GE VERNOVA

PROFICY®SOFTWARE & SERVICES

PROFICY BATCH
EXEGUTION 5.6

Phase Programming Manual

GE VERNOVA

Proprietary Notice

The information contained in this publication is believed to be accurate and reliable.
However, GE Vernova assumes no responsibilities for any errors, omissions or
inaccuracies. Information contained in the publication is subject to change without notice.

No part of this publication may be reproduced in any form, or stored in a database or
retrieval system, or transmitted or distributed in any form by any means, electronic,
mechanical photocopying, recording or otherwise, without the prior written permission of
GE Vernova. Information contained herein is subject to change without notice.

© 2024 GE Vernova and/or its affiliates. All rights reserved.

Trademark Notices

“VERNOVA” is a registered trademark of GE Vernova. “GE VERNOVA” is a registered
trademark of GE Aerospace exclusively licensed to GE Vernova. The terms “GE” and the
GE Monogram are trademarks of GE Aerospace, and are used with permission. All other
trademarks are the property of their respective owners.

Microsoft® is a registered trademark of Microsoft Corporation, in the United States and/or
other countries.

All other trademarks are the property of their respective owners.

We want to hear from you. If you have any comments, questions, or suggestions about our
documentation, send them to the following email address:
doc@ge.com

Table of Contents

ADOUL THIS GUITE ...ttt ettt e e ekt e e ekt e e ek e e e e et bt e e e anbr e e e s anbreeeennee 1
RETEIENCE DOCUMEBNTSitiiie ittt ettt e e st e st e e s b e e e s ab e e e s anb e e e s annreeeeannee 1

T g o (U111 o] o WU TP PP P PPPPPPPPPN 1
UNderstanding PRASESoooiiiiiiiiiie et e et e e e e e e e e e e e e e ane e 1
Phase LOGIC COMPONENLSc..uiiiiiiieai ittt e e ettt e e e e e e s bbbt e e e e e e e s abebeeeeaaeasannbeaeeeaeesaaannneees 2
Understanding COMMUNICATIONScciieiiiiiiiiiiiia ettt e ettt e e e e e et e e e e e e s e snnbareeeaeeeaannnneees 2
CommMUNICALION INTEITACEi i e 2
Programming PhasSe LOGICc.uuviiiiiieeiiiiiiii e st e s st e e e s s st e e e e e e e s annnraae e e e e e e e e nnnnenes 3
VarAhIE NBMES ... ettt e et n e 4

L 1] = L (1 LS = o S 4
(g1 ==V YA I To SRR 4

(O o T = T T) V20N - Vo SRR 4
(DS o IS (= L (=10 [P TTT ORI 6
0] 10 B =2 T | o T PR PRUPUUPRRTP 6
Task OVErvieW: PRasS@ DESIONccooiuuiiiiiiie ettt e e e e e e e e e e e e snnbeaeeeaeas 6
Identifying the Phases iN the PrOCESSoiiiiiiiiii et 6
Example: Process and Instrumentation DIraWingcceeaeiiiiiiiieiaeeaiiiiee e esiiieeee e 7
Example: AQItator PhaSESco.cuuiiiiiiiaii ittt e e e a e 7
DeSIgNING GENEIIC PRASESuviiiiiieei it s e et e e e e s s e e e e s s sn st e e e e e e s s snntaaeeeeeeesnnnnneees 8
USING PhasSe ParamMeterS.coicuiiiiiiie et ie e s st et e e et s st e e e e e e s s st e e e e e e e snnnnneneeaeeeeanns 9

(O 1S3 To U T 1 A =T OSSR 9
Example: Add Ingredient Phase LOGICuvuvirieeiiiiiiiiieiie e s s ssitiee e e e e s s sasieeee e e e e e s nnnnnneeeee e e 9

RVAY 11T T d = LT I o (S 11
USING Phase TEMPIALESooiiieiiiie ettt e e e e e e e e a e e e e e e e e e nnneeee 11
Sample of Aborting LogiC (8S StrUCTUred EXL)eeiiiiiiiiiiiiiieie e 11

Phase Programming Manual

Sample of Stopping LOgiC (aS StrUCTUIEd tEXL)uvieeiiiiiiiiieie e 12
Creating Phase Templates with Sequential Function Charts.........ccccccceevvivciiieen e, 12
(DTS o 1T a0 T 1o TSI (=T o S 13
Implementing a Phase Step Numbering SCheme ... 14
Programming PAUSEScouaiiiiiiiiiiiie ettt e et e e e e e e s e aba e e e e e e e e s s abbar e e e e e e e e annneees 14
Understanding the Step Index and Step BUffer............ooiiiiiii e 16
Using the Step Index in ReSArting LOGICueuiiaaiiiiiiiiiieeae ettt e e 16
Transfer Of CONIIOL...........oii ittt e e sneee s 17
Downloading NEW ParameEtersccoia ittt e e et e e e e e e s sanebaeeaaaeeeaaas 17
Programming Project-Specific Phase LOGICccoiiiiiiiiiie et e e 18
Project-Specific Phase Logic (aS StruCtured teXL)........uuuveeeeiiiiiiiieieee e s ceiiieeee e e e s s senvenee e e e e 19
Understanding Project-Specific Phase LOGICccvviiiiieeeiiiiiiiirece et ee et e e e 19
(0] 4] 0] =T 1T0] ATV T F= L] T 20
Programming RUNNING LOGICuuuuiiiieeiiiiiiiieie e e e e s s siitee et e e e s s st e e e e e e st e e e e e e e s snnrnneeeeeessennnnnnes 21
L T LT O OSSR 21
RUNNING Phase-SPECIfIC LOGIC .. .uuueeiieaiiiiiiiiiei ettt e e e e e e e e e 21
Programming HOIAING LOGICuueiiiiiiiiiiiie ettt e e e e e e e e nneeees 23
Programming ADOITING LOGICuueeeeiieaiiiiiie ettt e et e e e e e e e ae e e e e e e e e snnneees 24
Programming STOPPING LOGICuveeiiiieiiiiiiie ettt e e e e e e e e e e e e e e snneeees 25
Programming RESTArtiNg LOGICueeiieiiiiiiiiiiee ettt e e e e e sabe e e e e e e e s nneeees 26
Programming REQUESTScooiiiiiie ittt e et e e e e e s e s bbb e e e e e e e e s e sanbbeeeeaaeeeaannreees 26
Understanding the Request Variables. ... 27
PrOCESSING REGUESES ... uuiiiieeii ittt e e s et e e e e e s s e e e e e s s s e e e e e e s s snstaaeeeaeessasnnnrnneeeeeesanns 28
Configuring Parameter and Report REQISIEISccccviiiiiiiiiie et e e 28
Understanding Phase Parameterscccuuieiiiieiiiiciiieee e s sttt e e e e s ssiare e e e e e e s snnvnae e e e e e e e e ennnnees 29
Phase Class ParameterS..........cvoiiiiiiiiiiie ettt 29
Phase INStaNCe PAramMeLerScoiiiiiiiiiiiiie ettt 29
Process Controller Phase Parameterscoouviviiiiiieiiiiee e 31

Table Of Contents

(Do 1V a1 (o= Vo [T [o T o= = T g 1] (=] SR 31
Understanding the DOWNIOAd PrOCESSuuuiiiieiiiiiiiiiiiee e ee e s e e e e s snnrane e e e e 32
Understanding Phase Class Parameterscccoiiieiiiiiieee e e e s ssieeeeee e e s s snnvnnee e e e e 32
Syntax: DOWNIOAA REQUESTcooiiiiiei et e e e e e e e e aneeees 33
Examples: DOWNIOAd REQUESTS......ccoiai ittt e e e e et e e e e e e s ranbbaeeaeaeeeaans 34

Uploading REPOI VAIUES.........c..eeiieieeiee ettt e ettt e e e e e e e e e e e e e e e e nnneees 35
Understanding the Upload PrOoCESS.......co.uuiiiiiiieiiee ettt a e 36
Understanding RepOrt Parameters.........o.uuueiiiiii ittt e e e e 36
Syntax: Upload Report Parameter REQUESEuieiiiiiiiiiiiiie e 37
Example: Uploading a Range of Report Parametersccooovvvviieeeeeiiciiiieeeee e csieeeeee e 38

Sending MesSSages t0 the OPEIALON.......iccii e et ee e e e e e s e e e e e e s e ereaeeeeanns 39
Understanding the Send MESSage PrOCESScccvcuiiiiiieeeeiiiiiieie e e e s s ssiaeer e e e e e s s snnreeeeeeeeeans 39
Understanding Operator MESSAQES. .. .c.cuvuurrrrereeeiiirerireteeessssstsrereeeeesssnstnnerreeessnanssrnneeeeeesanns 39
Syntax: Send Operator MeSSage REQUEST........ccuvieeiiiiiiiiieie e esteeer e e e s e e e e e e snnrnreeee s 40
Example: Send MeSSage REQUESTcocuiiiiiieie et e e e e e s s e e e e e e s e raee e e e e e e anns 40

ACQUITING RESOUITES ...ceeiiiiiiiitie ittt e ettt e e e e e e s e bbbt e e e e e e e e an bt eeeeeaaaesaanbbseeeaaeesaannreees 40
Understanding the Acquire RESOUICE PrOCESScc.uuiiiiiiiiiiiiiiiiiee ettt a e 40
Syntax: ACQUIre RESOUICE REQUEST........cuiiiiiiiiiiiiiii ettt a e eee e e e 41

REIECASING RESOUITESeeiiieiiiiiitit ittt e ettt e et e e e s e e et e e e e e e s e abebe e e e e e e e e snbbeseeaaeeeaannneees 41
Understanding the Release REeSOUICE PrOCESSuuiiiiiiiiiiiiiiiiiia et 42
Syntax: Release RESOUICE REQUEST........ciii ittt e e e e 42

Sending and Waiting for Phase MESSAQJESuuuiviieeiiiiiiieiieeeesiiiiiiieee e e e s s sstaeeeeee e e sesnnreneeeaeeeans 43
Understanding Synchronization GrOUPSuuuieeeiiiieriiieeeeeeiiiineeeeeeeesssnsieneeeeeesssssnsnnesesessans 43
Understanding the Send and Receive MesSSage ProCESS........ccvvveeveeeiiiciiieeieee e csiniieeeaeeean 43
Syntax: SENd MESSAGE REQUESTueiiiieii it e e s e et e e e e e e s s r e e e e e s e e e e e e e e snnrereeeees 45
Syntax: Send Message and Wait REQUEST.........cciieiiiiiiiiiieie e e 46
Example: Sending and ReCeivVINg MESSAQEScoiiuuiiiiiiaeeeiiiiiiiee ettt e 48

Canceling Messages t0 Other PhaSESuuiiiiiiiiiiee et 48

Phase Programming Manual

Understanding the Cancel MeSSage PrOCESSccuvviiiiiei ittt e e s s ectaeee e e e snraeee e e e 48
Syntax: Cancel MeSSAgE REQUESTcceeeiiiiiiiieiie e e eitieie e e e e s s s st e e e e e e enn e e e e e e e snnrnreeeees 49
Syntax: Receive Message and Walit REQUESTcooiiiiiiiiiee e 49
ADOITING REQUESTESeeeeiiie ettt ettt e e e e ekt b et e e e e e e e s bbbt e e e e e e e e e aanbbneeeeaeeesannreees 50
Syntax: ADOIING REQUESTESeiiiiiiiiiiiie ittt e e e e e e e e e e e e e e e e annneees 50
Downloading ldentification PArameters ...t 50
Understanding Identification Parameters ...t 51
Syntax: Download Identification Parameters. ... 51

(@ 10 [Tod [R = (=] (=] 0= 52
BatCh EXECULION REGQUESTSeeiiiiiiie et e ettt e e s s st e e e e e e st e e e e e e s annbane e e e e e e s e nnnnnnes 53
Batch Execution Memory VariablesS.........c..uveiriiiiiiiiiieec et e e e e e 55
1D D=1 =Y o - Y= I Vo [S 56
0T 1= OO URRT PR PRI 59

Vi

About This Guide

The Proficy Batch Execution Phase Programming Manual is a comprehensive guide to developing and
using the application interface to Batch Execution through the use of programmable controllers or
other similar type of control equipment.

This manual is intended for those who wish to develop and use the standard Batch Execution
application interface targeted for programmable controllers. The manual assumes the reader has a good
understanding of batch control processing, programmable or process controllers, ladder logic, and
sequential function charts (SFC).

