
Rules

Asset Performance Management
APM Classic
V4.6.11.0.0

Contents

Chapter 1: Overview 1
Overview of Rules 2

Rules Workflow 2

About Family Rule Projects 2

Configure a Family to Use Family-Level Rules 3

Access the APM Rules Editor 5

Access a Family Rule Project 6

Chapter 2: Compiling Rules 8
About Compiling Rules 9

Compile the Rules for a Specific Family 9

Compile the Rules for a Specific Rules Library Project 9

Compile the Entire Database 10

Chapter 3: Rules Library 11
About Rules Library 12

Access the Rules Library 12

Add a Folder to the Rules Library 13

Delete a Folder from the Rules Library 13

Create a Rules Library Rule Project 14

Add a Reference to a Rules Library Project 14

Modify a Rules Library Rule Project 15

Delete a Rules Library Rule Project 15

Chapter 4: Installation 16
Install the APM Rules Editor 17

Chapter 5: Reference 22
About Family- and Field-Level Rules 23

About Rule Code Storage Options 23

ii Rules

About Rule Terminology and Concepts 24

About Rules Project References 26

About Family-Level Rules 26

About Field-Level Rules 28

 iii

Copyright Digital, part of GE Vernova
© 2025 GE Vernova and/or its affiliates. All rights reserved.

GE, the GE Monogram, and Predix are trademarks of General Electric Company used under
trademark license.

This document may contain Confidential/Proprietary information of GE Vernova and/or its
affiliates. Distribution or reproduction is prohibited without permission.

THIS DOCUMENT AND ITS CONTENTS ARE PROVIDED "AS IS," WITH NO REPRESENTATION
OR WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO WARRANTIES OF DESIGN, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. ALL OTHER LIABILITY ARISING FROM RELIANCE UPON ANY INFORMATION
CONTAINED HEREIN IS EXPRESSLY DISCLAIMED.

Access to and use of the software described in this document is conditioned on acceptance
of the End User License Agreement and compliance with its terms.

iv

Chapter

1
Overview
Topics:

• Overview of Rules
• Rules Workflow
• About Family Rule Projects
• Configure a Family to Use

Family-Level Rules
• Access the APM Rules

Editor
• Access a Family Rule

Project

 1

Overview of Rules
Rules consist of code that is written in Visual Basic.Net (VB.Net), a programming language
that is compatible with the language in which APM is written. If you have sufficient
knowledge of writing VB.Net code, you can write rule code to be executed when certain
changes occur in the APM database. You can write family-level or field-level rules.

As an alternative to family-level rules, you can use family policies to configure certain actions
to occur when a record changes in the APM database. Family policies are created in a user
interface where knowledge of Visual Basic.Net (VB.Net) is not required.

Note: For a single family, you can write family-level rules or family policies, not both. You can,
however, use the Baseline Rule node in a family policy to execute any existing APM baseline
rules that correspond to the policy’s family and trigger. You can also use field-level rules and
family policies for the same family.

Rules Workflow
Note: This workflow assumes that the APM Rules Editor extension in Microsoft has already
been installed.

This workflow provides the basic, high-level steps for using this module. The steps and links
in this workflow do not necessarily reference every possible procedure.

1. If you want to configure a family-level rule for a family, specify in Configuration Manager
that family-level rules should be used for that family.

2. Open the Rules Editor, and then access either a family rule project or the Rules Library.
3. If you accessed the Rules Library, then you can add a folder to the library.
4. Create a new Rules Library rule project.
5. Add a reference to the project.

About Family Rule Projects
A family rule project is an organizational unit that provides the coding infrastructure within
which the rules for that family will be written and stored.
• For baseline families, a family rule project exists for any family for which family-level or

field-level rules have been defined within that specific family. For baseline subfamilies that
inherit all their behaviors from higher-level families, a family rule project will not exist.

• For custom families, the family rule project is created the first time that you access the
family-level or field-level rules for the family.

More Details

Family rules can be viewed and managed in the APM Rules Editor. When you open the rule
project for a family, the family rule project will be selected by default. Below the project name
is a list of all the items that are currently included in the project.

By default, the content of the project will consist of references and files. Each family rule
project contains a file for the family itself and a file for each field within the family. A file will
be created for each field that is defined directly within that family and each field that is
spread down from a family where the field can be customized at the sublevel.

2

As you add fields to a family, new files will be added to the family rule project. You can select
any file to view and modify the code that is stored within it.

