4. Actual Schedules

Once you have completed the overall plan, you can then:

5. Make one-time adjustments to any of the schedules

6. Expedite schedule adjustment through Offset Events

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 698

Setting up Areas

Setting up Areas

When setting up your configuration you need to decide what are the:

• Areas into which you will group events.
• Events you will schedule in each area.

Definition of Areas to Group Action Calendar Events

You may want to begin planning by defining what appear to be obvious areas. As you continue
planning your configuration, you may see different relationships that prompt you to redefine your
original areas.

The key to defining areas is to identify one or more:

• Physically independent areas that have their own repetitive actions in machinery or peripheral
equipment, for example, a raw material cutting area that has its own light source.

• Logical areas, each with its scheduling needs, for example, reporting that is due every Friday.

Note: The Action Calendar lets you handle your entire facility through a single area. In fact,
Action Calendar provides a pre-configured area, Plant that you can use as a starting point.

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 699

A plant wide area may be appropriate for company wide actions. However, most likely you will also
need to define more specific areas.

Definition of Events Scheduled for Action Calendar Areas

Once you have your initially defined areas, review each area to determine the types of operations that
occur in that area. There may be one or more events associated with each operation and one or more
actions associated with each event.

Each operation typically corresponds to something that is controllable through a CIMPLICITY point.

In most cases, there will be a set of two or more events (or ultimately, event point values) that
correspond with the operation point referenced in your configuration.

Events can be:

• Actions which enable and disable a digital point
• A series of actions, each of which sets analog or text points to one of multiple values
• Scripts
• Alarms
• Recipes

Note: The Action Calendar lets you configure events for points which have been defined but
which have not been incorporated into the runtime system via a Configuration Update operation.

This enables you to set up a system for a future point configuration modification that will make
these events valid at a future date. Until that time, these events will be ignored by the Calendar,
and messages will be logged whenever an attempt is made to incorporate these events into a day's
schedule.

Example

A machine requires a light to be on for part of the day and to be off for the remainder.

1. Create an operation point for the light, called Machine_Light.

2. Configure two events to control Machine_Light. Call the events

unit_on

unit_off .

The Action Calendar will turn the machine light on and off, based on the times for which you
schedule unit_on and unit_off.

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 700

You may also have a series of actions that involve turning off the machine light, which you can
call up through the use of a script.

Setting up Day Types with Assigned Days

Setting up Day Types with Assigned Days

Having determined at least the initial set of events that will be required within an area, you can begin
to determine when these events may be invoked. As you review the day types, you may need to
redefine some areas.

The Action Calendar carries out events that you schedule for day types.

You may:

• Require multiple standard day types to handle the scheduling requirements such as weekdays,
weekends and holidays.

• Configure additional reserved day types for a specific area because your plant has other
conditions, which you must accommodate (for example, extended production days or
shutdown).

• Configure a day type that has no events. Any days of the week assigned to that day type will
have no events scheduled for that area.

However, within one area, you can only assign a specific day of the week, for example, Friday, to
one day type.

Example of Assigning Days of the Week to Day Types

Example

In one area you:

1. Define Weekdays as a day type to which you assign Monday through Friday

2. Decide that the area has additional events on Friday and, therefore, define Friday as a day type.
You assign Friday to it, thereby removing Friday from Weekdays

3. Do define Saturday and Sunday as None. "None" has no schedule.

The Action Calendar will display

• Weekdays as Monday through Thursday
• Friday as Friday
• Saturday and Sunday are None.

At this stage of your planning, you may decide to:

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 701

• Create another area where you:
• Create Friday as a day type and schedule the additional events,
• Keep the day type Weekdays as Monday through Friday in this area.

or

• Keep Friday as a day type in this area with a schedule that includes all the events for
Weekdays and Friday's additional events. Action See "Configuring the Action Calendar –
Copying Day Types"

Making One Time Adjustments to Schedules

Making One Time Adjustments to Schedules

Once you have designed and configured standard configuration data, you can analyze your system's
needs for any date specific overrides. Overrides supported by the Action Calendar can be divided
into two distinct categories:

They are:

• Day type overrides.
• Event overrides.

Note: Since the configuration screens are intended to accommodate standard, repetitive events,
exception conditions should not be included in the initial schedules. Instead, these can be more
appropriately handled through event or day type overrides, discussed in more detail below.

Day Type Overrides Definition

Day type overrides replace an entire day's schedule for the designated area.

This is particularly useful in the case of holidays or special events that fall on a day in which
production would normally run.

Example

If July 4 falls on a Monday, which is configured as a Weekday in the base configuration, you use a
day type override to define July 4 as a Holiday.

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 702

Another example is a case where, due to increased production demands, the plant decides to run extra
hours to meet these demands. If an alternate schedule and day type have been configured to meet
these additional production hours, you can use the alternate day type to override the standard day
type.

Event Overrides Definition

Event overrides are specific to a single event.

The three supported event overrides are:

1. Adding an unscheduled event to the schedule.

This type of override is useful in situations when an operation is required on a given date where
it normally would not be part of that day's schedule.

2. Rescheduling a specific event to a new time.

This override can be used to alter the time at which a scheduled event is initiated.

3. Skipping an event, which would otherwise be initiated.

This override is useful in situations where a standard event is not desired on a particular date.

There are a number of rules associated with overrides, which are important to understand.

• Any override, which is scheduled for the current day, will be incorporated into the current
schedule immediately upon being requested by the user.

• If a day type override is configured, all existing event overrides for that same date and area
will be immediately deleted, so that an override is not inadvertently applied to an event for
which it was not intended.

• Initiate all day type and event overrides after you project a schedule for the date in
question. These overrides will be automatically reflected in the projected schedule being
presented to the user.

Expediting Schedule Adjustment through Offset Events

As you define an area's events and their scheduling requirements, including needs for overrides, you
may discover groups of events that are logically related and are, therefore, always processed as a set.

You can expedite scheduling the group at any time, by establishing an Initial/Offset Event
relationship among these events.

An Initial Event is one that, whenever scheduled, has one or more offset events scheduled static to it
at fixed time intervals.

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 703

An offset event occurs static to when the initial event occurs. For example, it may occur one minute
before the initial event, or three hours after.

Establishing an initial/offset event relationship has the following impact on a schedule, no matter
whether you are adding it to the base schedule or as an event type override.

• Adding an unscheduled initial event to a schedule causes all the initial event's offset events to be
scheduled automatically.

• Rescheduling an initial event to a new time causes all the initial event's offset events to be
rescheduled automatically, so that the fixed time intervals between all the events in the set are
preserved.

• Skipping or deleting an initial event, which would otherwise be initiated, causes all the initial
event's offset events to be skipped or deleted automatically.

• Changing the interval of the offset events causes all instances of the scheduled event/offsets to
change automatically.

You uniquely define Initial/offset event relationships for each area. Within an area, the relationships
you define apply across schedules for all day types.

Production Shifts and Days

Production Shifts and Days

If your plant has multiple shifts and 24 hour or nonstandard productions days, you may have to
customize the Action Calendar definitions of production shifts and days.

Changing Production Shift Parameters

If your production facility operates in a multiple shift environment, it may be desirable from an
operational or maintenance viewpoint to configure your system so that each shift maintains its own
schedule of operations. Since an Action Calendar area may only be associated with a single day type
at any given time, you can define Pseudoareas within an Action Calendar.

A pseudoarea maintains its own event, day type, schedule, and day of the week definitions, while still
merging the individual schedules at runtime into a single plant wide schedule for any given day.

Within a given area, each Pseudoarea will really represent the same set of devices, locations, points,
etc., but will only schedule events against these points during the respective timeframe of each shift.

Example

Pseudoareas could be "Assembly_Shift1" and "Assembly_Shift2", each with their own respective
schedules.

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 704

Modifying Production Days

By default, Action Calendar is set up to display a production day as midnight this morning through
midnight tonight.

However, if your production facility has production days that run 24 hours, with one production shift
running through midnight, you may want to set up different parameters for your production day.

If you prefer, you can configure the Action Calendar to adjust the 24hour-production period to a
period more desirable for your production facility.

Configuration Changes Incorporated into the System

As you configure schedules through the Action Calendar User Interface, the data is sent to the Action
Calendar, which stores it in a set of Action Calendar configuration files. The data is immediately
incorporated into the runtime system. This means that if you modify a day type schedule that is in
effect for the day, your modifications will be applied immediately to the currently running schedule.

When you have to add an event to the current day's schedule you may add it to the schedule using an
Add Event (page 702) override.

Sample Factory Configuration Example

Sample Factory Configuration Example

1. Runs the same schedule five days a week.

2. Does not run manufacturing on the weekends.

3. Has maintenance crews that work seven days a week.

The Action Calendar is configured for:

• Production day schedule
• Points
• Areas
• Events
• Assembly events
• Offset events
• Day types
• Schedules
• Day of the week assignments

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 705

Sample Factory Production Day Schedule

The schedule for a production day looks like:

Sample Factory Point Configuration

In order to control production activities, a set of CIMPLICITY Point IDs is needed as follows:

Point ID Point Type Function

MAIN_LIGHTS DIGITAL Used to control factory lights

KILN_ENABLED DIGITAL Used to enable/disable kilns

KILN_TEMP ANALOG Used to control kiln temperature

ASSY_CONVEY DIGITAL Used to enable/disable conveyors

BREAK_LIGHT DIGITAL Used to turn on/off light to signal breaks

Note: : This example assumes that these points are already configured.