Reference Documents

For additional information about developing phase logic and the Phase Logic Interface, refer to the
following documents:

e PLI Development Manual
e ISA-S88.01, Batch Control, Part 1: Models & Terminology

Introduction

The sections that follow provide an overview of phases in Batch Execution, including the:

e Components that make up a phase.

e Communication process between Batch Execution and the phase logic in the process
controller.

e Phase programming requirements that enable equipment to respond to and interact with Batch
Execution.

Understanding Phases

A phase is a series of steps that cause one or more equipment or process-oriented actions. These
actions issue commands to set or change controller constants, modes, or algorithms.

In Batch Execution, equipment phases are defined in the equipment database to trigger the execution of
the phase logic that resides in the process controller. The phase logic in the process controller contains
the instructions to control the physical devices, such as a pump or a motor. The following figure
illustrates an equipment phase.

_ Phase Logic; i Physical
Equipment Phase Interface |1 ase Logie O -
PLh evice

{in Batch Execution)

(in process controller)

Equipment Phase

Phase Logic Components

The logic in the process controller consists of two components: the phase logic interface (PLI) and the
phase logic:

PLI - is the standard interface between the Batch Execution Server and the phase logic. The PLI is the
Batch Execution-specific portion of the phase that controls the state transitions for phases. A
program listing for a sample PL1I is provided in the PLI Development Manual.

Phase Logic — contains the instructions to sequence the individual equipment connected to the physical
devices. It is the code that contains the control steps, such as opening a valve, starting a pump, or
stopping a totalizer.

Understanding Communications

The Batch Execution Server and the PLI communicate using a standard set of commands, requests, and
other data items. In general, the Batch Execution Server sends commands and phase parameter values
to the PLI. In return, requests, status information, and phase report values propagate up from the phase
logic.

Communication Interface

In order for the Batch Execution Server, the PLI, and the phase logic to communicate, a specific data
structure is necessary. This data structure makes up the communication interface that enables the Batch
Execution Server, the PLI, and the phase logic to exchange data, which ultimately controls the
execution of a batch.

The following figure illustrates the layers of communication between the Batch Execution Server, the
PLI, the phase logic, and the physical device.

Phase Programming Manual

PC or
Work station Batch Execution Server
f r 3 [
N ()
. + + . L L
Phase Logic Intedface (PLI) - contains State Transition Logic
Process L] L ¥ L1 ¥ E ¥
4 - b |
Cantroller $ g E T& ? T '-,II' N l (2]
_ Phase Logic
Running Holding Abarting Stopping ¢ Restarting Failure \ Equipment
Logic , Logic Looic Loggic Logic: Logic: Phase
*)
N @)

Physical Deveice

Phase Components

Programming Phase Logic

The phase logic contains the instructions to operate a piece of equipment. For example, the control
logic in a heat phase may contain the instructions to open and close a steam valve on a heating jacket.

To implement the operating sequences and detect equipment failures, Batch Execution requires that
each phase contain five modules of code:

e Running
e Aborting
e Stopping

e Restarting

e Holding
Variables set by the state transition logic initiate these modules of code. When these modules of code
terminate, they set a variable that indicates completion. The completion status is read by the state
transition logic, allowing the phase to transition to the next state.

Refer to the Programming Project-Specific Phase Logic section for more information.

Variable Names

The recommended naming conventions for the variables set by the state transition logic begin with a
unigque phase name, followed by an underscore and up to three character identifiers for the variable:

PHASE_ xxx
For example, for a phase called Charge, the recommended variable name for the Running logic is:

CHARGE_R

Unit Status Tags
Batch Execution includes two mechanisms for defining a unit's status:

e The Unit Ready tag
e The Unit Priority tag

Both of these items are optional and may not be necessary for your particular process. Refer to the
Equipment Configuration Manual for additional information on both these items.

Unit Ready Tag

The Unit Ready tag is an integer programmed into the process controller that indicates whether a unit
is ready to be used in a batch process. A value of zero (0) indicates that the unit is available to a
process or an operator. A value other than zero indicates that the unit is currently unavailable.

Example

On a plant floor, you can program an ON/OFF button on a mixer to use the Unit Ready tag. If the
mixer is shut down for any reason, due to equipment failure or routine maintenance, the Unit Ready
tag is set to a non-zero integer. This mixer is then unavailable to any operator, as well as any batch
process.

Unit Priority Tag

Active Binding allows you to bind and re-bind a physical piece of equipment to a recipe at different
times during the production cycle. There are three methods of binding a unit to a unit procedure:

e Manually, when the recipe is created.
e During run time, using an operator prompt.

e Automatically, allowing the Batch Execution Server to make the selection dynamically.
You can use the Unit Priority tag during Active Binding to determine the relative importance of a
particular unit, as compared to other units in the same unit class. To do so, assign an integer to each

unit's Unit Priority tag. During Active Binding, Batch Execution selects the unit with the highest Unit
Priority value from the list of available units.

For additional information on Active Binding, refer to the Recipe Development Manual.

Example

Phase Programming Manual

During Active Binding, Batch Execution uses the Unit Priority tag. Assume a plant is running a batch
and using Active Binding to automatically determine on which mixer the batch will run. There are
three mixers to choose from: MIX1, MIX2, and MIX3. The Batch Execution Server will select the unit

with the highest value as its Unit Priority tag, as the following table describes:

Unit Priority Tag Example
If this Has a Unit Priority tag with this Then...
unit... value...
MIX1 7 Batch Execution does not select this
unit.
MIX2 25 Batch Execution selects this unit.
MIX3 2 Batch Execution does not select this
unit.

Now, consider the same example, but with the following modifications:

e Add an additional mixer, MIX4.

e Include the evaluation of the Unit Ready tag.

The following table displays the results.

Unit Status Tags Example

If this Has a Unit Priority Has a Unit Ready tag Then...

unit... tag with this value... with this value...

MIX1 7 0 Batch Execution does
not select this unit.

MIX2 25 3 Batch Execution does
not select this unit.

MIX3 2 5 Batch Execution does
not select this unit.

MIX4 16 0 Batch Execution selects
this unit.

Design Strategies

When designing your phases, your goal should be to design modular, flexible, and generic phases that
you can run on multiple units and use for multiple recipes. Define phases without a particular product
in mind. This way, if you alter a product or process, it is less likely you will need to change the phase
logic. Essentially, you should have a library of phases that you can select from when creating your
recipe procedures. However, you can only effectively design the types and quantities of phases you
need if you have a complete understanding of your process, including how the production lines are
configured at your facility.

Unit Design

An integral part of phase design is unit design. Your unit design is important in that phases control the
equipment that makes up a unit. As defined in the S88.01 Batch Control standard, a unit is comprised
of the control modules that perform a specific function. You can't effectively design a phase to run on a
unit until you have a complete understanding of how the unit is configured and which 1/O points are
controlled by the unit.

For example, assume that you have a unit that consists of all the equipment modules that make up a
mixer. One of the equipment modules associated with this unit is a cooling jacket. To operate the
cooling jacket, you would create a phase that controls the 1/0 defined for the cooling jacket. For more
information on unit design, refer to the Equipment Configuration Manual.

Task Overview: Phase Design
The following list provides an overview of the tasks involved in designing phases.

1. ldentify the phases in your process.

2. ldentify the phase requirements, including:

Requests

Parameters

Reports

Interlocks

Interphase communications
3. Write modular, flexible, and generic phases.
The sections that follow include information on identifying the phases in your process, as well as

suggested strategies for designing flexible and generic phases. Subsequent sections address the
identification and creation of specific phase requirements.

Identifying the Phases in the Process

Before you can begin programming phases, you must first identify the phases in the process. A phase
is an independent process-oriented action within an operation. There may be one or more control steps
within a phase that may be executed sequentially or concurrently.

Phase Programming Manual

Phases execute on equipment modules. When grouped together, equipment modules make up a unit.
To identify phases, isolate each equipment or control module and group them by the function they
perform. To identify the individual phases that make up the process, refer to your plant's Process and
Instrumentation Drawing (P&ID).

Example: Process and Instrumentation Drawing

The following figure illustrates a sample Process and Instrumentation Drawing (P&ID) based on the
sample toothpaste application.

FLUDRIDE | |PH_ADDITIV

WHITEHNER

=404

RE ACTFLAWOR
REDD

Sample P&ID

Example: Agitator Phases

For example, the MI1X1 mixer contains several phases, all of which operate the equipment and control
modules associated with the mixer. The following figure illustrates the phases for the MIX1 unit.

ADD_IMNGS <

A

AGITATE <

CooL

KA102
HFER_OUT

AL,

Agitator Phases

The following table describes each phase that controls the Agitator unit:

Sample Agitator Phases

Phase... Function...

ADD_INGS Controls valve XV101 to transfer raw material into the mixer.

AGITATE Controls the agitator motor AG101 to agitate the ingredients in the mixer.
cooL Controls the temperature of the cooling jacket.

XFER_OUT Controls valve XV102 and pump PM101 to transfer material out of the mixer.

NOTE: L1101 and T1101 are level and temperature indicators for the unit. These are defined as unit
tags in the Equipment Editor. For more information on unit tags, refer to the Designing Generic
Phases section.

Designing Generic Phases

During phase design, consider the use of phase parameters and unit tags to create generic phases. This
is especially important if you have a multi-stream configuration, meaning that you can produce batches
of a product on multiple production lines.

Phase Programming Manual

Using Phase Parameters

Phase parameters allow you to set values, such as temperature setpoints, that are appropriate for a
particular unit on which the phase is executing. Using phase parameters allows you to create one
generic phase that can execute on multiple units. Phase parameters also allow you to use the same
phase in multiple recipes.

Using Unit Tags

Unit tags are configured for a unit class in the Batch Execution Equipment Editor. For example, the
sample P&ID in the Example: Process and Instrumentation Drawing section, the figure of sample
P&ID contains three identical mixers. You can assign unit tags to each mixer's temperature and level
indicator. You can then define a unit tag class, which provides a generic label that resolves to a specific
unit tag at batch run time.

For more information on phase parameters and unit tags, refer to the Equipment Configuration Manual.

Example: Add Ingredient Phase Logic

Th_e phase logic for a typical Add Ingredient phase may contain the following steps to add material to a
unit:

Download the target amount.

Acquire the pump PM401.

Reset the totalizer.

Open valve VLVO01.

Open valve VLV02.

Start pump PMPOL1.

Wait for the totalizer to reach the target amount.

Stop pump PMPO1.

© © N o g ~ 0w D E

Close valves.
10. Release pump PMPO1.
11. Upload actual amount.

12. Reset phase and clear out old values.

Example: Structured Text

The following code is an example in structured text format of the Add Ingredient phase logic. The step
numbering reflects the suggested step numbering scheme in the Implementing a Phase Step Numbering
Scheme section.

(* CHARGE Running Logic *)
ELSIF (CHARGE_R = 1)
IF (CHARGE_SI = 1)
(* Perform Step 1 - Download All Parameters *)
CHARGE_RQ := 1000

(* Change to step 2 so we only set RQ once *)
CHARGE_SI := 2
ELSIF (CHARGE_SI = 2)
(* Perform Step 2 - Wait for Param Download *)
IF (CHARGE_RQ = 0)
(* Copy downloaded value into local variable *)
CHARGE_TARGET := CHARGE_PO1
CHARGE_SI := 3
ENDIF
ELSIF (CHARGE_SI = 3)
(* Perform Step 3 - Acquire the Pump *)
CHARGE_RQ := 4011 (* Pump®s Resource ID is 11 *)
CHARGE_SI 4
ELSIF (CHARGE_SI = 4)
(* Perform Step 4 - Wait for resource *)
IF (CHARGE_RQ = 0)
CHARGE_SI := 101
ENDIF
ELSIF (CHARGE_SI = 101)
(* Perform Step 101
CHARGE_TOTAL := 0
CHARGE_SI := 102
ELSIF (CHARGE_SI = 102)
(* Perform Step 102
VLVOl := 1
VLVO2 :=1
ELSIF (CHARGE_SI = 103)
(* Perform Step 103
PMPO1 := 1
ELSIF (CHARGE_SI = 104)
(* Perform Step 104 - Wait for Target to be reached *)
IF (CHARGE_TOTAL >= CHARGE_TARGET)
CHARGE_SI := 105
ENDIF
ELSIF (CHARGE_SI = 105)
(* Perform Step 105 - Stop the pump *)
PMPO1 = 0
ELSIF (CHARGE_SI = 106)
(* Perform Step 106 - Close the valves *)
VLVOl1l =0
VLVO2 = 0
ELSIF (CHARGE_SI1 = 1001)
(* Perform Step 1001 - Release the pump *)
CHARGE_RQ := 4211 (* Pump®s Resource ID is 11 *)
CHARGE_SI 1002
ELSIF (CHARGE_SI = 1002)
(* Perform Step 1002 - Wait for release *)
IF (CHARGE_RQ = 0)
CHARGE_SI := 1003
ENDIF
ELSIF (CHARGE_SI = 1003)
(* Perform Step 1003 - Upload actual amount *)
CHARGE_RO1 := CHARGE_TOTAL
CHARGE_RQ := 2000
CHARGE_SI 1004
ELSIF (CHARGE_SI1 = 1004)
(* Perform Step 1004 - Wait for upload *)
IF (CHARGE_RQ = 0)

Prepare to Charge *)

Open the valves *)

Start the Pump*)

Phase Programming Manual

CHARGE_SI1 := 1005

ENDIF

ELSIF (CHARGE_SI = 1005)
(* Perform Step 1005 - Reset the phase *)
CHARGE_TARGET := 0
CHARGE_RC := 1

ENDIF

ENDIF

NOTE: Batch Execution automatically acquires and releases resources. However, if you want to make
a resource available prior to the completion of a phase, you can program requests to acquire and
release the resource. Otherwise, the resource is unavailable until the phase completes and is reset by
Batch Execution. Refer to the Acquiring Resources section for additional information.