Within each file, a class is defined for the corresponding family or field. Each class serves as
the organizational unit within which actual family-level and field-level customization code
exists. The name of the file matches the name of the class defined within it, which in turn
corresponds to the field ID or family ID (i.e., not the family or field caption).

Note: Changing the ID for a field when the field already has a VB.Net file will cause APM to
create a new file based on the new ID. The old file will not be deleted but will be
disconnected from the field.

You can open multiple rule projects at a time. When you do so, each rule project will appear
as a root-level entry in the Solution Explorer pane.

When you access the family rule project for a baseline APM family, the corresponding
baseline Rules Library project will also appear in the Solution Explorer pane. The baseline
Rules Library project has the same name as the family rule project with _Base appended to it.

You cannot modify the baseline Rules Library project, but it is displayed so that you can easily
view and debug the baseline rule code to understand the baseline family and field rules.

Configure a Family to Use Family-Level Rules

About This Task

If you want to configure a family-level rule for a family, you first must specify in Configuration
Manager that family-level rules should be used for that family.

Important: For a single family, you can use family-level rules or family policies, not both.

Procedure

1. Access the Configuration Manager page, and then select Data Configuration.

The Data Configuration page appears.
2. Select Family Management.

The Family Management page appears.

 3

3. Select the family for which you want to use family-level rules.

The workspace for the selected family appears.

4. In the workspace, select Rules and Policies tab.

The Rules and Policies section appears.

4

5. Select the VB Rules radio button, and then select .

Important: If Family Policies was previously selected, VB Rules will be used instead of any
configured family policies.

Next Steps
• Access the APM Rules Editor.

Access the APM Rules Editor

Before You Begin

If you want to configure a family-level rule for a family, specify in Configuration Manager that
family-level rules should be used for that family.

Procedure

1. On the APM Server, access Microsoft Visual Studio.
2. On the Tools menu, select APM Rules Editor.

The APM Rule Explorer pane appears, prompting you to log in.

 5

3. In the User Name box, enter a user name that can log in to the data source whose rules
you want to manage.

4. In the Password box, enter the password that is associated with the specified Security
User.

5. In the Data Sources list, select the data source whose rules you want to manage.
6. Select Log In.

The APM Rule Explorer pane displays the list of entity families.

Access a Family Rule Project

Procedure

1. Access the APM Rules Editor.
2. Select Families or Relationships.
3. Select the family whose rule project you want to open.

Note: Only green folders contain rule projects.

The Solution Explorer pane appears, displaying the family rule project.

6

 7

Chapter

2
Compiling Rules
Topics:

• About Compiling Rules
• Compile the Rules for a

Specific Family
• Compile the Rules for a

Specific Rules Library
Project

• Compile the Entire
Database

8

About Compiling Rules
After you make changes to entity or relationship family rules, you must compile the family for
the changes to be applied. Likewise, after you make changes to a Rules Library rule project,
you must compile the project for the changes to be applied.

Note: To compile an entire database, you must compile all entity family rules, all relationship
family rules, and all projects in the Rules Library.

Compile the Rules for a Specific Family

About This Task

After you make changes to entity or relationship family rules, you must compile the family for
the changes to be applied. The following instructions provide details on compiling the rules
for a single family. Families cannot be compiled until the family rule project has been created.

Note: To compile an entire database, you must compile all entity family rules, all relationship
family rules, and all projects in the Rules Library. You can use the following instructions to
compile rules for entity and relationship families.

Procedure

1. Access the Rules Library.
2. Select Families.
3. Select the family whose rules you want to compile.

4. On the toolbar, select .

The family rules are compiled, and the result appears in the Output pane.

Note: If it is not already selected, in the Output pane, select to show output from the APM
Server Rules.

Compile the Rules for a Specific Rules Library Project

About This Task

After you make changes to a Rules Library rule project, you must compile the project for the
changes to be applied. The following instructions provide details on compiling a single Rules
Library rule project.

Note: To compile an entire database, you must compile all entity family rules, all relationship
family rules, and all projects in the Rules Library.

Procedure

1. Access the Rules Library.
2. Select Rules Library.
3. In the tree, select the Rules Library project that you want to compile.

4. On the toolbar, select .

 9

The Rules Library rule project is compiled, and the result appears in the Output pane.

Compile the Entire Database

Procedure

1. Access the Rules Library.
2. Select Families.

3. On the toolbar, select .

The compilation process begins. Rules Library project are compiled first, followed by entity
families and then relationship families. The progress of the compilation is shown in the
Output pane.