Sample Factory Area Configuration

1. PLANTWIDE
2. KILN_AREA

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 706

3. ASSEMBLY

Sample Factory Event Configuration

Having defined three areas, we can now split the list of events (as indicated above) into area specific
events, and begin to configure each area.

PLANTWIDE Events

Beginning with the PLANTWIDE area, we can define the following events:

Event ID Point ID Point Value

LIGHTS_ON_EV MAIN_LIGHTS 1

LIGHTS_OFF_EV MAIN_LIGHTS 0

START_BREAK_EV BREAK_LIGHT 1

END_BREAK_EV BREAK_LIGHT 0

START_LUNCH_EV BREAK_LIGHT 1

END_LUNCH_EV BREAK_LIGHT 0

KILN_ONLY Events

The events associated with the KILN_ONLY area are:

Event ID Point ID Point Value

KILN_ON_EV KILN_ENABLED 1

KILN_OFF_EV KILN_ENABLED 0

KILN_WARM_EV KILN_TEMP 250

KILN_FULL_EV KILN_TEMP 500

KILN_COOL_EV KILN_TEMP 100

Sample Factory Assembly Event Configuration

Finally, the events associated with the ASSEMBLY area are:

Event ID Point ID Point Value

CONVEYOR_ON_EV ASSY_CONVEY 1

CONVEYOR_OFF_EV ASSY_CONVEY 0

Sample Factory Offset Event Configuration

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 707

Having defined events for each area, we can now create sets of events that are done in a group.
Creating events offset from a base event by a static time does this.

PLANTWIDE Offset Events

Beginning with the PLANTWIDE area, we can define the following offset events:

Base Event Offset Event Offset Time

START_BREAK_EV END_BREAK_EV 00:15

START_LUNCH_EV END_LUNCH_EV 00:45

KILN_ONLY Offset Events

The offset events associated with the KILN_ONLY area are:

Base Event Offset Event Offset Time

KILN_ON_EV KILN_WARM_EV 00:15

KILN_ON_EV KILN_FULL_EV 00:30

KILN_OFF_EV KILN_COOL_EV 00:15

Sample Factory Day Type Configuration

There is one set of day types for the PLANTWIDE Area and one for the KILN_ONLY and
ASSEMBLY areas.

PLANTWIDE Area Day Type

The day types associated with the PLANTWIDE area are:

Day Type ID Purpose

PRODUCTION_DAY Used for days in which production is run

MAINT_ONLY_DAY Used for days when only maintenance crew

KILN_ONLY and ASSEMBLY Area Day Type

The day types associated with both the KILN_ONLY and ASSEMBLY areas is:

Day Type ID Purpose

PRODUCTION_DAY Used for days in which production is run

Sample Factory Schedule Configuration

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 708

There are different base schedules for each area.

PLANTWIDE Area Base Schedule

The base schedule associated with the PLANTWIDE area is:

KILN_ONLY Area Base Schedule

The base schedule associated with the KILN_ONLY area is:

Day Type ID Event ID Time Offset Flag

PRODUCTION_DAY KILN_ON_EV 05:30

PRODUCTION_DAY KILN_WARM_EV 05:45 0

PRODUCTION_DAY KILN_FULL_EV 06:00 0

PRODUCTION_DAY KILN_COOL_EV 23:00 0

PRODUCTION_DAY KILN_OFF_EV 23:15

ASSEMBLY Area Base Schedule

The base schedule associated with the ASSEMBLY area would be:

Day Type ID Event ID Time Offset Flag

PRODUCTION_DAY CONVEYOR_ON_EV 06:00

PRODUCTION_DAY CONVEYOR_OFF_EV 15:45

PRODUCTION_DAY CONVEYOR_ON_EV 16:00

PRODUCTION_DAY CONVEYOR_OFF_EV 23:00

Sample Factory Day of the Week Assignments

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 709

Finally, the days of the week are assigned to day types for each area as follows:

Configuring the Action Calendar

Action Calendar at a Glance

The Action Calendar gives you the capability to:

• Define and automatically execute events in your plant, based on a standard schedule.
• Project a schedule of automated events for any day in the future
• Add, delete or reschedule events for a specific day.

Once you have planned your areas and events, entering information into the Action Calendar is very
straightforward.

• Open the Action Calendar
• Action Calendar window parts
• Action Calendar printing

Open the Action Calendar

CIMPLICITY provides several methods to open the Action Calendar.

1. Select Project>Action Calendar in the Workbench left pane.

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 710

Note: If the icon does not appear in the Workbench left pane, you may need to enable the
Action Calendar optionin your project.

2. Select Action Calendar in the Workbench right pane.

3. Do one of the following.

A Click Edit>Properties on the Workbench menu bar.

B Click the Properties button on the Workbench toolbar.

C In the Workbench left pane:

Either Or

Double click Action Calendar. a. Right-click Action Calendar.
b. Select Properties on the Popup menu.

D In the Workbench right pane:

Either Or

Double click Action Calendar. a. Right-click Action Calendar.
b. Select Properties on the Popup menu.

E Press Alt+Enter on the keyboard.

Action Calendar window parts

When you open the Action Calendar, you see the Action Calendar window that is divided into
four parts:

• Area
• Schedule Type
• Day Type Legend (page 720)
• Weekday Schedule

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 711

Area

The Area box displays the current area being viewed, for example an area called Plant. Selecting
the new menu option accessed by clicking the right mouse button over the control or selecting

the menu button can configure new areas .

Schedule Type

The Schedule Type group contains radio buttons for

Day Type to configure and view the events for a type of day.

Calendar to view and override the schedule for a particular date.

Day Type Legend

The Day Type Legend grid provides configuration and selection of the day type being viewed.
Each day type is assigned a color. Each day of the week (for example, Tuesday) displays the
color of the day type to which it is assigned.

When your Schedule Type is in Day Type mode, the Day Type Legend displays the:

• Color and Day Type grid
• Days: Mon through Sat

When your Schedule Type is in Calendar mode, the Day Type Legend displays the:

• Color and Day Type grid
• Year
• Month
• Days—Mon through Sat
• Days of the month: from 1 – 31 depending on how many days are in the displayed month.

Weekday Schedule

The Weekday Schedule section

• Allows the configuration and viewing of the events configured for a day type or a projected
calendar schedule. You can add or remove events from the schedule.

• Tags the hour intervals for which events are scheduled. These tags remain stationary even
when you scroll the schedule up and down.

When you view:

• Day Type schedules and select a day type in the Day Type Legend you will see the day
type's associated schedule in the schedule area.

• Calendar schedules you will see the schedule for the date that is selected on the calendar.

Action Calendar Printing

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 712

You can print any selected Action Calendar schedule.

4. Right-click Action Calendar.

5. Select Properties on the Popup menu.

6. Right-click Action Calendar.

7. Select Properties on the Popup menu.

8. Click File on the Action Calendar menu bar.

9. Do any of the following.
• Select Print Preview.

A Print Preview window opens displaying the document that will be printed.

• Select Print Setup.

A Windows Print Setup dialog box opens enabling you to set up the appropriate printer.

• Select Print.

A Windows Print dialog box opens enabling you to enter print specifications and print the
Action Calendar schedule.

Note: You can also click the Print button on the Action Calendar toolbar to open the Print
dialog box.

Action Calendar Data Entry Overview

When you have completed planning each area's events, day types and schedules and are ready to
enter data into the Action Calendar, it is recommended that you enter information in the following
order.

When you have completed planning each area's events, day types and schedules and are ready to
enter data into the Action Calendar, there is an efficient configuration sequence..

The sequence is:

• Configure areas.
• Create day types.
• Assign days of the week to day types.

• Create events before or while scheduling.

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 713

• Create a schedule using Day Type mode.
• Override schedules in Calendar mode.
• Factory Action Calendar schedule example

Factory Action Calendar Schedule Example

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 714

Area Configuration

Area Configuration

You will do all of your scheduling in one or more areas.

Areas can be physically independent or logical.

• Add new areas.
• Edit areas.
• Delete areas.

Add New Areas

1. Do one of the following.

Method 1:

a. Click File on the Action Calendar's menu bar.
b. Select New.
c. Select Area.

Method 2:

a. Click the Popup menu button , to the right of the Area dialog box.
b. Select New.

2. Enter the following information in the Area Properties dialog box:

Area Id The name of the area, 15 mixed case characters or less.

Description A 40 character or less description used by you to provide more information about the area.

Resource
ID

The Resource ID to use for the area. Resources can be used to implement access control for the
user interface. If you don't know yet what sort of security you will implement, select the $SYSTEM
resource. The configuration can always be changed later.

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 715

Edit Areas

1. Select the area you want to edit in the Area field.

2. Click the Popup menu button to the right of the Area field...

3. Select Edit.

The Area Properties dialog box appears.

4. Change the Description or the Resource ID.

Delete Areas

1. Select the area in the Area field.

2. Click the Popup menu button .

3. Select Delete from the menu.

The area is deleted.

Important: When an area is deleted, all of its day types, events and scheduling information
are also deleted.