Writing Phase Logic

After you have identified the phases in your process, you can begin writing the phase logic. Designing
and programming phase logic is very specific to the target process controller. However, in order for
Batch Execution to communicate with the phase logic in the process controller, there are specific items
that must be accounted for in your phase logic.

When writing phase logic, you should first ask yourself the following questions:

o What types of requests does this phase require? For example, does this phase need to make a
request to download phase parameters? If so, how many phase parameters are required?
e Does this phase execute on multiple units? If so, what logic must be written generically?

e What phase memory variables need to be set to communicate with the PLI?

Using Phase Templates

As you design phases, you may discover that it is easier to create a phase template than to design each
individual phase from the ground up. Many elements in the structure of the phase are similar
throughout different types of phase logic. For example, in the following samples of code written in
structured text format, you can see many similarities between the Aborting logic and the Stopping
logic.

Sample of Aborting Logic (as structured text)

IF CHARGE_A <> 0 THEN
IF(CHARGE_A_SI = 1) THEN
(*SET/CLEAR INTERLOCKS*)
CHARGE_A_SI := 2;
ELSIF(CHARGE_A SI := 2) THEN
(*SET THE PHASE ABORT COMPLETE FLAG*)
CHARGE_AC := 1
END_IF;
END_IF;

11

Sample of Stopping Logic (as structured text)

ELSIF CHARGE_S <> 0O THEN
IF (CHARGE_S_SI = 1) THEN
(*SET/CLEAR INTERLOCKS™)
CHARGE_S_SI := 2;
ELSIF(CHARGE_S_SI1 = 2) THEN
(*SET THE STOP COMPLETE FLAG*)
CHARGE_SC := 1
END_IF;
END_IF;

Creating Phase Templates with Sequential Function Charts

You can represent phase logic by using SFCs, as shown in the following two figures. Whether you
design your phases using structured text or SFCs, by reusing segments of your design as a template
you can help to streamline the phase design process.

—— PHASE_A_=l=1 —— PHASE_A SI=2
(*SetiClear Interlocks*) (*Set Phaze Abort Complete Flag*)
Set PHASE_A_SI=2 Set PHASE_AC=1
—1 PHASE_A_SI=2 —— PHASE_AC=1

Sample of Aborting Logic in SFC Format

12

Phase Programming Manual

—— PHASE_S_Si=1 —— PHASE S _SI=2

[*zet)Clear Interlocks*) [*=et Phaze Stop Complete Flag*)

Set PHASE_SC=1

Set PHASE_S_Si=2

PHASE_SC=1

| PHASE_S_SI=2 1

Sample of Stopping Logic in SFC Format

Designing Phase Steps

Much of the work involved with writing phase logic centers around defining a sequence of steps that
the phase must do to accomplish a task. These steps are grouped into two categories:

Control steps — to interact with the devices associated with the phase. For example, opening a valve.
Administrative steps — can request information from Batch Execution, can set internal variables, and
can handle interlocks. For example, a phase can request the Batch Execution Server to download

parameters.

In phase design it is important to consider the individual steps that constitute the entire phase. Phases
may contain one or more steps that can execute sequentially or concurrently. SFCs can be an effective
way of designing and visualizing the steps within your phases, as shown in the following figure.

13

Unit Phase

Operati
Procedure peration I:I
Procedure I:I I:I
- —— Step 1
. Phiaze
— Operation
Unit
Procedure .
. —1 Step 2
. Fhasze
—1 Operation
Unit
Procedure 1
— —= Step 3
- Phasze
— Cperation —1
Linit i —_
Procedure

=

Designing Phase Steps

Implementing a Phase Step Numbering Scheme

You should implement a numbering scheme for the steps in your phases, so that you can identify the
steps from phase to phase. For example, you can use:

e 110100 for the steps in a phase that perform the initial administrative work. This can include
downloading requests or initialization of the phase.

e 101 to 1000 for the actual work of the phase. These steps can include opening a valve or
starting a motor.

e 1001 to 1100 for the steps that perform the final administrative work in the phase, such as
uploading reports or resetting the phase.

Programming Pauses

When designing phases, you need to program safe pause points into your transition logic.
Programming pause logic requires two steps:

1. Recognize the Pause (P) flag and set the Paused (PD) flag.
2. At the transition, test for the Paused (PD) flag.

14

Phase Programming Manual

There may be steps or a series of steps in a phase where pausing cannot be tolerated. For example, a
batch may use an extremely viscous substance in its recipe. During the production process, an
AGITATE phase, illustrated in the following figure is used to mix the substance. The steps in the
AGITATE phase are:

Download the speed parameters for the phase.

Agitate at a rate of 35 RPMs.

Agitate at a rate of 60 RPMs.

> w0

Upload the actual speed value.

[1]

— 1 TRUE

Step 1
Dawynload Speed
Parameter

— AGITATE_SI_1 = Complete

Step 101
Set Speed = 35 RPhs

— | AGITATE_SI101 = Complete

This transition has a
Step 102 possibhle pause point
Set Speed = 60 RPM= programmed in it.

‘/,/

AGITATE_SI_102 = Complete AND
T AGITATE_PD =10

Step 1001
Upload &Actual Speed
Report

Programming a Pause Point

Due to the viscosity of the substance, pausing between the two agitate steps is impossible. The phase
needs to execute Step 101 at 35 RPMs to eventually transition to Step 102, which agitates at 60 RPMs.

However, in this particular scenario, you can program a pause point into the transition after Step 102,

before the speed value is uploaded. Write your logic to address this by indicating that at this transition,
if the Pause flag is set, put the phase into the Paused state.

15

Understanding the Step Index and Step Buffer

Batch Execution uses two variables to track the progress of the steps in a phase: the Step Index and
Step Buffer.

Step Index — indicates the active phase's currently executing step.
Step Buffer — stores the Step Index value when a phase changes state.

When you implement a consistent phase step numbering scheme, as described in the section,
Implementing a Phase Step Numbering Scheme, you can use the Step Index as a quick method to
evaluate what type of phase step is executing.

For example, suppose you use the numbers from 1 to 100 for administrative phase steps. An operator
monitoring the step index from the Client can determine that a phase with a current Step Index of 27 is
performing an administrative task and not executing any of the actual work steps of the phase.

Using the Step Index in Restarting Logic

The step index is an important variable to use when programming restarting logic. Let's look at two
possible scenarios:

Example 1: Restarting at the Same Step

A process is underway on a plant floor that uses several units, including MIXER3. During the
AGITATE phase, the motor on MIXER3 burns out, causing the process to fail. At this point in the
process:

1. The PLI places the phase into the HOLDING state.

2. The PLI copies the step index (SI) into the step buffer (SB).

A mechanic replaces the damaged motor, and the operator issues a restart command to the batch. The
following steps occur:

The PLI places the phase into the RESTARTING state.

The AGITATE phase processes its restarting logic.

The phase sets the Restarting Complete flag (RC).

The PLI copies the step buffer (SB) to the step index (SI).

The Running flag (R) is set.

© g &~ w DN P

The phase resumes from the same step that was executing when the failure occurred.

Example 2: Restarting at a Different Step

In this second scenario, the motor on MIXER3 burns out again during the AGITATE phase.
Specifically, the step index of the phase is 1025, which uploads final report values.

This specific mixture must be agitated at a specific speed for a certain length of time. If for any reason

the process is interrupted, you must re-agitate the mixture for the required time and at the required
speed.

16

Phase Programming Manual
At this point in the example, the steps are identical to the earlier example, specifically:

1. The PLI places the phase into the HOLDING state.
2. The PLI copies the step index (SI) into the step buffer (SB).

A mechanic replaces the damaged motor and the operator issues a restart command to the batch. The
following steps occur:

1. The PLI places the phase into the RESTARTING state.
2. The AGITATE phase processes its restarting logic.

3. The AGITATE phase logic resets the step buffer to a number that allows the important steps
of the phase to execute on restart.

NOTE: The logic to change the step buffer can also occur in the Holding logic.
An example of this restarting code is:

IF (PHASE_SB < 100) THEN

PHASE_SB -

1;

ELSIF(PHASE_SB > 100) AND (PHASE_SB < 1000) THEN

PHASE_SB := 101;
ELSIF(PHASE_SB > 1000) AND (PHASE_SB < 1100) THEN
PHASE_SB := 101;
END_IF;
The Restarting Complete flag (RC) is set.
The PLI takes the changed step buffer (SB) and copies it to the step index (SI).

The Running flag (R) is set.

N oo o &

The phase resumes from the step defined in the restarting logic.

Transfer of Control
Transfer of control occurs when the following conditions exist:
1. Two consecutive phases in an operation are communicating with the same equipment phase.
2. The transition does not contain "Phase.State = Complete™ as part of the expression.
Downloading New Parameters
When a transfer of control occurs:

1. The Batch Execution Server sets the command register to 70 (PHASE_VC = 70).
2. The PLI reads the 70 command and sets the download request flag (PHASE_DRQ = 1).

3. The phase sends a download request command to receive the new parameter values (RQ = 1000).

17

The following figure shows an operation in which two transfers of control occur.

e The first transfer of control occurs between the two Charge phases. The transfer of control
does not affect the Charge phases, so the phases ignore PHASE_DRQ.

e The second transfer of control occurs between the Agitate phases. This transfer of control
includes a change in the speed of the Agitate phases, so Agitate:2 sends a download request
command and receives the new parameter value.

[]

—1— TRLUE

Charge:1

Transfer of Control —® | 1 Level =100

i Agitate:1
Charge:2 Speed = 45 RPM
Transfer of Control —p —T— Charge 2 State = Complete
Agitate:2

Speed = 75 RPM

—— Agitate:2 State = Complete

Transfer of Control

Programming Project-Specific Phase Logic

The sections that follow describe how to program your project-specific phase logic for Batch
Execution. The project-specific phase logic contains the instructions to sequence the individual device
drivers connected to the physical devices. It is the code that contains the control steps, such as moving
a valve, starting a pump, or resetting a totalizer.

Design the control logic based on your specific processing needs. However, in order for a phase to
transition from one state to the next, program the following into the phase logic:

1. Check the status of the designated variable in the state transition logic. For example, the Running
logic must read the Running variable (PHASE_R) to determine if the Running logic is active.

18

Phase Programming Manual

2. Setthe PHASE_R register to high if the Running logic is active.

3. Set the completion variable to indicate to the state transition logic that the module is
complete. For example, when the Running logic for a phase completes, it must set the
Running Complete (PHASE_RC) memory variable.

The SFC illustration in the following figure demonstrates the design of a typical phase, including the

location of the project-specific phase logic. For additional examples of the project-specific logic in
both a structured text and an SFC format, refer to the following sections.