10

Chapter

3
Rules Library
Topics:

• About Rules Library
• Access the Rules Library
• Add a Folder to the Rules

Library
• Delete a Folder from the

Rules Library
• Create a Rules Library Rule

Project
• Add a Reference to a Rules

Library Project
• Modify a Rules Library Rule

Project
• Delete a Rules Library Rule

Project

 11

About Rules Library
The APM Rules Library serves as a repository of rule projects that can be referenced from
family rule projects. By storing rule code in the Rules Library and referencing it from family
rule projects, you can reuse rule code repeatedly. This results in more efficient and organized
rule authoring than using family-level and field-level customization alone.

The Rules Library contains two types of projects:
• APM Rule Projects: Rule projects that are distributed as part of the APM baseline product

and are referenced within the APM baseline families. These projects are stored in the APM
folder in the Rules Library. The APM folder contains the following subfolders that organize
the APM rule projects according to the APM module in which they are used.
◦ Module-specific subfolders: Folders that store rule projects, organized according to

the module in which each project is used (e.g., Calibration, Inspection, Metrics, etc.).
These folders contain baseline rules, but they are not associated with a specific
baseline family in the same way as the rule projects in the Root Entity Families folder.
In other words, the Calibration rule project is not necessarily associated specifically
with the Calibration family. It simply stores rule code that is used within Calibration
Management.

◦ Root Entity Families: Folders that store rule projects that are associated with specific,
baseline entity families. The name of the rule project corresponds to the name of the
family for which it stores rule code.

◦ Relationship Families: Folders that store rule projects that are associated with specific,
baseline relationship families. The name of the rule project corresponds to the name of
the family for which it stores rule code.

You can view the rule projects that are delivered with APM and reference them in any
family you like, and you can copy any of the rule code and use it as the basis for creating
your own rule projects. You cannot, however, modify or delete these projects, and you
cannot add new projects to the APM folder.

• Client Rule Projects: Rule projects that are created by customers to support their own
unique implementations of APM. These projects are stored in the Client folder in the Rules
Library.

Access the Rules Library

Procedure

1. Access the APM Rules Editor.
2. Select Library.

The Rules Library appears.

Next Steps
• Add a Folder to the Rules Library.

12

Add a Folder to the Rules Library

About This Task

In the Rules Library, each rule project must be stored within a folder. You can add folders only
under the Client folder.

Procedure

1. Access the Rules Library.
2. Select the Client folder or a subfolder of the Client folder to which you want to add a

folder.

3. Select .

The Create New Folder section appears.

4. Enter a name and description for the folder.
5. Select OK.

The new folder is added in the selected location.

Next Steps
• Create a Rules Library Rule Project.

Delete a Folder from the Rules Library

About This Task

You can delete folders only under the Client folder.

Procedure

1. Access the Rules Library.
2. Select the Client folder or a subfolder of the Client folder from which you want to delete a

folder.

3. Select .

A window appears, asking you to confirm that you want to remove the folder.
4. Select Yes.

 13

The selected folder is deleted from the Rules Library.

Create a Rules Library Rule Project

Procedure

1. Access the Rules Library.
2. Select the Client folder or a subfolder of the Client folder to which you want to add a rule

project.

3. On the toolbar, select .

The Create New Project section appears.

4. Enter a name, caption, and description for the project.
5. Select OK.

The rule project is created.

Next Steps
• Add a reference to the Rules Library project from the family project. This will make the

rules that are stored within the Rules Library project available for use within the family rule
project.

• Within the family rule project, call the parts of the referenced Rules Library project that
you want to use. How and where you make the calls will depend on how the Rules Library
project is organized and where you want to invoke certain functionality.

Note: You can create references to APM rule projects and to Client rule projects.

Add a Reference to a Rules Library Project

Procedure

1. Access the APM Rules Editor.
2. Open the family rule project to which you want to add a reference.

3. In the Solution Explorer pane, select .

14

The Properties pane for the selected family rule project appears.
4. Select References, and then select Add.

The Reference Manager window appears.
5. Navigate to the reference(s) you want to add, and then select the appropriate check

boxes.
6. Select OK.

The new references appear in the Properties pane, in the References section.

Modify a Rules Library Rule Project

About This Task

You can modify Rules Library rule projects only under the Client folder or one of its
subfolders.

Procedure

1. Access the Rules Library.
2. In the Client folder structure, select the rule project that you want to modify.

The content of the rule project is displayed in the Solution Explorer pane.
3. Modify the code as needed.
4. Build the project.
5. Save the rule code.
6. Close the Solution Explorer pane.