Day Type Legend

Day Type Legend

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 716

Before you begin to schedule events, you need to define day types and assign days of the week to the
day types, for each area in your plant.

You can create day types that you:

• Use immediately and to which you assign one or more days of the week (for example, Friday).
• Reserve for future use, by creating it but not assigning any days of the week to it.

These reserved day types can then have days of the week assigned to them whenever their schedules
are needed. This feature is particularly useful when one schedule replaces another for extended
periods of time.

Note: If you only need to change the schedule for a few Thursdays, you can override each
Thursday that requires the long production run. You do this when the selected Schedule Type is in
Calendar mode.

Example

A cutting machine, in the Cutting Area, normally runs from 1:00pm through 4:00pm every Monday
through Friday.

• You schedule the Action Calendar to turn the machine on and off.
• The Cutting Area has already been defined.

Now you will create a day type in the Cutting Area called Weekdays and assign Monday through
Friday to that day type.

• The plant manager tells you that every Thursday the cutting machine will have to run from
Noon through 6:00pm.

You create a day type called Long Run and assign Thursday to that day type. Every Thursday the
Action Calendar will run the Long Run Schedule. You do this when the Action Calendar is in Day
Type mode.

Creating New Day Types

1. Do one of the following.

Method 1

a. Click File on the Action Calendar menu bar.
b. Select New.
c. Select Day Type.

Method 2

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 717

Double Click on an empty row in the Day Type grid.

Method 3

a. Click the right mouse button on the Day Type grid.
b. Select New.

The Day Type Properties dialog box appears.

2. Enter the following information in the Day Type Properties dialog box:

Name The 16 character mixed case name for the day type.

Description A 40 character or less description used by you to provide more information about the day type.

Color A color used to represent the day type graphically in the week and month calendars. Black is an
invalid color, it is used to represent unassigned days.

Editing Day Types

Editing Day Types

You can:

• Change the color that represents a day type.
• Edit the properties of a day type.

Procedure to Change Day Type Color

1. Click the color directly in the DayType grid.

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 718

A menu arrow appears.

2. Click the down arrow .

A Color palette appears.

3. Either:
• Click the standard color you want once. It will appear both in the grid and, for the

corresponding days, on the Weekday Title bar.
• Click a custom color or custom color square. The Color dialog box appears in which you

can create a custom color.

Procedure to Edit Day Type Properties

Do one of the following.

Method 1

Double click the entry in the Day Type grid.

Method 2:

1. Click the right mouse button menu on the item

A menu appears.

2. Select Edit.

Using either method, the Day Type Properties dialog box appears for the Day Type that you want to
edit.

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 719

Copy Day Types

You can copy an existing day type to a new day type within an area. To get the greatest benefit from
this feature, use it after you have created the original day type's entire schedule. When you do, you
will copy the entire schedule for the original day type to the new day type.

This feature is particularly useful when you want to create a new day type that contains a slightly
modified schedule from the original. You can then easily edit the new day type and assign days of the
week to it whenever the modified schedule is required.

todo: To copy a day type:

1. Select the day type in the Day Type grid that you want to copy.

2. Click the right mouse button.

3. Select Copy from the menu that appears.

A Copy Day Type dialog box appears.

4. Type the name of the new day type in the New Day Type field.

5. Click OK.

The Action Calendar creates a new day type with the name you specified and copies the original
day type's weekday schedule to the new day type.

Example

For example, you have a Weekday schedule for the spring and summer to start and stop a
molding machine that is in the Molding area . However, in the fall and winter you need to
lengthen the molding machine's run time on Wednesday and Thursday. You create a Long Run

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 720

day type by copying the Weekday schedule and editing it to extend the molding machine's
runtime hours. When the fall season begins, you can then assign Wednesday and Thursday to
the Long Run day type.

Delete Day Types

Do one of the following.

Method 1:

1. Select the day type in the Day Type grid.

2. Click Delete.

Method 2:

3. Select the day type in the Day Type legend.

4. Click the right mouse button.

5. Select the delete option.

Note: A day type cannot be deleted when it has a day of the week assigned to it or is used
as a day type override.

Assign Days of the Week to Day Types

Once you have created day types you can assign each day of the week that requires scheduling in an
area to its appropriate day type.

Example

For example, if you created a day type called Weekend and your plant adheres to a weekend schedule
on both Saturday and Sunday, you assign Saturday and Sunday to the Weekend day type.

Note: In each area, you can only assign a day of the week (for example, Monday) to one day
type.

However, you can have day types to which no days of the week are assigned

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 721

When you assign a day of the week to a day type, the day of the week (for example, Wed) displays in
its day type color. The Action Calendar displays days that you have not yet assigned in black. Once
you assign a day of the week to a day type you can assign it to a different day type. However, you
cannot change it back to being unassigned.

There are several methods to assign days of the week to day types. Following is a description of three
methods to assign days of the week to day types. You perform the first two in Day Type mode, the
third in Calendar mode

When you select Day Type mode in the Schedule Type group (above the Day Type Legend) you will
see the days Sun through Sat underneath the grid. (You will not see days of the month.). While in this
mode you can either call up the Day of Week Assignments dialog box or use a shortcut method..

todo: To assign a day of the week to a Day Type:

Do one of the following.

Method 1: Use the Day of Week Assignment dialog box

1. Double click the appropriate day of the week from the row of days.

A Day of Week Assignments dialog box appears.

2. Select the day type from each day's menu field.

Method 2: Use a shortcut

3. Click the right mouse button over the appropriate day of the week (for example Tue) from the
row of days.

A Popup menu lists all of the day types you configured for the area.

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 722

4. Select the day type to assign to the day.

Method 3:Use the Calendar mode

5. Click the right mouse button on the Day of the Month grid.

6. Select the Day Of Week Assignments menu option.

A Day of Week Assignments dialog box appears.

7. Select the day type from each day's menu field.

Event Configuration

Event Configuration

In addition to creating day types for each area, you need to create the events that may be scheduled
during one or more day types in that area.

You can create new events either before or during scheduling.

Working with events includes:

• Creating a new event, which can include a series of one or more actions that make up the event.
Actions include:

• Setpoints
• Alarm generation
• Scripts
• Recipes.
• Modifying an existing event
• Scheduling the event to occur at specific times in your schedule

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 723

• When necessary, changing the event. All of your changes affect all instances of the event in the
schedule.

• Creating offset events to expedite scheduling

Create New Events

You can create a new event:

• Before you begin scheduling, when the Schedule Type is in Day Type mode.
• While you are entering schedules and the Schedule Type is in Calendar mode.

1. Do one of the following.

Method 1: In Day Type Mode or Calendar Mode

a. Select File from the Action Calendar's menu bar.
b. Select New.
c. Select Event.

Method 2: In Day Type or Calendar Mode

a. Select Edit from the Action Calendar's menu bar.
b. Select Events.

An Events dialog box displays. .

a. Right click on any event in the Event dialog box tree.
b. Select New.

Method 3: In Calendar Mode

a. Select the day type for which you are creating a schedule.
b. Select the time that the event will occur.
c. Click the right mouse button.
d. Select New from the popup menu.

e. Click the Popup Menu button to the right of the Event dialog box.
f. Select New.

When you complete any method, the General tab of the New Event Properties dialog box
displays.

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 724

2. Use the side buttons on the General tab of the New Events Properties dialog box as follows:

New Add new actions.

Delete Delete an existing action.

Move Up / Move Down Position an Action item in the desired order of execution.

The fields you fill in on the bottom of the General tab of the New Events Properties dialog box
depend on what action you select in the Action type field.

Action
type

The default action is Setpoint(,). This action appears in the Actions box the first time you click New. You
can configure that action or select another from the Action type. menu field. If you select another action
the fields will change to reflect your choice.

Modify Existing Events

1. Click Edit on the Action Calendar menu bar.

The Events dialog box appears.

2. Select the event you want to modify.

3. Right click the event.

4. Select Edit.

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 725

Result: The General tab of the Event Properties dialog box appears, displaying the event you
want to modify.

5. Use the buttons in the General tab of the Event Properties dialog box as follows:

New Add a new action to the list.

Delete Delete an action from the list.

The fields you fill in on the bottom of the Event Properties dialog box depend on what action
you select in the Action type field.

Action
type

If you did not select an action when you created the event, the default action, Setpoint(,), appears in the
Actions box the first time you click New.You can configure that action or select another from the Action
type menu field. If you select another action the fields will change to reflect your choice.

View Events

1. Click Edit on the Action Calendar's menu bar.
2. Select Events.

The Events dialog box displays.

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 726

When you are in the Events dialog box:

• At first, you will see a tree of the events along with scheduling information for each event..
• As you navigate through the tree, the hour Schedule part of the Action dialog box will update

and position the corresponding event.
• Events can be:
• Deleted
• Added
• Edited
• Scheduled
• Unscheduled

Note: Events can only be deleted when they are not scheduled.

Configure Offset Events

Offset Events allow you to specify a sequence of events that always occur in a certain order and at a
certain time.

Offset Events provide you with a way to expedite any rescheduling that occurs for the sequenced
events by reducing the number of calendar entries you have to make for each time the sequence is
scheduled to one (1). Needless to say this also minimizes the possibility for error.