[]
|

—— PHASE_R=1 —— PHASE_A=1 —— PHASE_H=1 —— PHASE_S=1 —— PHAZE_T=1
Running Aborting Holding Stopging Restarting
Logic Logic Logic Logic Logic
Running Logic Step Ahorting Logic Step Halding Logic Step Stopping Lagic Step Restarting Logic Step
T = COMPLETE | = COMPLETE ~ = COMPLETE = COMPLETE = COMPLETE

Project-Specific Phase Logic

You can also design the project-specific phase logic using structured text, as shown in the following
example:

Project-Specific Phase Logic (as structured text)

IF(PHASE R = 1)
(*RUNNING LOGIC*);
ELSIF(PHASE_A = 1)
(*ABORTING LOGIC*);
ELSIF(PHASE_H = 1)
(*HOLDING LOGIC*);
ELSIF(PHASE_S = 1)
(*STOPPING LOGIC*);
ELSIF(PHASE_T = 1)
(*RESTARTING LOGIC*);
END_IF;

Understanding Project-Specific Phase Logic

The following table explains the five modules of project-specific phase logic and the recommended
naming convention for the variables used to designate the logic. (PHASE represents a unique character
identifier for the phase.)

19

Project-Specific Phase Logic

Phase
Logic

Description Naming
Convention

Running

Normal operating sequence of a phase. PHASE_R

Holding

Temporarily suspends the operation of a phase. The phase PHASE_H
transitions to the Held state. For example, if a valve
malfunctions, the user may want to hold the operation of a phase
while the valve is repaired. After repairs are complete, the
operator can issue a RESTART command to begin the
Restarting logic and transition the phase to the Running state.

Aborting

Abnormally terminates a phase. The aborting logic is typically PHASE_A
reserved to terminate the operation of a phase when an unsafe
condition develops.

For example, if a pump begins pumping an ingredient onto the
plant floor, the operator can issue an ABORT command to
terminate the phase. The ABORT command causes the phase to
transition through the Aborting state to the Aborted state. The
ABORT command normally does not interrupt parameter
uploads.

Stopping

Terminates the phase before normal transition to the Complete PHASE_S
state. For example, an operator may decide to transfer 150
gallons of an ingredient to a mixer rather than the 200 gallons
specified in the running recipe. The operator can issue a STOP
command to terminate the phase before the recipe transfers 200
gallons into the mixer.

Restarting

Starts the operation of the phase from the Held state. PHASE T

Completion Variables

In order to indicate to the state transition logic in the Phase Logic Interface (PLI) that a module of code
has completed, you must allocate the completion variables listed in the following table.

Project-Specific Logic Completion Variables

Recommended Variable Name... Indicates...

PHASE_RC

Running logic has completed.

PHASE_HC

Holding logic has completed.

20

Phase Programming Manual

Project-Specific Logic Completion Variables
Recommended Variable Name... Indicates...
PHASE_AC Aborting logic has completed.
PHASE_SC Stopping logic has completed.
PHASE_TC Restarting logic has completed.

Programming Running Logic

The Running logic is the module of code that controls the phase during the Running state.

Phase RQ

The Running logic diagram contains the variable PHASE_RQ. This represents a request function,
which is a request from the phase logic to the Batch Execution Server to perform a specific action. In
this particular diagram, the first occurrence of PHASE_RQ makes a request to the Batch Execution
Server to download parameter values. Later, PHASE_RQ makes a request to upload report values to
the Batch Execution Server. For additional information on phase requests, refer to the Programming
Requests section.

Running Phase-Specific Logic

The section of the diagram labeled Running Phase Specific Logic is where you insert the code that
controls the phase's action. For example, if you program the phase to open a valve, the code that
instructs the valve to open is located at this point in the logic.

The following figure illustrates the Running logic.

21

22

Haz PHASE R
hit been set?

hove 000"
into PHASE RG

Has
FHASE RG been
Cleared by
PLIT

Yes

Move data from
parameter
redisters to local
registers, if
needed.

Mo

FPhase-Specific
Running Logic

Are
epatt values o
be uploaded to VB
by thiz
phase’r

Yes

v

Move 2000
into PHASE_Riz

Has
FHASE_RG been
cleared by
PLIT

Yes

¥

Set PHASE_RC

Mo

3

End

Sample Running Logic

Phase Programming Manual

Programming Holding Logic

The Holding logic is the module of code that controls the phase during the Holding state. The
following figure illustrates the holding logic.

NOTE: Generally, instructions for dealing with Failures are also programmed into the Holding logic.

Phasze-Specific Holding Logic

~1

Set
FHASE HC
hit

End

Sample Holding Logic

23

Programming Aborting Logic

The Aborting logic is the module of code that controls the phase during the Aborting state. The
following figure illustrates the aborting logic.

E
FHASE A bit
set?

Yes

~ T

Phase-Specific Aborting Logic

~1 7

Set
PHASE AL
bit

End

Sample Aborting Logic

24

Phase Programming Manual

Programming Stopping Logic

The Stopping logic is the module of code that controls the phase during the Stopping state. The
following figure illustrates the stopping logic.

E
FHASE S hit
set?

Yes

~_ T

Phasze-Specific Stopping Logic

~1 7

Set
FPHASE SC
bit

End

Sample Stopping Logic

25

Programming Restarting Logic

The Restarting logic is the module of code that controls the phase during the Restarting state. The
following figure illustrates the restarting logic.

FHASE_T bit

Yes

~ T

Restarting-Specific Phase Logic

—1 7

Set
FHAZE TC
bit

End

Sample Restarting Logic

Programming Requests

The Batch Execution Server is event-driven. Requests made by phases are one type of event. The
Batch Execution Server responds to requests from phases.

To request information from the Batch Execution Server, the phase logic must set the Request
(PHASE_RQ) and Request Data (PHASE_Qnn) registers to the appropriate values. Therefore, you
need to know what types of requests a phase needs to perform and program the appropriate request
logic into the phase logic.

Batch Execution provides a series of request functions that enable the phase logic to request the Batch
Execution Server to perform specific actions, including:

e Downloading phase parameter values.
e Sending messages to the operator.

e Making requests to acquire resources.

26

Phase Programming Manual

e Making requests to release resources.
e Uploading report values.
e Sending messages to other phases.
e Canceling messages to other phases.
e Waiting for a message from another phase.
e Aborting a pending request.
e Downloading identification parameters.
Requests are programmed in the project-specific phase logic. For example, you may have an Agitate

phase that requires a value to set the mixer speed. In this case, you would program a Download
Parameter Request in the Agitate phase logic to download the mixer speed parameter value.

Understanding the Request Variables
The Request and the Request Data memory variables in the phase logic:

o Specify the type of request.
o Clarify the request instructions.
These variables, as shown in the following table, allow the phase logic and the Batch Execution Server

to interact. When the Request variables are set to specific values, the Batch Execution Server performs
the specified request.

Request Variables

Data stored in this Is used to...

variable...

PHASE_RQ Specify the type of request that the Batch Execution Server is to
perform.

PHASE_QO01 Provide additional data to complete the initial request

PHASE_Q02 instructions.

PHASE_QO03

PHASE_QO04

PHASE_QO05

Writing Request Logic
When writing your phase logic, use the sequence listed below to program requests:

1. Prepare for the request (set reports, for example).

2. Setany request parameters, if needed.

27

3. Set the request.

4. Wait for the request to be zero.

Processing Requests

Once a request is sent, a handshaking protocol occurs. This method of communication, illustrated in
the following figure, ensures that the requests are read, processed, and completed. The following steps
occur during the processing of all requests:

The phase sends a request to the Batch Execution Server.

The Batch Execution Server reads and processes the request.

The Batch Execution Server sends the PLI a Request Confirmed command.

A wbhd e

The PLI sets the value of _RQ to 10, acknowledging to the Batch Execution Server that the
command has been processed.

o

The Batch Execution Server sends the PLI a command to clear the request register.
6. The PLI clears the request register.

7. The phase continues processing.

Example: Downloading Parameters

[l The phase sends a
(2113 The Batch Time Batch Execution Server PLI Phase FEQUESI to the Batch
Execution FQ - 1000 4—— Execution Server to
Server reads = download all phase
and processes | Readrequest and army parametars.
the request. =|— cotresponding data (_Qaxx).

[4] The Batch L— Processthe request. [5] The PLI sets the value
Execution ofthe _RGto10,
Server sends Tl _¥C=140 acknowledging to the
the FLI a RO = 10 Batch Execution Server
Request - thatthe command has
Confirmed » woo=170 been processed.
cammand. -

REQ=10

(6] E:EBCEUELC: M ontieme 8] The pha_se cortinues
Server sends Rrocessing.
the PLI & command ta
clearthe request register. [71 The PLI clearsthe request register.

Processing Requests

Configuring Parameter and Report Registers

In addition to setting the Request and Request Data memory variables, your phase logic may also
contain:

e Phase parameter registers to store phase parameter values that are downloaded from the Batch
Execution Server.

e Report parameter registers to store report values that are uploaded to the Batch Execution
Server.

28

Phase Programming Manual

You must make sure you have set up a sufficient number of registers to store the parameter and report
values.

Understanding Phase Parameters
Batch Execution uses three types of phase parameters:

e Phase Class parameters
e Phase Instance parameters

e Process Controller phase parameters

You configure each type of parameter in a different location in Batch Execution, as described in the
following sections.

Phase Class Parameters

You configure a phase parameter for a phase class by specifying an ID and a name in the Equipment
Editor, as illustrated in the following figure.

PHASE CLASS

Parameters
1] Hame
K} Time
7 Speed
14 Armaount
a3 Tolerance

Phase Class Parameters

Phase Instance Parameters

You configure a phase instance parameter in a phase by associating a parameter index with an 1/O
address. The parameter index number is generated by Batch Execution and is related to the parameter
ID. The index numbers start at 1, with parameter index 1 assigned to the lowest numbered parameter
ID.

Example

Assume you have parameter IDs of 3, 17, and 84, their corresponding parameter index numbers are 1,
2, and 3, as shown in the following figure. If you renumber parameter 84 to parameter 5, the index
numbers assigned to these IDs change. Parameter ID 3 retains the parameter index of 1, the newly
renumbered parameter 5 now has the parameter index of 2, and parameter 17 is assigned the parameter
index of 3.

29

Before

Parameter D Parameter Index

Pararmeter 1D 3 S PARMTRED1
Parameter ID 17 ——— pm PARMTROZ

Parameter ID 84 —— PARMTROS

After
Parameter 1D 3 > PARMTRO

Pararmeter D05 FPARMTROZ

Farameter D 17 FARMTROS

Relationship Between Parameter ID and Parameter Index

The parameter index of each phase parameter is located in the Equipment Editor's Edit Equipment
Phase dialog box, as shown in the following figure.

Edit Equipment Phase Er x|

Mame | ADD_INGSt
Phase [AD0_INGS ﬁl l Cancel
Help |
Parameter ES el el
Index 1

Haime |ADD _MES1PM
i Tyee [REAL
_serer|
PARMTROS
parmros =] _Befeuts |

—Arbitration

Ecpipment Meeded

Equipment D [12

_ e |
Max Cnvners |1_ Remone |

Edit Equipment Phase Dialog Box

You can use the parameter index and an 1/O address to configure a phase instance parameter, as shown
in the following figure.

30

Phase Programming Manual

PHASE INSTANCE

Parameters
Index Tag (Node.Tag.Field)

FARMTRO1 Fl.Time F_CY

FARMTROZ Flx.Speed. F_CW

FARMTRO3 FlxAmount.F_CY
Generated by / PARMTRO4 FIx Tolerance F_CV i

A egister

Batch Execution

Phase Instance Parameters

Process Controller Phase Parameters

You can configure phase parameters in a process controller by allocating memory registers, as shown
in the following figure. These process controller parameters can reside in different files or different
process controllers.

Process Controller

Parameters

M24:6

P27 404

100
.1

F25:3

7.3

Process Controller Phase Parameters

Downloading Parameters

During batch execution, a phase can send a request to the Batch Execution Server to download phase
parameter values to the phase in the process controller. You can define download requests to:

e Download all phase parameters.
e Download a range of parameter values.

e Download a single phase parameter.

31

Understanding the Download Process

The download process varies slightly depending on the type of download request. In general, a
download request specifies the:

e Number of values to download.

e Phase parameter IDs associated with the parameter values.

e Destination location (parameter index) in the process controller to store the parameter values.

NOTE: The parameter IDs need not increase sequentially.

Example: Download Parameter Request

Typically, a phase makes a download parameter request when the phase requires parameter values to
execute. As illustrated in the following figure, an Agitate phase may require speed and duration values.
The Agitate phase class, defined in the Equipment Editor, contains these parameters. During batch
production, when the Agitate phase executes, it requests the Batch Execution Server to download the
batch-specific parameter values.