Delete a Rules Library Rule Project

About This Task

You can delete Rules Library rule projects only from the Client folder or one of its subfolders.

Procedure

1. Access the Rules Library.
2. In the Client folder structure, select the rule project that you want to delete.

3. On the toolbar, select .

A window appears, asking you to delete the project.
4. Select Yes.

The selected project is deleted from the Rules Library.

 15

Chapter

4
Installation
Topics:

• Install the APM Rules Editor

16

Install the APM Rules Editor

Before You Begin
• Microsoft Visual Studio 2017 or 2019 Professional must be installed on every workstation

where you want to work with rules in the APM system.
• MSXML must also be installed on these workstations.
• You must be logged in as the administrator for the system.

Procedure

1. On the machine that will serve as the APM rules editor, access the APM distribution
package, and then navigate to the folder \\General Release\Meridium APM Setup
\Setup\Admin.

2. Open the file Setup.exe.
The Meridium Admin - InstallShield Wizard screen appears.

3. Select Next.
The License Agreement screen appears.

 17

4. Read the License Agreement and, if you agree, select the I accept the terms of the
license agreement option. Then, select Next button.
The Select Installation Location screen appears.

18

5. Select Next to accept the default location.
The Select the features you want to install screen appears.

6. Select the APM Rules Editor Extension for Visual Studio option.
APM performs a check to make sure that your machine contains the required prerequisites
for the features that you want to install. If one or more prerequisites are missing or there is
not enough space on the machine, a dialog box will appear, explaining which prerequisites
are missing or asking to free up space. If this occurs, close the installer, install the missing
prerequisite or free up some space, and then run the installer again.

7. Select Next.
The Complete the Installation screen appears.

 19

8. Select Install.
The Setup Status screen appears, which displays a progress bar that shows the progress
of the installation process. After the progress bar reaches the end, a message appears,
indicating that Meridium Admin is installed successfully. Optionally, you can select to
launch the APM System Administration tool when the installer window closes.

20

9. Clear the Launch APM System Administration now box, and then select Finish.
10.If you have Microsoft Visual Studio 2019 Professional installed, go to the C:\Program

Files (x86)\Microsoft Visual Studio\2019\Professional\Common7\IDE folder.
11. Access the devenve.exe.config file in an application that can be used to modify text

files (for example, Notepad++).
12.In the file, locate the following text:

<assemblyIdentity name="System.Runtime.CompilerServices.Unsafe"
publicKeyToken="b03f5f7f11d50a3a" culture="neutral"/>

13.Below the line, within the bindingRedirect tag, ensure that the value of the oldVersion
parameter is 0.0.0.0-4.0.6.0 and the value of the newVersion parameter is 4.0.6.0.

14.Save and close the file.

Results
• The APM rules editor is installed.

 21

Chapter

5
Reference
Topics:

• About Family- and Field-
Level Rules

• About Rule Code Storage
Options

• About Rule Terminology and
Concepts

• About Rules Project
References

• About Family-Level Rules
• About Field-Level Rules

22

About Family- and Field-Level Rules
In APM, family-level and field-level rules consist of code that determines how records in the
APM database will behave under specific conditions. Rule code is written in Visual Basic.Net
(VB.Net), a programming language that is compatible with the language in which APM is
written. In this way, you can specify that when certain actions are taken in APM, certain rules
should be executed.

Important: Modifying rules without the proper knowledge and expertise could cause your
system to work improperly.

The purpose of writing business rules for a family is to control how records in that family will
behave when you work with those records in APM. The rule code itself can be stored in two
locations:
• Within the family rule project itself.
• Within the Rules Library.

Rules can range from very simple to highly complex. If you have sufficient knowledge of
writing VB.Net code, you can use Microsoft Visual Studio to customize your system to suit
the specific needs of your organization.

Writing complex rules requires knowledge of VB.Net that exceeds the scope of this
documentation. The purpose of this documentation is to explain the basic structure of family
rule projects and to describe the tools that are available to help you write rules. In addition,
we provide some basic information about rule code itself to help you understand and
navigate your existing rules and some basic examples of custom rule code.

Note: Family policies allow you to make changes similarly to family-level rules, but family
policies are created in a user interface where knowledge of Visual Basic.Net (VB.Net) is not
required.

About Rule Code Storage Options
Custom family-level and field-level rules can be stored in two places:
• Within the family rule project itself.
• Within the Rules Library.