Important: Offset events only support one level of offset. You cannot create an offset of an
offset.

In the next example, the Kiln_Start event, which is an offset of Kiln_On cannot have an event that
is scheduled static to when it occurs. For example, Kiln_Preheat has to occur static to Kiln_On (20
minutes prior). It cannot be configured to occur 10 minutes after Kiln_Start. Simply said, if you are a
programmer—offsets cannot be nested.

Example

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 727

For the sake of the example, say your factory has a Kiln. To start this Kiln, you must perform the
following events in the following order:

1. Kiln_Start. Turn on Kiln

2. Kiln_Preheat. Preheat Kiln (10 minutes later)

3. Kiln_On_Full. Kiln on Full (20 minutes later)

There are at least three methods to configure your schedule. However, the first is inefficient; the
second is problematic; the third is the best choice. See the example below.

Important: Events with offset that wrap around the end of the day are not supported.

Example

You schedule an event for 11:59 PM on March 1 and an offset event of two minutes. The offset
event will be scheduled for 12:01 AM on March 1, NOT 12:01 AM on March 2.

Method 1. (Inefficient)

You could easily configure three scheduled events to occur.

4. 7:00 – Kiln_Start

5. 7:10 – Kiln_Preheat

6. 7:30 – Kiln_On_Full

However, if you decide to start the Kiln 30 minutes earlier tomorrow, you need to reschedule
three events. Or if you decide that the preheat cycle can be decreased to 10 minutes, you need to
move all Kiln_On_Full events back 10 minutes in all of our schedules.

Method 2. (Problematic)

One possible offset configuration is, in the Offset tab of the Event Properties dialog box, to
configure the event:

7. Kiln_Start

8. Kiln_Preheat to happen 10 minutes later

9. Kiln_On_Full to be 30 minutes after Kiln_Start

This way when you schedule Kiln_Start the other two events are automatically scheduled.

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 728

The problem with this strategy is that you need the Kilns to be on at 7:30. If the preheat cycle is
decreased by 10 minutes you still need to change your schedules to move Kiln_Start forward .

Method 3. (Best method)

The correct solution is illustrated below. In the Offset tab of the Event Properties dialog box,
configure the event:

10. Kiln_On that has no actions.

11. Kiln_Start to occur 30 minutes prior to KILN_ON

12. Kiln_Preheat to occur 20 minutes prior to KILN_ON

13. Kiln_On_Full to happen at the same time as KILN_ON.

Now if you need the kilns to be ready at 7:30 you simply place the Kiln_On event at 7:30.

Create Offset Events

1. Open the Events dialog box.

2. Select the event that will have offset events.

3. Either:
a. Select Edit on the event's popup menu.
b. Select New to create a new event and associated offset events.

The Event Properties dialog box opens.

4. Select the Offset (page 718) tab.

The Offset tab of the Event Properties dialog box appears.

5. Use the buttons in the Offset tab of the Event Properties dialog box as follows:

New Add a new offset event to the list.

Delete Delete an offset event from the list

6. Enter the following information in the Offset tab of the Event Properties dialog box fields:

Event Name of an offset event.

Offset Time that should pass between the initial event and the offset event. If the offset event occurs before the
initial event, make a negative entry; after, make a positive entry in an HH:MM:SS format.

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 729

Schedules

Schedules

When you have defined a plant's areas and configured each area's day types, you are ready to
configure schedules.

Schedule

A schedule defines the series of activities that should occur on the days of the week that are assigned
to a day type.

If you created the area's events, you now only need to schedule them. If you did not create the events,
you can create them during scheduling.

First, when your Schedule Type is in Day Type mode, configure the basic day type schedules for each area.

You configure a schedule of events for each day type. As a result, the Action Calendar will apply a day type's
schedule of events to each day of the week assigned to it

Later, you can switch your Schedule Type to Calendar mode and override any specific days or events, where
necessary.

Example

You assign Monday, Wednesday and Friday to a day type called Weekday. The Action Calendar
will carry out whatever schedule you create for the day type Weekday on Monday, Wednesday and
Friday.

Before you get started, you may want to take a look at how you can adjust the Schedule View.

Adjust the Schedule View

There are several options available to you when viewing the schedule. The options can be found on
the applications view menu, or by using the right mouse button on the schedule.

Option Description

Time
Interval

Allows you to specify the time interval to use in the day view. Valid intervals are 10, 15, 30 and 60 minutes.

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 730

Time Bar Toggles the time bar on the left of the schedule. The time bar allows you to rapidly find events.

24 Hour
Clock

Enables you to switch back and forth between a 24 hour clock and a 12 hour AM/PM clock.

Show
Offset
Events

Lets you decide if offset events are viewed in the schedule.

Day
Schedule

Lets you toggle back and forth between a day view and a list to display the scheduled events. If you find the
day view becoming cluttered due to many events scheduled in the same time slot, try the list view.

Add/Modify/Delete a Scheduled Event in Day Type Mode

• Add a scheduled event.
• Modify a scheduled event.
• Delete a scheduled event.

Add a Scheduled Event

If the event already exists:

1. Fill in the time for the event to occur.

2. Click the Browse button to the right of the Event field.

3. Select the appropriate event to schedule.

If the event does not exist:

a. Click the Popup menu button to the right of the Browse button.
b. Select New from the popup menu.
c. Configure a new event. (page 723)

guide: Guideline: Scheduling Time

Actions cannot be scheduled to at the exact same time as the start of the day. This is because
this is the transition period from one day schedule to the next, and this time is ambiguous.

To help work with this limitation the start of day configuration has been modified so that the
start of the day can be configured with 1 minute resolution.

The start of the day should be selected to coincide with a time between shifts that

• Will have no need for scheduled activities
• Is a natural breaking point from 1 day to the next.

Midnight is often a good time for this, but for others 3:00 am may be better.

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 731

Modify a Scheduled Event

4. Make sure the Action Calendar is in Day Type mode.

5. Double click on a scheduled event in an hour row of the Action Calendar Schedule part.

The Scheduled Event dialog box opens.

6. Do one of the following:
• Change the time of the event.
• Change the event.
• Select Edit from the Event field popup menu to open the Event Properties dialog box.

Delete a Scheduled Event

7. Select the scheduled event in the hour Schedule part of the Action Dialog box.

8. Press the Delete key.

Configuring Schedule Overrides

Configure Schedule Overrides

When you have completed configuring an area's basic schedule, you may have specific days or
events that will need to be changed during a specified calendar day.

You can make these changes through:

• Day type overrides.
• Event overrides.

Day Type Overrides

Day Type Overrides

Day Type Overrides allow you to change the day type for a specified calendar day. You might need
to make the change for a variety of reasons including holidays, long weekends, plant shutdowns or to
accommodate a longer production schedule.

Example

You normally run your cutting machine, in the Cutting Area, from 1:00pm through 4:00pm every
Monday through Friday. You schedule the Action Calendar to turn the machine on and off. You
have all ready defined the Cutting Area. Now you will create a day type in the Cutting Area called
Weekdays and assign Monday through Friday to that day type.

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 732

The plant manager tells you that beginning three weeks from the current week, the cutting machine
will have to run from noon through 6:00pm for four Thursdays in a row.

Anticipating these long runs you have created a day type called Long Run that turns the machine on
at noon and off at 6:00pm. You can immediately select the four involved Thursdays and override the
Weekdays day type with Long Run. On those four Thursdays the Action Calendar will follow the
Long Run schedule.

Note: : Switch the Schedule Type to Calendar mode to assign Day Type Overrides.

You can do the following with Day Type Overrides:

• Add
• Remove
• View
• Edit
• Delete

Add a Day Type Override

1. Double click on a day in the Month calendar.

The Day Type Override dialog box appears.

The Day Type Override dialog box tells you (read only) the:

• Area you are in
• Date you selected
• Currently assigned day type

2. Enter the following information in the Day Type Override dialog box to override the day type.

Override Day Type Select to override the currently assigned day type

New Day Type The day type to use instead of the currently assigned day type

Remove a Day Type Override

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 733

1. Double-click on the day.

2. Uncheck the Override Day Type check box in the Day Type Override dialog box.

View Day Type Overrides

1. Select the application's Edit menu.

2. Select Day Type Overrides.

The box opens.

Edit a Day Type Override

Double click the entry.

The Day Type Override dialog box appears.

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 734

Delete a Day Type Override

1. Select the entry to be deleted.

2. Press Delete on the keyboard.

A message appears to confirm deletion.

3. Click OK.

Event Overrides

Event Overrides

Event Overrides allow you to change an event n a schedule during a specific calendar day.

For example, you want to start production an hour early tomorrow or extend lunch by an hour. You
use an event override to make the change.

There are three types of event overrides.

• New Scheduled Event Override.
• Rescheduled Event.
• Skip a Scheduled Event.

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 735

You can do the follow with Event Overrides:

• View Event overrides for a specific date.
• View all Event overrides.
• Edit
• Delete

Note: All event overrides are performed when the Action Calendar is in Calendar mode.

Add a Scheduled Event Override

1. Delete the event you want to replace.

2. Add an event that exists or a new event (page 723) to the same time.

Reschedule or skip an Event

1. Double click the event to be modified.

The Scheduled Event dialog box displays:

The Scheduled Event dialog box tells you (read only) the:

• Time the event is currently scheduled
• Event that is currently scheduled

2. Enter the following in information to skip or reschedule an event in the Scheduled Event dialog
box:

Skip Event Select to skip the event on the selected calendar day.