Apitate Phase Reguest Download

Farameters
(equipment database)

- . .
Physical Device

Ngme: Speed Batch (Mixer
‘I\P-l . %82 ———» Execution
EaGtIJB BEM Server Agitate Phase Coantrol

= Logic Device

(process controller)
Mame: Duration [.:.:.
===
Yalue: 45
EGU: Minutes t
Download Parameter Values—

Download Request Process

Understanding Phase Class Parameters

You configure phase parameter information including the name, ID, data type, and default value for an
equipment phase class in the Equipment Editor. Requests to download a phase parameter value refer to
the phase parameter using the parameter ID.

Locating Parameter IDs

If the Batch Execution Server cannot find a specified phase parameter ID, the ID is incremented by one
until all the specified phase parameters are found. The specified phase parameters are then
downloaded. For example, there may be four phase parameters with parameter IDs of 1, 2, 8, and 10. If
the request specifies to download three phase parameters starting at the parameter 1D 1, the Batch
Execution Server finds phase parameter ID 1, then phase parameter ID 2. When no phase parameter
with the ID of 3 is found, the Batch Execution Server increments by one until phase parameter ID 8 is
located. The three phase parameters, 1, 2, and 8 are downloaded.

32

Phase Programming Manual

This process repeats until the originally requested ID is incremented by 1000. If the requested number
of phase parameters is not located after the parameter ID is incremented by 1000, the Hold logic for
the phase step is executed.

Obtaining Parameter Values

Phase parameter values are specified when a recipe is built, when the batch is first started, or during
batch execution by the operator. If a parameter value is not specified when the recipe is built and the
Batch Execution Server receives a request from a phase to download a value, the Batch Execution
Server forwards this request to the Batch Execution Client and prompts the operator to supply the
parameter value.

For More Information
For information on configuring equipment phase class parameters, refer to the Equipment

Configuration Manual. For information on defining parameter values, refer to the Recipe Development
Manual.

Syntax: Download Request

The following table lists each type of Download Phase Parameter request and the request variable
values that must be specified.

Download Phase Parameter Requests
To Download... Use This Where...
Request...
All phase parameter values, starting at PHASE_RQ = (No further clarification is
parameter index 1. 1000 required.)
A range of parameter values. PHASE_RQ = nn is the number of parameters
11nn to download, ranging from 1 to
PHASE_QO01 = 9.
ID ID is the parameter ID of the
PHASE_Q02 = first phase parameter to
. download.
index
index is the parameter index in
which to store the first parameter
value.

33

Download Phase Parameter Requests
To Download... Use This Where...
Request...
A range of 100 or more parameter PHASE_QO1 = ID is the parameter ID of the
values. ID first phase parameter to
PHASE_Q02 = download.
index index is the parameter index in
PHASE_Q03 = which to store the first parameter
value.
nnn
PHASE_RQ = ?Onz(;\s,v:}i:éjmber of parameters
1100 '
A single parameter value, starting at the PHASE_RQ = nn is the parameter ID.
parameter ID. 12nn
A single parameter value with an ID PHASE_RQ = ID is the parameter ID.
greater than 99 and starting at the 1200
parameter ID. PHASE_QO1 =
ID
Single parameter value stored in a PHASE_RQ = nn is the parameter 1D.
specific parameter index. 13mn index is the parameter index in
PHASE Q01 = which to store the parameter
index value.
Single parameter value with an ID PHASE_RQ =
greater than 99 and stored in a specific 1300
arameter index md_ex is the parameter index in
P ' PHASE Q01 = which to store the parameter
index value.
PHASE Q02 = ID is the parameter ID.
ID

Examples: Download Requests

The Download Phase Parameter requests listed below instruct the Batch Execution Server to download
three parameters, starting with parameter ID 101. When obtained, the parameter values are stored in
the parameter index defined for the phase in the process controller, starting at parameter index 2.

PHASE_RQ = 1103
PHASE_QO01 = 101

PHASE_QO02 2

34

Phase Programming Manual

The following figure illustrates this request.

Phase Class Parameters Phase Instance Parameters Phase Logic Controller (PLC)
Marme: Amount Index Tag .
ID: 100 1 Node Tag Field reed
Walue: 200 T r—{—”——__—’ 145
EGU: KiG 2 Flx Temp:&_CY
ré]e_ume: :ll'Sqnp. / 3 Fl Speed.2_CY
Yalue: 145 4 Flx Duration & CW Fas7
EGU: Degrees C il 45
Narme Soasd 5 Mode Tag Field ’
ID: 102 B MNade Tag Field
Yalue: 50 M3E15
EGL: RPm 7 Mode Tag Field 2
Mame: Duration i
D 53 a Mode Tan Field
Yalue: 4.5
EGL: Minutes

Downloading a Range of Phase Parameters

Uploading Report Values

During batch execution, a phase can request the Batch Execution Server to upload report values. This
process is very similar to downloading parameters. A phase can:

e Upload all report parameters (most common request).
e Upload a range of report parameters.

e Upload a single report parameter.

Batch Event Journal Entries

The uploaded report values are combined with the following information and then written as journal
entries into the batch event journal:

e BatchID
e Recipe Name

e Process Cell

e Time/Date
e UnitID
e Area

e Phase Name
e Engineering Units

e Report Description

35

Understanding the Upload Process
The upload process varies depending on the type of upload request. In general, the request specifies the:

e Number of values to upload.

e Report parameter IDs associated with the parameter values.

e Source location (parameter index) in the process controller to retrieve the report parameter
values.

NOTE: The report IDs need not increase sequentially.

Example: Upload Report Parameter Request

Typically, an Upload Report Parameter request is made by a phase to report actual values. As illustrated in the
following figure, an Agitate phase may request to upload the actual speed and duration values. The Agitate
phase class, defined in the Equipment Editor, contains these report parameters.

Agitate Phase Repart
Parameters
(equipment database)

Marme: Actual Speed

Batch ICx: 20
Agitate Phase Request Upload Execution | |EGU RPM
Lo i and > -
ngic Server .

(process controller) Upload Repart Walues

Batch Joumal Marme: Actual Duration

: = ID; 204
File L] EGU: Minutes

= & —j

Upload Requests Process

Understanding Report Parameters

Report parameter information including the name, ID, data type, and engineering units are configured
for an equipment phase class in the Equipment Editor. Requests to upload a report value refer to the
report parameter using a report ID.

Locating Report IDs

If the Batch Execution Server cannot find a specified report parameter 1D, the ID is incremented by
one until all the specified report parameters are found. The specified report parameters are then
uploaded. For example, there may be four report parameters with parameter IDs of 1, 2, 8, and 10. If
the request specifies to upload three report parameters starting at the report parameter 1D 1, the Batch
Execution Server finds report parameter ID 1 and then report parameter 1D 2. When no report
parameter with the ID of 3 is found, the Batch Execution Server increments by one until report
parameter ID 8 is located. The three report parameters, IDs 1, 2, and 8, are uploaded.

This process is repeated until the originally requested ID has been incremented by 1000. If the

requested number of report parameters is not located after the report ID is incremented by 1000, the
Hold logic for the phase step is executed.

36

Phase Programming Manual

For More Information

For information on configuring report parameters, refer to the Equipment Configuration Manual.

Syntax: Upload Report Parameter Request

The following table lists each type of Upload Report Parameter request and the request variable values
that must be specified.

Upload Report Parameter Requests

To Upload...

Use This
Request...

Where...

All report values, starting
from a value of 1.

PHASE_RQ = 2000

(No further clarification is required.)

A range of report values.

PHASE_RQ = 21nn

PHASE_QO01 =
report_id

PHASE_QO02 = index

nn is the number of report values to
upload, ranging from 1 to 99.

report_id is the report ID in the phase
class definition of the first report value
to upload.

index is the report identifier in the
equipment phase instance from which to
retrieve the first report value.

A range of 100 or more
report values.

PHASE_QO01 =
report_id

PHASE_QO02 = index
PHASE_QO03 = nnn
PHASE_RQ = 2100

report_id is the report ID in the phase
class definition of the first report value
to upload.

index is the report identifier in the
equipment phase instance from which to
retrieve the first report value.

nnn is the number of report parameters
to upload.

A single report value,
retrieved from report ID
number 1.

PHASE_RQ = 22nn

nn is the report ID.

A single report value with
an ID greater than 99 and
retrieved from report ID
number 1.

PHASE_RQ = 2200

PHASE_QO01 =
report_id

report_id is the report ID in the phase
class definition.

37

Upload Report Parameter Requests

To Upload... Use This Where...
Request...
Single report value PHASE_RQ =23nn nn is the report parameter ID.

retrieved from a specific

identifier. PHASE_QO1 = index index is the report identifier in the

equipment phase instance from which to
retrieve the first report value.

Single report value with an PHASE_RQ = 2300

ID greater than 99 anq_ PHASE_QO1 = index index is the report identifier in the
retrieved from a specific - . .
equipment phase instance from which to

identifier. PHASE.—Q02 - retrieve the first report value.
report_id

report_id is the report ID in the phase
class definition of the report value to
upload.

Example: Uploading a Range of Report Parameters

The Upload Report Parameter request listed below instructs the Batch Execution Server to upload two
report parameters, starting with report ID 201. The report parameter values are retrieved from the
report tags defined for the phase in the process controller, starting at parameter index 2.

PHASE_RQ = 2102

PHASE_QO1

201

2

PHASE_QO02

The following figure illustrates this request.

Phase Class Parameters Phase Instance Parameters Phase Logic Controller {PLC)
Ind T
Mame: Actual_Amount naex ag. MF 4
D 200 1 Made. Tag.Field -
EGU. KG
2 | FIXSpeed.A C¥ 4
Marne: Actual_Speed / 3 Flx Time.A_CV
I 201 ;
EGU BPM 4 Mode. Tag.Field -
5 Mode. Tag.Field
° i 120.0
iame: ?D'_:,}”a'—D“ra“D” 5 MNode. Tag. Field
EGU: Minutes 7 | MNode TagField
3 Mode. Tag.Field

Uploading a Range of Report Parameters

38

Phase Programming Manual

Sending Messages to the Operator

During batch execution, a phase can request the Batch Execution Server to send a pre-configured
operator message to the Batch Execution Client. This message is:

e Displayed to the operator, if the phase is executed manually by the operator.

e Sent to the batch event journal. Every batch produces a batch event journal file. This file is in
ASCII format and is displayed in the Batch Execution Client.

Understanding the Send Message Process

The Send Message request specifies the message ID to send to the Batch Execution Client.

Example: Send Message Request

The following figure illustrates a typical Send Message request. The Agitate phase requests the Batch
Execution Server to send the TARGET_SPEED message when the phase reaches the programmed
target speed.

Agitate Phase
hessages
(equipment database)

Agitate Phase Batch
Logic Request Send Execution Name: TARGET_SPEED
- :
iprocess controller) hessage Server

===

send Messages

!

Batch
Execution
Clierit

Ewent Journal
File

W==

Send Message Request Process

Understanding Operator Messages

You configure operator message information for an equipment phase class in the Equipment Editor.
The message information includes the message name and the message ID. The message name is the
message text that is sent to the event journal file or displayed to the operator. Requests to send an
operator message refer to the message using the message 1D.

39

Syntax: Send Operator Message Request

The following table lists each type of Send Message request and the request variable values that must be specified.

Send Operator Message Requests

To Send... Use This Where...

Request...
A message with an ID from 1 to PHASE_RQ = 30nn nn is the ID of the message to
99. send.

A message with an ID greater than PHASE_RQ = 3000

9. PHASE_QO1 = nnn nnn is the 1D of the message to
send.

Example: Send Message Request

The instructions below request the Batch Execution Server to send the message 1D 25.
PHASE_RQ = 3025

The instructions below request the Batch Execution Server to send the message ID 125.

PHASE_RQ = 3000

PHASE_QO1 = 125

Acquiring Resources

During batch execution, a phase can request the Batch Execution Server to acquire a pre-configured
resource, reserving the resource for the phase. A phase can:

e Acquire a single resource.

e Acquire multiple resources, up to five.

Understanding the Acquire Resource Process

Each resource (for example, a unit or an equipment module) is assigned an equipment ID during configuration
in the Equipment Editor. Requests to acquire a resource refer to the resource using the equipment 1D.

During configuration, you can assign required resources to a phase. For example, an Agitate phase that
executes on a mixing fork may also require additional equipment to execute. Upon execution, the
Agitate phase acquires all required resources.

When a phase begins execution, it acquires all required resources before the phase transitions from the

Idle state to the Running state. When the phase completes (either normally or abnormally), all acquired
resources are automatically released.

40

Phase Programming Manual

NOTE: Most arbitration occurs automatically. This request is generally used to acquire additional
resources, or to gain additional control over when the acquisition or release of resources occurs.