Storing family rules within the family rule project itself means that the actual rule code is
stored in the family and field classes within a family rule project. This form of rule code
storage is acceptable but can be cumbersome as it can result in a large amount of rule code
that must be maintained on a family-by-family basis. In addition, rule code that is stored
within family rule projects applies only to one family. To apply the same rule code to another
family, you would have to copy the rule code and paste it into another family rule project.

The Rules Library, on the other hand, stores rule code in projects that can be referenced from
family rule projects. In this way, you can store the actual VB.Net code in one central location
and then apply it to multiple families. This method of rule code storage offers many
advantages, including limiting the amount of code that must be maintained and increasing the
ease and efficiency with which that code can be applied to other families.

The Rules Library, however, also imposes some limitations. To take advantage of the exact
same rule code across multiple families, you would need to have multiple families that should

 23

behave exactly the same way. It is more likely, however, that you will have multiple families
that should behave in similar ways.

For this reason, you will probably want to use a combination of the two rule code storage
methods. In the Rules Library, you can store code that will serve as the foundation on which
family-level and field-level rules are built. After referencing that code from a family rule
project, you can extend the rule through family-level and field-level customization.

About Rule Terminology and Concepts
To modify and create rules, you must understand the following terminology and concepts:
• Rule projects
• Classes
• Functions
• Inheritance

Rule Projects

A rule project is a container for rule code. APM uses two types of rule projects:
• Family Rule Project: Stores all the rules for a given family.
• Rules Library Project: Stores all the rules that exist for that project.

Rule projects contain references and files, also called code items. The files contain rules that
are defined for that project. The file structure for family projects is determined by the content
of the family. The file structure of a Rules Library project is determined by the project owner
and can be customized as necessary to meet the requirements of the project.

Classes

A class is a VB.Net element that serves as a container for storing objects. Classes are defined
within the files that exist in a rule project.
• In family rule projects, APM automatically defines classes within the files that exist for the

family itself and the fields within that family.
• In baseline Rules Library projects, classes serve as containers for the code within those

projects.
• In custom Rules Library projects, you can define your own classes as needed. When you

create a new project, one file will be created within that project, and within that file, a
default class will be defined.

Any VB.Net class can be inherited from another class so that the rules defined in one class
can be reused as often as needed.

The following code excerpt shows an example of the default class Class1 that is created
when you create a new Rules Library project:

Option Strict On
Option Explicit On
Imports GE Digital APM.Core.DataManager
Imports GE Digital APM.Core.DataManager.Customization
Imports GE Digital APM.Core.Internals
Imports GE Digital APM.Core.Metadata
Imports GE Digital APM.Core.Security.ApplicationUser
Imports GE Digital APM.Core.Uom
Imports System

24

Imports System.Xml
Public Class Class1
Private Sub New()
MyBase.New
'
'TODO: Add constructor logic here
'
End Sub
End Class

In this example, the lines Public Class Class1 and End Class define the class; the code in
between these two lines of text represents all the objects that belong to the class.

Functions

A function is a block of rule code that defines a Function procedure. Functions can be defined
to invoke specific behaviors. The standard field-level rules that are available in APM are
defined through functions. In the following example, the IsRequired function is between the
two lines Public Class Class1 and End Class.

Option Strict On
Option Explicit On
Imports GE Digital APM.Core.DataManager
Imports GE Digital APM.Core.DataManager.Customization
Imports GE Digital APM.Core.Internals
Imports GE Digital APM.Core.Metadata
Imports GE Digital APM.Core.Security.ApplicationUser
Imports GE Digital APM.Core.Uom
Imports System
Imports System.Xml
Public Class Class1
Public Overrides Function IsRequired() As Boolean
Return True
End Function
End Class

Inheritance

Inheritance allows one class to use the behaviors defined in another class.
• The class that is inherited is considered the base class and serves as a foundation for the

functionality of the class that inherits it.
• Any class that inherits from another class is considered a derived class.

All the functions and behaviors defined in the base class are automatically applied to the
derived class. Within the derived class, code can be written to extend or override specific
functions defined in the base class. Inheritance allows you to create new classes based on
existing classes and is an important component of the Rules Library and baseline rule
storage.

Inheritance is achieved through an Inherits statement in the derived class. For instance, in the
following example, the class MI_RCA_ANALY_COST_NBR (the derived class) inherits the class
EntityFieldCustomization (the base class).