Reschedule
Event

Select to reschedule the event on the selected calendar day.

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 736

Reschedule
Time

Enter the time the event should occur on the selected calendar day. The event and all of its
offsets, if any, will be rescheduled.

Note: When a day has event overrides, an asterisk is displayed next to the day in the month
calendar.

Remove a Skip or Reschedule Override

1. Double click on the override event.

2. Clear the Skip Event or Reschedule Event check box

.

View Event Overrides for a Specific Date

Select the date in the Day Type Legend calendar.

An O displays in the Schedule part of the Action Dialog box on the Events that are overridden.

View all Event Overrides Viewed

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 737

1. Select the application's Edit menu.
2. Select Event Overrides.

The Event Overrides dialog box appears.

Edit Event Overrides

1. Double click on the entry.

The Scheduled Event dialog box associated with that event override appears.

2. Make the required changes.

Delete Event Overrides

1. Select the entry to be deleted.

2. Press Delete on the keyboard.

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 738

Security

Security

The Action Calendar provides access control to CIMPLICITY users logged into the system.

Security is provided and can be enforced only when the project is running.

When the project is not running, any user may perform configuration from the configuration cabinet.

Role Base Privileges

You, the system administrator, have assigned each CIMPLICITY user a role. Each role has a set of
privileges associated with it. When the Action Calendar is part of the project, the Calendar tab of the
Role Properties dialog box is displayed:

Choices for the Calendar tab of the Role Properties dialog box are:

Area Based
Security

When resource based security is:

Enabled A user will only be able to see areas whose Resource ID is assigned to the user

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 739

Disabled A user will be able to see all areas.

Example If you have schedules across several parts of your plant, you may wish to restrict the paint
booth operator from modifying the assembly schedule. Resource based security is the way to do this.

Configuration When configuration is:

Checked Users will be able to configure a schedule for any areas they can see.

Unchecked Users will be able to view schedules but no configuration is possible.

Procedure to set the Day Start Time

1. Select Tools on the Action Calendar's menu bar.

2. Select Setup.

The Setup dialog box displays.

3. Enter the following information in the Setup dialog box.

Day Start Enter a number from 01 to 12

AM/PM Choose AM or PM from the Menu field.

Important: Day Start cannot be changed when the project is running. Changing the
Day Start requires that the application be exited.

Command Line Parameters

The CalCfg.exe program takes command line options. These can be useful if you want to launch
CalCfg from a CimView screen.

Command Description

/AREA areaId Specifies the default area to select.

/AREALOCK Lock the current area, user cannot switch areas.

/
ONLINEONLY

Application can only run when CIMPLICITY project is active. This is useful if you want to require
operators to be logged in and subject to role privileges.

Basic Control Engine and Scripting Reference | 6 - Action Calendar | 740

Command Description

/PROJECT
path

Specifies the path to the project's file (e.g. C:\Program Files\Proficy\Proficy CIMPLICITY\projects
\cimpdemo\cimpdemo.gef) to use.

/READONLY Do not allow any configuration to be performed while the project is or is not running regardless of Role
configuration.

/TODAY Default to viewing the schedule for the current day.

	Cover Page
	Table of Contents
	Chapter 1. Script Editors
	About Script Editors
	About the Program Editor
	Open the Program Editor
	Open the Program Editor
	Option 1. Open a Blank Program Editor
	Option 2. Open the Program Editor with an Existing Script

	Program Editor Window Components
	Program Editor Window Components
	Program Editor Menu Functions
	File Menu
	Edit Menu
	View Menu
	Run Menu
	Debug Menu
	Tools Menu
	Window Menu
	Help Menu

	Program Editor Toolbars and Status Bar
	Standard Toolbar
	Tools Toolbar
	Application Toolbar
	Status bar

	Program Editor Shortcut Keys
	Set String and Stack Space

	Program Editor: Edit Programs
	Program Editor: Edit Programs
	1. Program Editor: Navigate within a Script
	2. Program Editor: Text Procedures
	2. Program Editor: Text Procedures
	2.1. Insert Text
	2.2. Select/Delete Text
	2.3. Cut/Copy/Paste Text
	2.4. Undo Editing Operations
	2.5. Search/Replace Text

	3. Program Editor: Point Tools
	4. Program Editor: Alarm Tools
	5. Program Editor: Log Status Tool
	6. Program Editor: Add Comments to a Script
	7. Program Editor: Enter a Statement across Multiple Lines
	8. Program Editor: Check the Syntax of a Script
	9. Program Editor: Add Dialog Boxes to a Script

	Dialog Editor
	Dialog Editor
	1. Use the Dialog Editor
	1. Use the Dialog Editor
	1.1. Dialog Editor Application Window
	1.2. Dialog Editor Toolbar
	1.3. Dialog Editor Menus
	File Menu
	Edit Menu
	Controls Menu
	Help Menu

	1.4. Keyboard Shortcuts for the Dialog Editor

	2. Create a Custom Dialog Box
	2. Create a Custom Dialog Box
	2.1. Review Available Controls
	2.2. Add Controls to a Dialog Box
	2.3. Use the Grid to Position Controls within a Dialog Box
	2.4. Save the Custom Dialog Box

	3. Edit a Custom Dialog Box
	3. Edit a Custom Dialog Box
	3.1. Open a Dialog Box Template
	3.2. Select Items
	3.3 Specify Tabbing Order
	3.4. Use Information Dialog Boxes
	3.4. Use Information Dialog Boxes
	3.4.1. Dialog Box Information
	3.4.2. Control Information
	3.4.2. Control Information
	3.4.2.1. Check Box Information
	3.4.2.2. Combo Box Information
	3.4.2.3. Drop List Box Information
	3.4.2.4. Group Box Information
	3.4.2.5. List Box Information
	3.4.2.6. Picture Information
	3.4.2.7. Picture Button Information
	3.4.2.8. Push Button Information
	3.4.2.9. Option Button Information
	3.4.2.10. Text Information
	3.4.2.11. Text Box Information

	3.5. Change the Position of an Item
	3.6. Change the Size of an Item
	3.7. Change Titles and Labels
	3.8. Assign Accelerator Keys
	3.9. Duplicate and Delete Controls

	4. Insert/Paste a Dialog Box Template Code into a Script
	5. Edit an Existing Dialog Box
	5. Edit an Existing Dialog Box
	5.1. Paste Program Editor Code into the Dialog Editor
	5.2. Capture a Dialog Box from Another Application

	6. Test a Dialog Box
	6. Test a Dialog Box
	6.1. Check for Basic Dialog Box Editing Errors
	6.2. Run the Dialog Box Test
	Start a Test
	Test the Dialog Box
	Stop the test

	7. Exit from the Dialog Editor
	8. Use a Custom Dialog Box in a Script
	8. Use a Custom Dialog Box in a Script
	8.1. Create a Dialog Record
	Sample script

	8.2. Enter Information into the Custom Dialog Box
	Controls to which Values can be Assigned
	Define and Fill an Array
	Set Default Text in a Text Box
	Set the Initial Focus and Controlling the Tabbing Order

	8.3. Display the Custom Dialog Box
	Dialog() Function
	Dialog Statement

	8.4. Retrieve Values from the Custom Dialog Box
	Sample

	9. Use a Dynamic Dialog Box in a Script
	9. Use a Dynamic Dialog Box in a Script
	9.1. Sample Script for a Dynamic Dialog Box
	9.2. Make a Dialog Box Dynamic
	Use a Dialog Function
	Responding to User Actions

	Debug Scripts
	Debug Scripts
	1. Fabricate Event Information
	2. Step through Scripts
	3. Use Breakpoints
	Select Breakpoints
	Run the Debugger
	Remove breakpoints

	4. Perform Traces in Scripts
	Enable Tracing
	Clear Trace Results
	Disable Tracing

	5. Use a Watch Variable
	5. Use a Watch Variable
	5.1. Add a Watch Variable to the Program Editor's Watch Variable List
	5.2. Modify the Value of a Watch Variable
	5.3. Use Quick Watch
	5.4. Delete a Watch Variable

	Run a Program
	Run a script
	Suspend a Running Program
	Stop a Running Program

	Error Messages
	Error Messages
	1. Visual Basic Compatible Error Messages
	2. Basic Control Engine-Specific Error Messages
	3. Error Message List

	Chapter 2. CimScriptIDE Editor
	About the CimScriptIDE Editor
	1. Open the CimScriptIDE Editor
	1. Open the CimScriptIDE Editor
	1.1. Create a New C# or VB .NET Script
	1.2. Open an Existing C# or VB .NET Script

	2. CimScriptIDE Editor: Overview
	2. CimScriptIDE Editor: Overview
	2.1. CimScriptIDE Editor: Menus
	File Menu
	Edit Menu
	View Menu
	Run Menu
	Tools Menu
	Window Menu
	Help Menu

	2.2. CimScriptIDE Editor: Toolbars and Status Bar
	CimScriptIDE Editor: Toolbars
	Standard Toolbar
	Tools Toolbar
	CimScriptIDE Editor: Status Bar