Syntax: Acquire Resource Request

The following table lists each type of Acquire Resource request and the request variable values that
must be specified.

Acquire Resource Requests

To Acquire... Use This Where...
Request...
A single resource with an equipment PHASE_RQ = nn is the equipment ID to
ID ranging from 1 to 99. 40nn acquire.
A single resource with an ID greater PHASE_RQ =
than 99. 4000 nnn is the equipment ID to
PHASE Q01 = acquire.
nnn
Multiple resources. PHASE RQ = nn is the number of resources to
41nn acquire, up to five.
PHASE_QO1 = nnn is the equipment 1D to
nnn acquire.
PHASE_QO02 =
nnn
PHASE_QO03 =
nnn
PHASE_QO04 =
nnn
PHASE_QO05 =
nnn

Releasing Resources

During batch execution, a phase can issue a request to the Batch Execution Server to release a
resource, making the resource available to other phases. A phase can:

e Release a single resource.

o Release multiple resources, up to five.

e Release all currently acquired resources.

41

Understanding the Release Resource Process

When a phase begins execution, it must acquire all its required resources before the phase can
transition to the Running state. This is done using the Acquire Resource request, described in the
Acquiring Resources section. When a phase completes, it automatically releases its acquired resources.

The Release Resource request allows a phase to release previously acquired resources prior to the
completion of a phase, making the resource available to other phases. Requests to release a resource
refer to the resource using the equipment 1D, which is assigned during configuration in the Equipment
Editor.

Syntax: Release Resource Request

The following table lists each type of Release Resource request and the request variable values that
must be specified.

Release Resource Requests

To Release... Use This Where...
Request...

A single resource with an equipment PHASE_RQ = nn is the equipment ID to release.
ID ranging from 1 to 99. 42nn

A single resource with an ID greater PHASE_RQ = nnn is the equipment ID to
than 99. 4200 release.

PHASE_QO1 =
nnn

Multiple resources. PHASE RQ = nn is the number of resources to
43nn release, up to five.

PHASE_QO1 = nnn is the equipment 1D to
nnn release.

PHASE_Q02 =
nnn

PHASE_QO03 =
nnn

PHASE_Q04 =
nnn

PHASE_QO5 =
nnn

All currently acquired resources. PHASE_RQ = (No further clarification is
4400 required.)

42

Phase Programming Manual

Sending and Waiting for Phase Messages
Phases that are members of a synchronization group can communicate with each other. A phase can:

e Send a message to another phase.
e Send a message and wait for confirmation of the responses from all receivers.
e Send a message and wait for confirmation of the responses from one specific receiver.

o Notify the Batch Execution Server that the phase is prepared to receive a message or a set of
messages.

You can use this communication for the following purposes:

Synchronization — ensures that multiple phases are in exactly the proper state before they proceed.

Permissive — ensures that one phase in the synchronization group has passed a certain point before other
phases can proceed.

Data Transfer — moves data from one phase to another. Data is transferred by sending and receiving
message values, which are stored in one or more Request Data variables.

Understanding Synchronization Groups

In order for phases to communicate, they must be part of the same synchronization group. To create a
synchronization group, the following must be configured in Batch Execution:

e During equipment configuration, specify the number of phase partners for a phase. Phase
partners identify the number of phases with which the phase can communicate.

e During recipe development create a phase link group, which lists the group of phases that can
communicate.

For More Information

For more information on phase partners, refer to Equipment Configuration Manual. For more
information on phase link groups, refer to the Recipe Development Manual.

Understanding the Send and Receive Message Process
The Send Message request typically works with the Receive Message function. A Send Message Wait

request and a Receive Message Wait request pair can complete only if the message IDs for each of the
requests are identical. This prevents messages from being routed to the improper request.

Send Message Process
Upon receiving the Send Message request, the Batch Execution Server:

1. Stores the message in the message queue.

2. Responds to any outstanding or incoming Receive Message Wait requests from other phases
within the synchronization group.

43

Receive Message Process

When a phase receives a Receive Message Wait request, the Batch Execution Server:

1. Scans the synchronization group for pending messages of matching message IDs.

2. Completes the message transfer by storing the message values in the Request Data memory

variables.

3. Removes the message from the message queue.

4. Clears the request code in the phase logic.

Example: Send Message and Receive Message Requests

Typically, you use a Send Message request and a Receive Message request to synchronize two phases.
The Send Message request functions as the Master and the Receive Message request functions as the
Slave during phase synchronization.

As illustrated in the following figure, a Transfer_In phase and a Transfer_Out phase synchronize the
transfer of materials from one unit to another. Before the material is transferred:

1. The Transfer_In phase issues a Send Message request, which the Batch Execution Server
stores in the message queue.

a >

44

Transfer_In
Phase Logic
[process controller)

Send Message

Batch
Execution

and YWWait

Server

The Batch Execution Server transfers the message values.

The Transfer_Out phase issues a receive message request to the Batch Execution Server.

The Batch Execution Server looks for the matching message 1D in the message queue.

The Transfer_In and the Transfer_Out phases continue and the material is transferred.

=

[’

_Feceve Message
t and YWait

I

Send and Receive Message Process

Transfer Out
Phase Logic
(process controller)

Syntax: Send Message Request

The following table lists each type of Send Message request and the request variable values that must

be specified.

Phase Programming Manual

Send Message Requests

To Send...

Use This
Request...

Where...

A message to a phase.

PHASE RQ =
50nn

PHASE_QO1 =
nnn

PHASE_QO02 =
vall

PHASE_QO03 =
val2

PHASE_Q04 =
val3

PHASE_QO05 =
vald

nn is the message ID to send.

nnn is the number of phases to
receive the message.

vall-val4 are message values.

A message to a phase with a message
ID greater than 99.

PHASE_RQ =
5000

PHASE_QO1 =
nnn

PHASE_Q02 =
nn

PHASE_Q03 =
vall

PHASE_Q04 =
val2

PHASE_QO05 =
val3

nnn is the message 1D to send.

nn is the number of phases to
receive the message.

vall-val3 are message values.

45

Syntax: Send Message and Wait Request

The following table lists each type of Send Message and Wait request and the request variable values
that must be specified.

Send Message and Wait Requests

To Send... Use This Where...
Request...
A message to a phase and wait for a response PHASE_RQ = nn is the message ID to
from all receivers. 51nn send.
PHASE Q01 = nnn is the number of
nnn phases to receive the
PHASE Qo2= | Message:
vall vall- val4 are message
PHASE Qo3= | Values.
val2
PHASE_QO04 =
val3
PHASE_QO05 =
vald
A message to phase with a message ID PHASE_RQ = nnn is the message 1D to
greater than 99 and wait for a response from 5100 send.
all receivers. PHASE Q01 = nn is the number of phases
nnn to receive the message.
PHASE Q02 = vall-val3 are message
nn values.
PHASE_QO03 =
vall
PHASE_QO04 =
val2
PHASE_QO05 =
val3

46

Phase Programming Manual

Send Message and Wait Requests

To Send...

Use This
Request...

Where...

A message to a phase and wait for a response
from one receiver.

PHASE RQ =
52nn

PHASE_QO01 =
vall

PHASE_Q02 =
val2

PHASE_Q03 =
val3

PHASE_Q04 =
val4

PHASE_QO05 =
val5

nn is the message ID to
send.

vall-val5 are message
values.

A message to a phase with an ID greater than
99 and wait for a response from one receiver.

PHASE_RQ =
5200

PHASE_QO1 =
nnn

PHASE_QO02 =
vall

PHASE_Q03 =
val2

PHASE_Q04 =
val3

PHASE_QO05 =
val4

nnn is the message 1D to
send.

vall-val4 are message
values.

47

Example: Sending and Receiving Messages

The following table contains send and receive instructions, which are paired to synchronize and
transfer data between a Transfer_Out and a Transfer_In phase. In this example, a value must be passed
to the Transfer_In phase to indicate the flow rate at which the Transfer_Out phase will transfer
material.

Sending and Receiving Messages

Transfer_Out Phase (send message and Transfer_In Phase (receive message and
wait) wait)
PHASE_RQ = 5225 PHASE_RQ = 5525

PHASE_QO1 = 80

Upon receiving the Send Message request from the Transfer_Out phase, the Batch Execution Server
stores message 1D 25 in the message queue. Upon receiving the receive message request from the
Transfer_In phase, the Batch Execution Server searches within the phase link group for a match to
message ID 25 in the message queue. When the message ID is located, a value of 80 is transferred to
the PHASE_QOL register of the Transfer_In phase, the Request register is cleared, and both phases are
allowed to continue executing.

For more information on phase link groups, refer to the Recipe Development Manual.

Canceling Messages to Other Phases

During batch execution, a phase can request the Batch Execution Server to cancel a Send Message
request. The phase that sent the message is the only phase that can cancel the message. A phase can:

e Cancel a specific message that was sent by the phase.
e Cancel all messages that were sent by the phase.
Understanding the Cancel Message Process
When the Batch Execution Server receives a Cancel Message request, the Batch Execution Server:

1. Removes the message from the message queue.

2. Clears the request from the phase logic.

48

Syntax: Cancel Message Request

Phase Programming Manual

The following table lists each type of Cancel Message request and the request variable values that must

be specified.
Cancel Message Requests
To Cancel... Use This Where...
Request...
A specific message that was sent to a PHASE_RQ = nn is the message ID to
phase. 53nn cancel.
A specific message to phase with a PHASE_RQ =
message ID greater than 99. 5300 nnn is the message ID to
PHASE Q01 = cancel.
nnn
Cancel all messages. PHASE_RQ = (No further clarification is
5400 necessary.)

Syntax: Receive Message and Wait Request

The following table lists each type of Wait Message request and the request variable values that must

be specified.

Wait Message Requests

To Wait For...

Use This
Request...

Where...

A message from a phase.

PHASE_RQ =
55nn

PHASE_QO01 =
vall

PHASE_QO02 =
val2

PHASE_QO03 =
val3

PHASE_Q04 =
val4

PHASE_QO05 =
val5

nn is the incoming message 1D for
which to wait.

vall-val5 stores message values, which
were sent from the sending phase.

49

Wait Message Requests

To Wait For...

Use This
Request...

Where...

A message from a phase with a
message ID greater than 99.

PHASE_RQ =
5500

PHASE_QO1 =
nnn

PHASE Q02 =
vall

PHASE Q03 =
val2

PHASE Q04 =
val3

PHASE Q05 =
val4

nnn is the incoming message ID to wait
for.

vall-val4 stores message values, which
were sent from the sending phase.

Aborting Requests

If you want to cancel a pending request, you can send a request to the Batch Execution Server
instructing it to abort the outstanding request.

Syntax: Aborting Requests

The syntax to abort a request is PHASE_RQ = 6000.

Downloading ldentification Parameters

During batch execution, a phase can send a request to the Batch Execution Server to download
identification parameter values to the phase in the process controller. You can define download
requests to:

50

e Download the user-defined Batch ID.

Download the Batch Execution Serial Number.
Download the Phase ID.
Download the Batch Execution node name.

Download the fully qualified phase path.

Phase Programming Manual

Understanding Identification Parameters

The following list describes the information that is returned when you download these identification
parameters:

User-Defined Batch ID — the name assigned to the batch by the user when the batch is added to the
Batch List. This name is usually in a string format.

Unless the user always uses an integer for batch identification, define the equipment phase tag
as a string to download this information. You can define the phase tag's data type in the Edit
Phase Parameter dialog box in the Equipment Editor.

Batch Execution Serial Number - the unique identification number assigned to the batch by Batch
Execution.

Phase 1D — the equipment ID assigned to the equipment phase in the Equipment Editor. This value is
defined in the Edit Equipment Phase dialog box.

Batch Execution Node Name - the unique node name assigned to the Batch Execution server.

Phase Path — the path to the phase parameter. For example, for the demo project, the phase path might
look something like this: "MAKE_TOOTHPASTE\BASE:1\MAKE_BASE:1\ADD_INGS:1"

Syntax: Download Identification Parameters

To download identification parameters, you need to supply the parameter index as part of the request
syntax. This index number is generated by Batch Execution and is related to the parameter ID. The
index numbers start at 1, with parameter index 1 assigned to the lowest numbered parameter ID. For
additional information on the parameter index, refer to the Phase Instance Parameters section.

The following table lists each type of Download Identification Parameters request and the request
value that must be specified.

Download Identification Parameters Requests

To Download... Use This Where... And, the Parameter
Request... Specified by the Index is

of Type...