	2.3. CimScriptIDE Editor: Class View Pane
	2.4. CimScriptIDE Editor: Right-Pane

	3. Technical Reference: CimScriptIDE Editor
	3. Technical Reference: CimScriptIDE Editor
	3.1. CimScriptIDE Debugging in Visual Studio
	3.2. Attach Additional .NET Assembly References

	Chapter 3. Basic Control Engine Language Reference
	Using the Basic Control Engine Language Reference
	Scripting Language Reference
	About the Basic Control Syntax
	Language Elements by Category
	Language Elements By Category
	Arrays
	Clipboard
	Comments
	Comparison Operators
	Controlling other Programs
	Controlling Program Flow
	Controlling the Operating Environment
	Conversion
	Data Types
	Database
	Date/time
	DDE
	Error Handling
	File I/O
	File System
	Financial
	Getting information from Basic Control Engine
	INI Files
	Logical/binary Operators
	Math
	Miscellaneous
	Numeric Operators
	Objects
	Parsing
	Predefined Dialogs
	Printing
	Procedures
	String Operators
	Strings
	User Dialogs
	Variables and Constants
	Variants

	Symbols
	Symbols
	' (keyword)
	- (operator)
	#Const (directive)
	#If...Then...#Else (directive)
	& (operator)
	() (keyword)
	* (operator)
	. (keyword)
	/ (operator)
	\ (operator)
	^ (operator)
	_ (keyword)
	+ (operator)
	< (operator)
	<= (operator)
	<> (operator)
	= (operator)
	= (statement)
	> (operator)
	>= (operator)

	A
	A
	Abs (function)
	And (operator)
	AnswerBox (function)
	Any (data type)
	AppActivate (statement)
	AppClose (statement)
	AppFind, AppFind$ (functions)
	AppGetActive$ (function)
	AppGetPosition (statement)
	AppGetState (function)
	AppHide (statement)
	AppList (statement)
	AppMaximize (statement)
	AppMinimize (statement)
	AppMove (statement)
	AppRestore (statement)
	AppSetState (statement)
	AppShow (statement)
	AppSize (statement)
	AppType (function)
	ArrayDims (function)
	Arrays (topic)
	Operations on Arrays

	ArraySort (statement)
	Asc, AscB, AscW (functions)
	AskBox, AskBox$ (functions)
	AskPassword, AskPassword$ (functions)
	Atn (function)

	B
	B
	Basic.Architecture$ (property)
	Basic.Capability (method)
	Basic.CodePage (property)
	Basic.Eoln$ (property)
	Basic.FreeMemory (property)
	Basic.HomeDir$ (property)
	Basic.Locale$ (property)
	Basic.OperatingSystem$ (property)
	Basic.OperatingSystemVendor$ (property)
	Basic.OperatingSystemVersion$ (property)
	Basic.OS (property)
	Basic.PathSeparator$ (property)
	Basic.Processor$ (property)
	Basic.ProcessorCount$ (property)
	Basic.Version$ (Property)
	Beep (statement)
	Begin Dialog (statement)
	Boolean (data type)
	ByRef (keyword)
	ByVal (keyword)

	C
	C
	Call (statement)
	CDbl (function)
	CBool (function)
	CCur (function)
	CDate, CVDate (functions)
	ChDir (statement)
	ChDrive (statement)
	CheckBox (statement)
	Choose (function)
	Chr, Chr$, ChrB, ChrB$, ChrW, ChrW$ (functions)
	CInt (function)
	CancelButton (statement)
	Clipboard$ (function)
	Clipboard $ (statement)
	Clipboard.Clear (method)
	CreateObject (function)
	Clipboard.GetFormat (method)
	Clipboard .GetText (method)
	Clipboard .SetText (method)
	CLng (function)
	Close (statement)
	ComboBox (statement)
	Command, Command$ (functions)
	Comparison Operators (topic)
	Const (statement)
	Constants (topic)
	Cos (function)
	CSng (function)
	CStr (function)
	CurDir, CurDir$ (functions)
	Currency (data type)
	CVar (function)
	CVErr (function)
	Comments (topic)

	D
	D
	Date (data type)
	Date, Date$ (functions)
	Date, Date$ (statements)
	DateAdd (function)
	DateDiff (function)
	DatePart (function)
	DateSerial (function)
	DateValue (function)
	Day (function)
	DDB (function)
	DDEExecute (statement)
	DDEInitiate (function)
	DDEPoke (statement)
	DDERequest, DDERequest$ (functions)
	DDESend (statement)
	DDETerminate (statement)
	DDETerminateAll (statement)
	DDETimeout (statement)
	Declare (statement)
	DefType (statement)
	DeleteSetting (statement)
	Dialog (function)
	Dialog (statement)
	Dim (statement)
	Dir, Dir$ (functions)
	DiskDrives (statement)
	DiskFree (function)
	DlgCaption (function)
	DlgCaption (statement)
	DlgControlId (function)
	DlgEnable (function)
	DlgEnable (statement)
	DlgFocus (function)
	DlgFocus (statement)
	DlgListBoxArray (function)
	DlgListBoxArray (statement)
	DlgProc (function)
	DlgSetPicture (statement)
	DlgText (statement)
	DlgText$ (function)
	DlgValue (function)
	DlgValue (statement)
	DlgVisible (function)
	DlgVisible (statement)
	Do...Loop (statement)
	DoEvents (function)
	DoEvents (statement)
	Double (data type)
	DropListBox (statement)

	E
	E
	ebAbort (constant)
	ebAbortRetryIgnore (constant)
	ebApplicationModal (constant)
	ebArchive (constant)
	ebBold (constant)
	ebBoldItalic (constant)
	ebBoolean (constant)
	ebCancel (constant)
	ebCritical (constant)
	ebCurrency (constant)
	ebDataObject (constant)
	ebDate (constant)
	ebDefaultButton1 (constant)
	ebDefaultButton2 (constant)
	ebDefaultButton3 (constant)
	ebDirectory (constant)
	ebDos (constant)
	ebDouble (constant)
	ebEmpty (constant)
	ebError (constant)
	ebExclamation (constant)
	ebHidden (constant)
	ebIgnore (constant)
	ebInformation (constant)
	ebInteger (constant)
	ebItalic (constant)
	ebLong (constant)
	ebNo (constant)
	ebNone (constant)
	ebNormal (constant)
	ebNull (constant)
	ebObject (constant)
	ebOK (constant)
	ebOKCancel (constant)
	ebOKOnly (constant)
	ebQuestion (constant)
	ebReadOnly (constant)
	ebRegular (constant)
	ebRetry (constant)
	ebRetryCancel (constant)
	ebSingle (constant)
	ebString (constant)
	ebSystem (constant)
	ebSystemModal (constant)
	ebVariant (constant)
	ebVolume (constant)
	ebYes (constant)
	ebYesNo (constant)
	ebYesNoCancel (constant)
	Empty (constant)
	End (statement)
	End Dialog (statement)
	Environ, Environ$ (functions)
	EOF (function)
	Eqv (operator)
	Erase (statement)
	Erl (function)
	Err (function)
	Err (statement)
	Error, Error$ (functions)
	Error (statement)
	Error Handling (topic)
	Err.Clear (method)
	Err.Description (property)
	Err.HelpContext (property)
	Err.HelpFile (property)
	Err.LastDLLError (property)
	Err.Number (property)
	Err.Raise (method)
	Err.Source (property)
	Exit Do (statement)
	Exit For (statement)
	Exit Function (statement)
	Exit Sub (statement)
	Exp (function)
	Expression Evaluation (topic)
	Type Coercion
	Rounding
	Default Properties

	F
	F
	False (constant)
	FileAttr (function)
	FileCopy (statement)
	FileDateTime (function)
	FileDirs (statement)
	FileExists (function)
	FileLen (function)
	FileList (statement)
	FileParse$ (function)
	Fix (function)
	For Each...Next (statement)
	For...Next (statement)
	Format, Format$ (functions)
	FreeFile (function)
	Function...End Function (statement)
	Fv (function)

	G
	G
	Get (statement)
	GetAllSettings (function)
	GetAttr (function)
	GetObject (function)
	GetSetting (function)
	Global (statement)
	GoSub (statement)
	Goto (statement)
	GroupBox (statement)

	H
	H
	HelpButton (statement)
	Hex, Hex$ (functions)
	HLine (statement)
	Hour (function)
	HPage (statement)
	HScroll (statement)
	HWND (object)
	HWND.Value (property)

	I
	I
	If...Then...Else (statement)
	IIf (function)
	IMEStatus (function)
	Imp (operator)
	Input# (statement)
	Input, Input$, InputB, InputB$ (functions)
	InputBox, InputBox$ (functions)
	InStr, InStrB (functions)
	Int (function)
	Integer (data type)
	IPmt (function)
	IRR (function)
	Is (operator)
	IsDate (function)
	IsEmpty (function)
	IsError (function)
	IsMissing (function)
	IsNull (function)
	IsNumeric (function)
	IsObject (function)
	IsWebSpaceSession (function)
	Item$ (function)
	ItemCount (function)

	K
	K
	Keywords (topic)
	Kill (statement)

	L
	L
	LBound (function)
	LCase, LCase$ (functions)
	Left, Left$, LeftB, LeftB$ (functions)
	Len (function)
	Let (statement)
	Like (operator)
	Line Input# (statement)
	Line$ (function)
	LineCount (function)
	 Line Numbers (topic)
	ListBox (statement)
	Literals (topic)
	Loc (function)
	Lock (statement)
	Lof (function)
	Log (function)
	Long (data type)
	LSet (statement)
	LTrim, LTrim$ (functions)

	M
	M
	Main (statement)
	MCI (function)
	Mid, Mid$, MidB, MidB$ (functions)
	Mid, Mid$, MidB, MidB$ (statements)
	Minute (function)
	MIRR (function)
	MkDir (statement)
	Mod (operator)
	Month (function)
	Msg.Close (method)
	Msg.Open (method)
	Msg.Text (property)
	Msg.Thermometer (property)
	MsgBox (function)
	MsgBox (statement)

	N
	N
	Name (statement)
	Named Parameters (topic)
	Net.AddCon (method)
	Net.Browse$ (method)
	Net.CancelCon (method)
	Net.GetCaps (method)
	Net.GetCon$ (method)
	Net.User$ (property)
	New (keyword)
	Not (operator)
	Nothing (constant)
	Now (function)
	NPer (function)
	Npv (function)
	Null (constant)

	O
	O
	Object (data type)
	Objects (topic)
	What Is an Object
	Declare Object Variables
	Assign a Value to an Object Variable
	Access Object Properties
	Access Object Methods
	Compare Object Variables
	Collections
	Predefined Objects

	Oct, Oct$ (functions)
	OKButton (statement)
	On Error (statement)
	Open (statement)
	Option Default (statement)
	Option Explicit (statement)
	OpenFilename$ (function)
	Operator Precedence (topic)
	Operator Precision (topic)
	Option Base (statement)
	Option Compare (statement)
	Option CStrings (statement)
	OptionButton (statement)
	OptionGroup (statement)
	Or (operator)

	P
	P
	Pi (constant)
	Picture (statement)
	PictureButton (statement)
	Pmt (function)
	PopupMenu (function)
	PPmt (function)
	Print (statement)
	Print# (statement)
	Private (statement)
	Public (statement)
	PushButton (statement)
	Put (statement)
	Pv (function)

	Q
	QueEmpty (statement)

	R
	R
	Random (function)
	Randomize (statement)
	Rate (function)
	RCPDownload (statement)
	RCPDownloadEx (function)
	RCPGroupExport (statement)
	RCPGroupExportEx (function)
	RCPGroupImport (statement)
	RCPGroupImportEx (function)
	RCPUpload (statement)
	RCPUploadEx (function)
	ReadIni$ (function)
	ReadIniSection (statement)
	Redim (statement)
	Rem (statement)
	Reset (statement)
	Resume (statement)
	Return (statement)
	Right, Right$, RightB, RightB$ (functions)
	RmDir (statement)
	Rnd (function)
	RSet (statement)
	RTrim, RTrim$ (functions)

	S
	S
	SaveFilename$ (function)
	SaveSetting (statement)
	Screen.DlgBaseUnitsX (property)
	Screen.DlgBaseUnitsY (property)
	Screen.Height (property)
	Screen.TwipsPerPixelX (property)
	Screen.TwipsPerPixelY (property)
	Screen.Width (property)
	Second (function)
	Seek (function)
	Seek (statement)
	Select...Case (statement)
	SelectBox (function)
	SendKeys (statement)
	Set (statement)
	SetAttr (statement)
	Sgn (function)
	Shell (function)
	Sin (function)
	Single (data type)
	Sleep (statement)
	Sln (function)
	Space, Space$ (functions)
	Spc (function)
	SQLBind (function)
	SQLClose (function)
	SQLError (function)
	SQLExecQuery (function)
	SQLGetSchema (function)
	SQLOpen (function)
	SQLQueryTimeout (statement)
	SQLRequest (function)
	SQLRetrieve (function)
	SQLRetrieveToFile (function)
	Sqr (function)
	Stop (statement)
	Str, Str$ (functions)
	StrComp (function)
	StrConv (function)
	String (data type)
	String, String$ (functions)
	Sub...End Sub (statement)
	Switch (function)
	SYD (function)
	System.Exit (method)
	System.FreeMemory (property)
	System.FreeResources (property)
	System.MouseTrails (method)
	System.Restart (method)
	System.TotalMemory (property)
	System.WindowsDirectory$ (property)
	System.WindowsVersion$ (property)

	T
	T
	Tab (function)
	Tan (function)
	Text (statement)
	TextBox (statement)
	Time, Time$ (functions)
	Time, Time$ (statements)
	Timer (function)
	TimeSerial (function)
	TimeValue (function)
	Trim, Trim$, LTrim, LTrim$, RTrim, RTrim$ (functions)
	True (constant)
	Type (statement)
	TypeOf (function)
	TypeName (function)

	U
	U
	UBound (function)
	UCase, UCase$ (functions)
	Unlock (statement)
	User-Defined Types (topic)

	V
	V
	Val (function)
	Variant (data type)
	VarType (function)
	Viewport.Clear (method)
	Viewport.Close (method)
	Viewport.Open (method)
	VLine (statement)
	VPage (statement)
	VScroll (statement)

	W
	W
	Weekday (function)
	While...Wend (statement)
	Width# (statement)
	WinActivate (statement)
	WinClose (statement)
	WinFind (function)
	WinList (statement)
	WinMaximize (statement)
	WinMinimize (statement)
	WinMove (statement)
	WinRestore (statement)
	WinSize (statement)
	Word$ (function)
	WordCount (function)
	Write# (statement)
	WriteIni (statement)

	X
	X or (operator)

	Y
	Year (function)

	CIMPLICITY Extensions to Basic
	CIMPLICITY Extensions to Basic
	64-bit
	Acquire ...
	Alarm ...
	Change ...
	CimChange ...
	CimEMAlarmEvent. ..
	CimEMEvent ...
	CimEMPointEvent. ..
	CimGetEMEvent ...
	CimIsMaster. ..
	CimLogin /CimLogout...
	CimProjectData ...
	CimRemoveUnusedPoints
	Do ...
	Get ...
	IsTerminalServices
	LogStatus
	Point ...
	PointGet. ..
	PointSet. ..
	String ...
	Trace ...

	Acquire (function)
	Acquire, Release (statements)
	AlarmGenerate (statement)
	AlarmGenerateEx (statement)
	Guidelines : AlarmGenerateEx and AlarmUpdateEx
	Message $ Limitations and Guidelines
	Non-Point Alarm Requirements
	Point Alarm Guidelines

	AlarmUpdate (statement)
	AlarmUpdateCA (statement)
	AlarmUpdateEx (statement)
	Guidelines : AlarmGenerateEx and AlarmUpdateEx
	Message $ Limitations and Guidelines
	Non-Point Alarm Requirements
	Point Alarm Guidelines

	ChangePassword (statement)
	CimChangeApprovalData (Object)
	CimEMAlarmEvent.AlarmID (property, read)
	CimEMAlarmEvent.FinalState (property, read)
	CimEMAlarmEvent.GenTime (property, read)
	CimEMAlarmEvent.Message (property, read)
	CimEMAlarmEvent (object)
	CimEMAlarmEvent.PrevState (property, read)
	CimEMAlarmEvent.RefID (property, read)
	CimEMAlarmEvent.ReqAction (property, read)
	CimEMAlarmEvent.ResourceID (property, read)
	CimEMEvent.ActionID (property, read)
	CimEMEvent.AlarmEvent (function)
	CimEMEvent.EventID (property, read)
	CimEMEvent (object)
	CimEMEvent.ObjectID (property, read)
	CimEMEvent.PointEvent
	CimEMEvent.TimeStamp (property, read)
	CimEMEvent.Type (property, read)
	CimEMPointEvent.Id
	CimEMPointEvent (object)
	CimEmPointEvent.Quality (property, read)
	CimEmPointEvent.QualityAlarmed (property, read)
	CimEmPointEvent.QualityAlarms_Enabled (property, read)
	CimEmPointEvent.QualityDisable_Write (property, read)
	CimEmPointEvent.QualityLast_Upd_Man (property, read)
	CimEmPointEvent.QualityManual_Mode (property, read)
	CimEmPointEvent.QualityIs_In_Range (property, read)
	CimEmPointEvent.QualityStale_Data (property, read)
	CimEmPointEvent.QualityIs_Available (property, read)
	CimEMPointEvent.State (property, read)
	CimEMPointEvent.TimeStamp (property, read)
	CimEmPointEvent.UserFlags (property, read}
	CimEMPointEvent.Value (property, read)
	CimGetEMEvent (function)
	CimIsMaster (function)
	CimLogin (statement)
	CimLogout (statement)
	CimProjectData.Attributes (property, read/write)
	CimProjectData.Filters (property, read/write)
	CimProjectData.GetNext (function)
	CimProjectData.Entity (property, read/write)
	Entity List
	ACTION
	ALARM _BLK_GROUP
	ALARM _CLASS
	ALARM _DEF
	AMLP
	CLASS
	CLIENT
	DEVICE
	EVENT
	EVENT _ACTION
	GLB _PARMS
	MEASUNIT
	MEASSYSTEM
	OBJECT
	OBJECT _INF
	POINT
	POINT _DISP
	POINT _ENUM
	POINT _ENUM_FLD
	POINT _TYPE
	PORT
	PROJECTS
	PROTOCOL
	RESOURCE
	ROLE
	SSPC
	SYS _PARMS
	UAFSETS
	USER
	USER _FIELDS