The user-defined PHASE_RQ = nn is the parameter String

Batch ID. 71nn index.

The Batch PHASE _RQ = nn is the parameter Integer

Execution Serial 72nn index.

Number.

The Phase ID. PHASE _RQ = nn is the parameter Integer
73nn index.

51

Download Identification Parameters Requests

To Download... Use This Where... And, the Parameter

Request... Specified by the Index is
of Type...

The Batch PHASE_RQ = nn is the parameter String

Execution node 74nn index.

name.

The fully PHASE_RQ = nn is the parameter String

qualified phase 75nn index.

path.

NOTES:

o If the parameter specified by the index is a String data type, use caution if the corresponding

controller or control system (such as iFIX) assumes a certain data type or string length limit.
An issue could occur if the PLC has not allocated enough memory for the String that is about
to be downloaded. For example, for 7500 request (phase path), depending on the

recipe/phase names, the phase path could get VERY LARGE. For the demo project, for
instance, the phase path might look something like this:
"MAKE_TOOTHPASTE\BASE:1\MAKE_BASE:1\ADD_INGS:1" This path is 45 characters.
The PLC programmer should not assume only 45 characters.

e If the parameter specified by the index is an Integer data type, use caution with the limits
defined for your parameters in the Batch Equipment Editor. For example, if you want to
download the batch serial number of a batch to the location specified by the second
parameter, the phase would issue a 7202 request. Since the batch serial number can be quite
large, the second parameter's high limit (which defaults to 100) might not be set sufficiently
high enough to handle the batch serial number. To change the high limit, in the Batch
Equipment Editor, select the phase and open the Equipment Phase Class dialog box. Click the
Parameter tab, select the parameter, and click Edit to display the Edit Phase Parameter
dialog box. From this dialog box, you can change the parameter's High limit to something
more applicable (such as 65535).

Quick References

This section provides several tables that allow you to quickly get information on the following:

52

e Batch Execution Requests

e Batch Execution Memory Variables

e iFIX Database Tags

Phase Programming Manual

Batch Execution Requests

This section provides a quick-reference for the Batch Execution request functions.

Requests Quick-Reference
Use this To...
request...
PHASE_RQ = Download all phase parameters.
1000
PHASE_RQ = Download a range of phase parameters.
1100
PHASE_RQ = Download a single phase parameter starting at parameter index 1.
1200
PHASE_RQ = Download a single phase parameter value stored in a specific parameter
1300 index.
PHASE_RQ = Upload all report parameter values.
2000
PHASE_RQ = Upload a range of report parameter values.
2100
PHASE_RQ = Upload a single report parameter retrieved from parameter index 1.
2200
PHASE_RQ = Upload a single report parameter retrieved from a specific parameter index.
2300
PHASE_RQ = Send a message to an operator.
3000
PHASE_RQ = Acquire a single resource.
4000
PHASE_RQ = Acquire multiple resources.
4100
PHASE_RQ = Release a single resource.
4200

53

Requests Quick-Reference

Use this To...

request...

PHASE_RQ = Release multiple resources.

4300

PHASE_RQ = Release all currently acquired resources.

4400

PHASE_RQ = Send a message to a phase.

5000

PHASE_RQ = Send a message to a phase and wait for a response from all receiving
5100 phases.

PHASE_RQ = Send a message to a phase and wait for a response from one receiver.
5200

PHASE_RQ = Cancel a specific message that was sent to a phase.
5300

PHASE_RQ = Cancel all messages.

5400

PHASE_RQ = Wait for a message from a phase.

5500

PHASE_RQ = Abort a request.

6000

PHASE_RQ = Send electronic work instructions to the operator.
7001

PHASE_RQ = Download the Batch ID.

7100

PHASE_RQ = Download the Batch Execution serial number.
7200

PHASE_RQ = Download the phase ID.

7300

54

Phase Programming Manual

Requests Quick-Reference
Use this To...
request...
PHASE_RQ = Download the Batch Execution node name.
7400
PHASE_RQ = Download the fully qualified phase path.
7500

Batch Execution Memory Variables

The following table lists the common memory variables used to program your phase logic. These
variables are used in the sample ladder logic available in the PLI Development Manual. The
recommended naming convention for the variables begins with a unique phase name followed by an
underscore and a two or three character extension to indicate the variable type.

For more information on the purpose of each variable refer to the PLI Development Manual.

Address Descriptions
Tag Name Description
PHASE F Phase Failure
PHASE_RQ Request. Stores the request value from the phase logic to Batch Execution.
PHASE_SI Step Index
PHASE_ST State
PHASE_UN Unit Number
PHASE VC Batch Execution Command
PHASE W Phase Ownership Flag
PHASE_PD Phase Paused Flag
PHASE_P Phase Pausing Flag

55

Address Descriptions

Tag Name Description

PHASE_SS Phase Single Step Flag
PHASE_AD Phase Aborted

PHASE_AG Phase Aborting

PHASE_Qxx Phase Qualifiers

PHASE_Pxx Floating Point Phase Parameters
PHASE_Pxx Integer Phase Parameters
PHASE_Rxx Floating Point Report Parameters
PHASE_Rxx Integer Phase Parameters

IFIX Database Tags

Batch Execution lets you assign iFIX database tags to Batch Execution equipment phase tags and unit
tags. The following table lists the recommended iFIX tag types to assign to Equipment Phase tags.

Recommended iFIX Tag Types for Equipment Phase Tags

Equipment Module Equivalent PLI Register Recommended iFIX Tag
Tag Type
COMMAND Command Register (PHASE_VC) Analog Input (Al)”

FAILURE Failure Register (PHASE_F) Analog Input (Al)”

OWNER Owner Register (PHASE_W) Digital Input (DI)

PARMTRON Parameter Value Register Analog Input (Al)”
(PHASEPON)

REQUEST Request Register (PHASE_RQ) Analog Input (Al)”

56

Phase Programming Manual

Recommended iFIX Tag Types for Equipment Phase Tags
Equipment Module Equivalent PLI Register Recommended iFIX Tag
Tag Type
REQUSTON Request Data Register Analog Input (Al)*
(PHASEQON)
REPORTON Report Value Register Analog Input (Al)"
(PHASERON)
PAUSE Pause Register (PHASE_P) Digital Input (DI)
PAUSED Paused Register (PHASE_PD) Digital Input (DI)
STATUS Status Register (PHASE_ST) Analog Input (Al)*
SINGLE STEP Single Step Register (PHASE_SS) Digital Input (DI)
UNIT Unit Register (PHASE_UN) Analog Output (AO)
STEP INDEX Step Index Register (PHASE_SI) Analog Input (Al)”

* NOTE: For the Analog Input (Al) tags, make sure you select the Enable Output option (on the
Advanced tab of the Analog Input dialog box) in the Proficy iFIX Database Manager.

Unit tags represent data that is associated with a particular unit, such as a temperature or tank level
indicator. The type of iFIX tag that you assign to a unit tag will vary. For example, if the unit tag

represents a temperature sensor, an Analog Input tag may be appropriate.

In the case of the UNIT_READY and UNIT_PRIORITY tags, use the iFIX tag types listed in the

following table.

iFIX Tag Types for Unit Status Tags

For these tags...

Use this iFIX Database Tag Type...

UNIT_READY tags.

Analog Input (Al), with the Enable Output option

UNIT_PRIORITY tags.

Analog Input (Al), with the Enable Output option

57

58

Index

1

1000 request
1100 request
1200 request
1300 request
2

2000 request
2100 request
2200 request
2300 request
3

3000 request
4

4000 request
4100 request
4200 request
4300 request
4400 request
5

5000 request
5100 request
5200 request
5300 request
5400 request

5500 request

6
6000 reQUEST........evvirriieieiieeeree e 50
7
7100 rEQUESE.....cvirviriieiieiieeer e 51
7200 rEQUESL.....ccveeiiie et 51
7300 rEQUESL.....cccveeiiiieiie e 51
A

aborting phase logic

sample, as structured text.........c.ccccecererernnn. 11
aborting phase 10giC........ccccovvvivivicievcnere e, 19
ACAUITe reSOUICE PrOCESS ..c.veveeverreereeeeriereeseeees 40
acquiring a single resourcecccoeeverereneene. 41
acquiring multiple resources.........cccoevereneene. 41
ACUITING FESOUICEScvveveveeeeiesieeiee e nee e 40
Active Binding.......ccoooviiiniiincic e 4
administrative phase Stepsccocevvrenenenenn. 13
B
batch Event Journalc.coceoiiniiiiiininenns 35
C
communications interface.........c.ccocoovenienenn. 2

completion variables

PHASE_AC. ..., 20
PHASE_HC ..., 20
PHASE_RC ..., 20
PHASE_SC.....cciiiiii i, 20

59

PHASE_TC ..ottt 20
completion variables...........cccocovivviviviiiiicieinn, 20
configuring

phase parameter registers.........c.ccooereeveeneenn. 28

FEPOrt registers.o iieeree e 28
CONFIGUIING vt 28
CONEIOL SEEPS....ovie et 13
D
data

transferring to phases........ccccooevvvvvennieneenn 43
QLA ..o e 43

designing phases

OVEIVIEW ..ot 6
phase step NUMDBErINGcovvvriiriiiiee, 14
PhESE SEEPS.....evevieiiciirieieere s 13
Programming PaUSES.........ccueveerreerveerueseesenns 14
designing PhasesS........ccccvvevevieveeneee e 14

download parameter request

EXAMPIE .. 32
download parameter request..........ccccovevuervennen. 32
downloading

a range of parameter values.............ccccceeuenee. 33

a single parameter valuec.ccoceevvnennn 33

all parameterscoovvvevrincisee e 33

Batch Execution serial number..................... 51

identification parametersccccceoeveiennne 50

PAraMELerSveviiieciee e 31

Phase ID ..o 51

60

user-defined Batch ID.......ccccooevviivciieene, 51

downIoadingcccoevvereieiinineee e 51

E

example
download parameter requestc.ccceuenven. 32
sample running 1ogicccocevvererireneinen, 21
send Message reqUESE........coverveererceenieeenn, 39
sending and receiving phase messages......... 43
typical add ingredient phase steps 9
UNIE'S PRESES ... 7
upload report parameter request 36
uploading report parametersccceeevnne. 38

EXAMPIE...ciieiiie e 38

H

handshaking protocol..........c.ccccoevvieeviviieinene, 28

holding phase [0giC..........cocecviniiiiiiiiicie 19

I

identification parameters

desCribed.. ..o 51
downloadingcccoereenenniieeee e 50
identification parametersc.ccoceovverivenenenn 50
iIFIX database tagsc..ccovvervevennnenreeeicieinens 56
M
messages
sending t0 PhaseS......ccccevvevevivrieieeieieie s 43
sending to the operator..........ccoceeevevveiveiiennns 39
waiting for Mmessagesccocvvrveeerienenennens 43
IMESSAGES ... eteete et et steestee st e sbeesee e seeas 43

O

operator messages

SENAING...eveeerir e 39

uUNderstandingccoceeeeieneneneneeee e 39
OPErator MESSAQES. ...ccuverveerreerreeteenienrresieesieeseeas 39
P

parameter index

desCribed. ... 29

EXAMPIE .o 29
parameter iNAEXcoccvvereireneinenese e 29
parameters

configuring registers for ..o 28

downloadingcceevvereineneneeee e 31
PArAMETETSoeeiiiiicee e 31
phase class parameters.........c.ccoevevveiverererieneenns 29
phase instance parametersccccoevevvevverinns 29
phase linK groups.........cccceeviveneeieeie e 43

phase logic

ADOMING...cve e 11
COMPONENtS OF ..cvveieiecc e 2
CONEIOl StEPS...cvveviecieeree e 13
design Strategies.oevvvererinieneieneneesiee 6
example as structured textcccevereiiniennnn 9
GENEIIC vt 8
holding......cooiiiiic 19
memory variable names...........c.ccccvvreeiinnnn, 4
Pre-reQUISITES ..ocvvvvveveeieviesiesie e 11
product-specifiCcccccevvrvrivriveieiee e 18

programming OVErVIEW.........ccccceeererneereeneenne 3
TEOUESES ...ttt 13
FESEAITING ...eveeieiieeeee e 19
FUNNING et 19
SEOPPING et 11
WITEING e 11
Phase 10giCccvreiiiieire e 11

phase parameters

locating parameter IDS..........ccccvvvevviiniennne 32
obtaining values for ..o 32
phase class parameters..........c.cceveeevvereinenne 29
phase instance parameters...........ccccccevvenenne. 29
process controller phase parameters.............. 29
three types ofcoovveviiie e, 29
understanding........cccccevvveviveieiie s 29
Phase Parameters.........covvvereneneinesecse e 9

phase steps

AESIGNING.c.ecveiverieere e 13
implementing numbering scheme................. 14
PHASE SEEPSviviieiiieeieeeeie e 14

phase templates

USING coveveieieeteeeeeesee e see st re e e e e eas 11
phase templates........ccocveeveveveiiesesrseeee e 11
PHASE_A.. .o 19
PHASE_AC ..., 20
PHASE_F