	CimProjectData (object)
	CimProjectData.Project (property, read/write)
	CimProjectData.Reset (method)
	CimRemoveUnusedPoints (method)
	DoQINTMath (function)
	DoUQINTMath (function)
	GetCurTimeHR (function)
	GetKey (function)
	GetMemoryInfoSymbolSpace (statement)
	GetMemoryInfoStringSpaceHandles (statement)
	GetMemoryInfoStringSpace (statement)
	GetMemoryInfoPublicSpace (statement)
	GetSystemWindowsDirectory (function)
	GetTimeComponentsHR (function)
	GetTSSessionId (function)
	IsTerminalServices (function)
	LogStatus (property, read/write)
	Point.AlarmAck (property, read)
	Point.Cancel (method)
	Point.ChangeApproval (property, write)
	Point.ChangeApprovalInfo (property, read)
	Point.DataType (property, read)
	Point.DisplayFormat (property, read)
	Point.DownloadPassword (property, read)
	Point.Elements (property, read)
	Point.EnableAlarm (method)
	Point.Enabled (property, read)
	Point.EuLabel (property, read)
	Point.Get (statement)
	Point.GetArray (statement)
	Point.GetNext (function)
	Point.GetNext (statement)
	Point.GetQuadIntValue (function)
	Point.GetRawArray (statement)
	Point.GetTimeStampHR (statement)
	Point.GetValue (property, read)
	Point.HasEuConv (property, read)
	Point.Id (property, read/write)
	Point.InUserView (property, read)
	Point.Length (property, read)
	Point (object)
	Point.OnAlarm (statement)
	Point.OnAlarmAck (statement)
	Point.OnChange (statement)
	Point.OnTimed (statement)
	Point.PointTypeId (property, read)
	Point.QuadValueAsString (property, read)
	Point.QuadValueAsString (property, write)
	Point.Quality (property, read)
	Point.QualityAlarmed (property, read)
	Point.QualityAlarms_Enabled (property, read)
	Point.QualityDisable_Write (property, read)
	Point.QualityIs_Available (property, read)
	Point.QualityIs_In_Range (property, read)
	Point.QualityLast_Upd_Man (property, read)
	Point.QualityManual_Mode (property, read)
	Point.QualityStale_Data (property, read)
	Point.RawValue (property, read/write)
	Point.ReadOnly (property, read)
	Point.Set (statement)
	Point.SetArray (statement)
	Point.SetElement (statement)
	Point.SetpointPriv (property, read)
	Point.SetQuadIntValue (function)
	Point.SetRawArray (statement)
	Point.SetValue (property, write)
	Point.State (property, read)
	Point (subject)
	Point.TimeStamp (property, read)
	Point.TimeStampHR (property, read)
	Point.UserFlags (property, read)
	Point.Value (property, read/write)
	PointGet (function)
	PointGetMultiple (function)
	PointGetNext (function)
	PointSet (statement)
	PointSetMultiple (function)
	PointSetMultipleEx (function)
	SetTimecomponentsHR (function)
	QINTFromString (function)
	StringFromQINT (function)
	StringFromUQINT (function)
	Trace (statement)
	TraceEnable/TraceDisable (statement)
	UQINTFromString (function)

	Chapter 4. Basic Control Engine User Interface
	About the BCEUI
	Open the BCEUI Window
	BCEUI Menus
	BCEUI Menus
	BCEUI File Menu
	BCEUI Events Menu
	BCEUI Scripts Menu
	BCEUI View Menu
	BCEUI Help Menu
	BCEUI Window Pop-up Menu
	BCEUI Toolbar
	BCEUI Shortcut Keys

	BCEUI Viewer
	BCEUI Viewer
	1. Select Events in the Browser
	2. Toggle the Auto Browse
	3. Connect to a Project
	4. Select Events
	5. Use the Event List
	6. Set the Maximum Number of Completed Actions
	7. Add Events to the View
	8. Remove Events from the View
	9. Trigger Events

	Control Scripts
	Control Scripts
	Pause Scripts
	Resume Scripts
	Stop Scripts

	Chapter 5. Event Editor
	About the Event Editor
	Event Editor Configuration
	Event Editor Configuration
	Step 1. Open the Event Editor
	Step 2. Review Event Editor Features
	Step 2. Review Event Editor Features
	Option 2.1. Event Editor Menus
	File menu
	Edit Menu
	View menu
	Tools menu
	Help menu

	Option 2.2. Event Editor Toolbar
	Option 2.3. Event Editor Shortcut Keys

	Step 3. Configure an Event
	Step 3. Configure an Event
	Step 3.1. Create an Event
	Step 3.1. Create an Event
	Alarm Acknowledged Events
	Alarm Deleted Events
	Alarm Generated Events
	Alarm Reset Events
	Point Change Events
	Point Equals Events
	Point Transition High Events
	Point Transition Low Events
	Point Unavailable Events
	Point Update Events
	Run Once
	Timed Events

	Step 3.2. Enter Advanced Event Specifications

	Step 4. Create an Action
	Step 4. Create an Action
	Alarm Look-Up Actions
	Log Only Actions
	Point Alarm Acknowledge Actions
	Point Alarm Disable Actions
	PointAlarm Enable Actions
	Recipe Upload/Download
	Run Script Actions
	To add an existing script:
	To add a new script:
	Types of Script Execution
	Notes
	Variable scope and lifetime

	Set Point Actions
	Source Transition Set Actions
	Transition Set Actions

	Step 5. Associate Actions with an Event
	Step 6. Work with Existing Events and Actions
	Step 6. Work with Existing Events and Actions
	Option 6.1. Modify an Event
	Option 6.2. Modify an Action
	Option 6.3. Copy an Event
	Option 6.4. Copy an Action
	Option 6.5. Filter Alarms and Events
	Option 6.6. Select Event Display Fields
	Option 6.7. Select Action Display Fields
	Option 6.8. Search for an Event
	Option 6.9. Search for an Action

	Optimize Event Editor Performance

	Chapter 6. Action Calendar
	About the Action Calendar
	Planning for the Action Calendar
	What the Action Calendar Does
	When to use Other CIMPLICITY Tools
	Action Calendar Interface Overview
	Action Calendar Areas in a Facility
	Event Definitions
	Day Type Definitions
	Schedules

	Projected Schedules for the Action Calendar
	Projected Schedules

	About the Action Calendar Scheduler
	Action Calendar Planning Configuration
	Action Calendar Planning Configuration
	Setting up Areas
	Setting up Areas
	Definition of Areas to Group Action Calendar Events
	Definition of Events Scheduled for Action Calendar Areas

	Setting up Day Types with Assigned Days
	Setting up Day Types with Assigned Days
	Example of Assigning Days of the Week to Day Types

	Making One Time Adjustments to Schedules
	Making One Time Adjustments to Schedules
	They are:

	Day Type Overrides Definition
	Event Overrides Definition

	Expediting Schedule Adjustment through Offset Events

	Production Shifts and Days
	Production Shifts and Days
	Changing Production Shift Parameters
	Modifying Production Days

	Configuration Changes Incorporated into the System
	Sample Factory Configuration Example
	Sample Factory Configuration Example
	Sample Factory Production Day Schedule
	Sample Factory Point Configuration
	Sample Factory Area Configuration
	Sample Factory Event Configuration
	Sample Factory Assembly Event Configuration
	Sample Factory Offset Event Configuration
	Sample Factory Day Type Configuration
	Sample Factory Schedule Configuration
	Sample Factory Day of the Week Assignments

	Configuring the Action Calendar
	Action Calendar at a Glance
	Action Calendar Data Entry Overview
	Factory Action Calendar Schedule Example
	Area Configuration
	Area Configuration
	Add New Areas
	Edit Areas
	Delete Areas

	Day Type Legend
	Day Type Legend
	Creating New Day Types
	Editing Day Types
	Editing Day Types
	Procedure to Change Day Type Color
	Procedure to Edit Day Type Properties

	Copy Day Types
	Delete Day Types
	Assign Days of the Week to Day Types

	Event Configuration
	Event Configuration
	Create New Events
	Modify Existing Events
	View Events
	Configure Offset Events
	Create Offset Events

	Schedules
	Schedules
	Adjust the Schedule View
	Add/Modify/Delete a Scheduled Event in Day Type Mode
	Configuring Schedule Overrides
	Configure Schedule Overrides
	Day Type Overrides
	Day Type Overrides
	You can do the following with Day Type Overrides:
	Add a Day Type Override
	Remove a Day Type Override
	View Day Type Overrides
	Edit a Day Type Override
	Delete a Day Type Override

	Event Overrides
	Event Overrides
	Add a Scheduled Event Override
	Reschedule or skip an Event
	Remove a Skip or Reschedule Override
	View Event Overrides for a Specific Date
	View all Event Overrides Viewed
	Edit Event Overrides
	Delete Event Overrides

	Security
	Security
	Role Base Privileges

	Procedure to set the Day Start Time
	Command Line Parameters