IFIX tag type . ..ooveiieee e 56
PHASE _F ... 56

61

YN = BN 19

PHASE_HC ...t 20
PHASE_P

IFIX tag tYPe ..o 56
PHASE P ..ot 56
PHASE_POn

IFIX tag tYPe oo 56
PHASE_PON ...t 56
PHASE_PD

IFIX tag tYPe..voveiveeeie e 56
PHASE_PDoooviiiiiiece et 56
PHASE_QOn

IFIX tag tYPe..ooeieeeeie e 56
PHASE_QON ..o 56
PHASE_QOX w...oooveereeeeeeseeeneeeseesssesseensens 27
PHASE_R....ccooiiiiiiiiieee e 19
PHASE_RC ...ttt 20
PHASE_RQ

IFIX tag tYPe ..o 56
PHASE_RQ ..ottt 21
PHASE_S.....o e 19
PHASE_SC ... 20
PHASE_SI

IFIXtag tYPe ..o 56
PHASE_ Sl ..o 56
PHASE_SS

IFIX tag tYPe..ooveeceeeee e 56
PHASE_SS......ooiiiieieeeerreee e 56

62

PHASE_ST

IFIX tag type ..o 56
PHASE ST ..ot 56
PHASE T oot 19
PHASE_TC oo 20
PHASE_UN

IFIX tag tYPe ..o 56
PHASE _UN ...t 56
PHASE_VC

IFIX tag type . ..coveeeeeee 56
PHASE_VC ... 56
PHASE_W

IFIX tag type . .ovvcececeeceec e 56
PHASE _W....ooiiii e 56
PHASERON

IFIXtag tYPe oo 56
PHASERON.......ooiiiiiie e 56
phases

identifying in ProCess........cccovvvevirencenenas 6

ON A UNIT . 7

SYNCArONIZING.....coveiieiriciiiee e, 43

taSK OVEIVIEW ..o 6

understanding........ccoceveveviiesn e 1
PRASES ..ot 1
PLI

communicating Withccoeeeevvviviinireene, 2
PLI . 2
process controller phase parameters.................. 31

Processing reqUESEScvcvevereerereereseeseeereaneans 28

programming
aborting phase 10giC..........ccocvvivvivivivciericnn, 24
holding phase 10giC.........cccooeiinininiiienn, 23
PAUSES ...ttt 14
Phase 10giC......cocoviiiiiiiiice e 3
phase 10gicC, OVErVIEWcccocevirenieieniene, 18
TEOUESES ..ottt et 26
restarting phase 10giC........ccccvvninieniinnenn. 26
Running phase [0giC ..o 21
stopping phase 10giCccocvviveneiinenenn 25

Programmingcccoeeeeereneeireneese e 25

project-specific phase logic

desCribed.......coveeeeee e 18
example, as SFC ... 18
example, as structured textccccevevvennne 18
location, iN SFC.......coooiiiiiiiiceccee 18
understandingccceeveeeiienie e, 19
project-specific phase 10giC........cccevrivriieninnns 19
R
receive message request Process........c.ccvvverenens 43
release resource reqUESt.........ccvvveveerverreesiennans 41
releasing
2 SiNGle rESOUICEcvvviiiiiice e 42
all currently acquired resources.................... 42
MUILIPIE reSOUICES........ovveveeiieiieirieeies 42
FElEASING ..evvvecieceee e 42
releasing reSOUICES.ovvvvvvrereeeereerieseesieseens 41

Index

report parameters

locating report IDS.......c.ccovveeieienc e 36

understanding........ccocceeeeeeieiene e 36
FEPOIt PAramMetersSccvvvvereeree e e e ee e 36
reports

configuring parameter registers for............... 28

uploading Values.........ccocovveneniienencenee 35
=] 010 TP PP RP 35
request

aborting reqUestS.........coeevevenirenieicee e 50
TEOUESE .veeieveeiii ettt 50

request syntax

aborting.....cocov e 50
acquire resource requestcceveevieereennenn 41
cancel phase Messagecccevvevieeveeveennennns 49
download parameterccoceveeereneieneene 33
downloading identification parameters......... 51
receive message and Wait...........c.ccceeverereennn. 49
Felease rESOUICE......co.evveruereerereaeeieeeeee e 42
send mMessage reqUESEcovvrveeerereeerenieeenns 45
sending messages to the operator.................. 40
upload report parametersccccvevververnenn. 37
FEQUESE SYNTAX ..evvveeiiieciee et 37
request variables
PUIPOSE <evveeeieeeiesieesiee e e eee e nneenneenes 27
understanding.........ccovvvevieeienriene e 27
request variables ... 21
requests

63

ACAUITING FESOUICES ...e.vvvreveereerieseesieseesreeneenas 40

canceling phase messages.......cccocevvvvvrvernnne 48
downloading parameters...........cccceevvvrvernnne. 31
handshaking protocol............cccocvvniinnnnn. 28
PrOCESSING ...covviveitirieitieiee et 28
Programmingccoceeeeeereeneneneseseeee e 26
programming SEQUENCE..........oceeververueeeereennes 27
TElease reSOUICEcvrvvvrrereeeererieeseenreens 41
sending messages to the operator 39
specifying type of ... 27
understandingcocoevveriiniieines 13
uploading report valuescccceeveeverennennn. 35
FEOUESES ..o 35
FESEIVING FESOUICESvevereeiiieieicsie e 40
resources
ACQUITING ..eveeviecieecieee e 40
FElEASING....ceeiveeieee e 40
TESOUICESeovviiiiiisiisieie e 40
restarting phase 10giC........cccooevveiveieiieiieninns 19

running phase logic

Programmingccocveeveeveseeseereeseeseeseeseens 21

SAMPle 10giC......oovrveiriiicce e 21
running phase 1ogic.........coevvvneincneisiie 19
S

sample logic

FUNNING ot 21
SAMPIE 10QIC....cii v 21
send message request ProCeSS.......vuverververeernens 43

64

sending and receiving phase messages

EXAMPIE...oeiii 48
sending messages to phases.........ccocvvvereeeenne. 43
sending messages to the operator 39

step buffer

Changingoovvveveve e 16
deSCribed........ccovvvvir e 16
step BUFfer....c.covvveee 16

step index

deSCriDed....c.oivviei 16
in restarting 10gicC........ccoovvvvieiiiinie 16
SEEP INAEX ... 16

stopping phase logic

sample, as structured text........c.cccvevveirrenene, 11
stopping phase 10giCcccvvvvvivieiicccie, 19
Synchronization groups.........co.eeeverevieneeeneenns 43
syntax

aborting request ..., 50

acquire resource reqUeStooecvverveererienens 41

cancel phase message request...........cccceeueee. 49

download parameter request...........cccoceevenene. 33

downloading identification parameters......... 51

receive message and wait request................. 49

release resource requUEStoovevevereervernennns 42

send message and wait requestc..c.c..... 46

send mMessage reqUESE........covveererieeniereriennane 40

upload report parameter request 37
SYNEAX ettt sttt e 37

T
tags
IFIX database..........ccoverreeiniccenes 56
UNit PriOMItY...ccoieiiieeeeee e 4
UNit REAAY.....oviieiieiiiiee e 4
UNit STALUS ... 4
TAOS +eee ettt 4

transfer of control

desCribed. ... 17

downloading new parametersc.cceeueee. 17

EXAMPIE Lo 17
transfer of control ..o 17
transferring data to phases..........ccccooveieicnenae 43
0]
UNIE AESTN .o 6
Unit Priority tag

desCribed. ... 4

EXAMPIE .. 4
UNit Priority tag.....cccoceveveveeie e, 4
Unit Ready tag

desCribed. ..o 4

EXAMPIE....eiiii e 4
Unit Ready tag.........coovevrereineneisenesesiee 4
Uit STAtUS tagS ... cveveeeiirieieiseesesee e 4
00T 7= To S 9

upload report parameter request

desCribed........cccvvvviirrie e 35
SYNEAX vttt 37
upload report parameter requestccocvevvnenn 37
uploading a range of report values.................... 37
uploading a single report value.............c.ccoe.... 37
uploading all report parametersc.ccoeeeee. 37
uploading report Valuesccccceevveiencnnennn 35
\%
variable naming convention...........cccceecevenene. 4
W
waiting for messages from phases.................... 43
waiting for phase messagesccccoevvvrvrverenne 49

writing phase logic

phase templates........ccoovvverinenecieree, 11
USING SFCS.oiiiiiiiiiec e 11
writing phase 10giC. ... 11

65

	Cover Page
	Table of Contents
	About This Guide
	Reference Documents

	Introduction
	Understanding Phases
	Phase Logic Components
	Understanding Communications
	Communication Interface

	Programming Phase Logic
	Variable Names
	Unit Status Tags
	Unit Ready Tag
	Example

	Unit Priority Tag
	Example

	Design Strategies
	Unit Design
	Task Overview: Phase Design
	Identifying the Phases in the Process
	Example: Process and Instrumentation Drawing
	Example: Agitator Phases

	Designing Generic Phases
	Using Phase Parameters
	Using Unit Tags
	Example: Add Ingredient Phase Logic
	Example: Structured Text

	Writing Phase Logic
	Using Phase Templates
	Sample of Aborting Logic (as structured text)
	Sample of Stopping Logic (as structured text)
	Creating Phase Templates with Sequential Function Charts

	Designing Phase Steps
	Implementing a Phase Step Numbering Scheme
	Programming Pauses
	Understanding the Step Index and Step Buffer
	Using the Step Index in Restarting Logic
	Example 1: Restarting at the Same Step
	Example 2: Restarting at a Different Step

	Transfer of Control
	Downloading New Parameters

	Programming Project-Specific Phase Logic
	Project-Specific Phase Logic (as structured text)
	Understanding Project-Specific Phase Logic
	Completion Variables

	Programming Running Logic
	Phase_RQ
	Running Phase-Specific Logic

	Programming Holding Logic
	Programming Aborting Logic
	Programming Stopping Logic
	Programming Restarting Logic

	Programming Requests
	Understanding the Request Variables
	Writing Request Logic
	Processing Requests
	Example: Downloading Parameters

	Configuring Parameter and Report Registers

	Understanding Phase Parameters
	Phase Class Parameters
	Phase Instance Parameters
	Example

	Process Controller Phase Parameters

	Downloading Parameters
	Understanding the Download Process
	Example: Download Parameter Request

	Understanding Phase Class Parameters
	Locating Parameter IDs
	Obtaining Parameter Values
	For More Information

	Syntax: Download Request
	Examples: Download Requests

	Uploading Report Values
	Batch Event Journal Entries
	Understanding the Upload Process
	Example: Upload Report Parameter Request

	Understanding Report Parameters
	Locating Report IDs
	For More Information

	Syntax: Upload Report Parameter Request
	Example: Uploading a Range of Report Parameters

	Sending Messages to the Operator
	Understanding the Send Message Process
	Example: Send Message Request

	Understanding Operator Messages
	Syntax: Send Operator Message Request
	Example: Send Message Request

	Acquiring Resources
	Understanding the Acquire Resource Process
	Syntax: Acquire Resource Request

	Releasing Resources
	Understanding the Release Resource Process
	Syntax: Release Resource Request

	Sending and Waiting for Phase Messages
	Understanding Synchronization Groups
	For More Information

	Understanding the Send and Receive Message Process
	Send Message Process
	Receive Message Process
	Example: Send Message and Receive Message Requests

	Syntax: Send Message Request
	Syntax: Send Message and Wait Request
	Example: Sending and Receiving Messages

	Canceling Messages to Other Phases
	Understanding the Cancel Message Process
	Syntax: Cancel Message Request
	Syntax: Receive Message and Wait Request

	Aborting Requests
	Syntax: Aborting Requests

	Downloading Identification Parameters
	Understanding Identification Parameters
	Syntax: Download Identification Parameters

	Quick References
	Batch Execution Requests
	Batch Execution Memory Variables
	iFIX Database Tags

	Index
	2024 iFIX Cover.pdf
	Slide 1
	Slide 2