Public Class MI_RCA_ANALY_COST_NBR
Inherits EntityFieldCustomization
End Class

 25

About Rules Project References
Creating Rules Library projects is only the first step in implementing family and field
customizations using the Rules Library. After a Rules Library project has been created, it must
be called from the family or field class of the family or field by which it will be used. You must
complete two main steps to call a Rules Library project from a family project:

1. First, you must add a reference to the Rules Library project from the family project. This
will make the rules that are stored within the Rules Library project available for use within
the family rule project.

2. Second, within the family rule project, you must make calls to the parts of the referenced
Rules Library project that you want to use. How and where you make the calls will depend
on how the Rules Library project is organized and where you want to invoke certain
functionality.

After the Rules Library project has been called within the family rule project, it can be
extended via the family rule project in order to customize the rule for that specific family.

Note: You can create references to APM rule projects and to Client rule projects.

About Family-Level Rules
Whereas field-level rules control the behavior of specific fields within a record, family-level
rules reside within the code item that represents an entity family and control actions
performed against the entire record.

Note: As an alternative to writing basic family-level rules, you can use family policies to
configure the actions to be performed against a record. Family policies are created in a user
interface where knowledge of Visual Basic.Net (VB.Net) is not required. For a single family,
you can write family-level rules or family policies, not both. You can, however, use the
Baseline Rule node in a family policy to execute any existing APM baseline rules that
correspond to the policy’s family and trigger.

Family-level rules provide flexibility in determining how records will behave. Some of the most
common uses of family-level rules include:
• Managing record links.
• Calculating values.
• Sending email notifications.

You can create family-level rules by developing custom code.

APM supports the following family-level rule types.

Rule Type Stores logic that is executed...

BeforeInsert Before a record is created.

AfterInsert After a record is created.

BeforeUpdate After changes have been made to a record, before those
changes are saved to the database.

AfterUpdate After changes to a record have been saved.

26

Rule Type Stores logic that is executed...

BeforeDelete Before a record is deleted.

AfterDelete After a record has been deleted.

A change to a record in the APM database will trigger the appropriate rule regardless of the
current user’s permissions. However, if a user does not have permissions for an action a rule
is taking, the rule will not execute and the transaction will be rolled back and no changes will
be made. Similarly, the transaction will be rolled back if an error occurs during the rule’s
execution.

Example: AfterInsert

One use of an AfterInsert rule is to create a link between two families after
a new record is created. Consider an example where, when you create a
Functional Location record, you want to link it to the Site Reference record
that represents the site that contains the functional location. You can
accomplish this by creating a family-level rule for the Functional Location
family.

The following code shows an example of an AfterInsert rule that you could
write to create a link between the Functional Location record and the Site
Reference record after the Functional Location record is created. You would
insert this rule into the family-level code item for the Functional Location
family.

 Public Overrides Sub
AfterInsert()
 ManageSiteReference()

 End Sub

 Private Sub Manage Site Reference ()
 Dim session As EntitySession =
CurrentEntity.Session

 If session Is Nothing Then
 session = New
EntitySession(ApplicationUser)
 End If

 Dim currentSite As SiteReference
= SiteReference.LoadExisting(session, CurrentEntity)
 Dim newSite As SiteReference =
SiteReference.RetrieveSiteReference(session,
CurrentEntity)

 If currentSite Is Nothing
AndAlso newSite Is Nothing Then
 Return
 End If

 If currentSite Is Nothing And
Not newSite Is Nothing Then

 27

newSite.AddAssetToSite(CurrentEntity)
 ElseIf Not currentSite Is
Nothing And newSite Is Nothing Then
 If Not
CurrentEntity.Fields("MI_FNCLOC00_SAP_SYSTEM_C").Value
Is DBNull.Value Then

currentSite.RemoveAssetFromSite(CurrentEntity)
 End If
 ElseIf currentSite.Key <>
newSite.Key Then

currentSite.RemoveAssetFromSite(CurrentEntity)

newSite.AddAssetToSite(CurrentEntity)
 End If

 End Sub

About Field-Level Rules
Field-level rules define how a field will behave under certain circumstances. The field-level
rules for a given field are stored within the family rule project for the family to which the field
belongs.

Each family rule project contains a code item for each field that exists within the family. The
rules for a given field are stored in the file that corresponds to that field.

Note: Code items will not exist for fields that have been spread down from a higher-level
family and are configured at the subfamily level to inherit rules from the source family. In this
case, the code item that exists in the family rule project of the source family will be used for
defining and executing rules at the subfamily level. If the subfamily is configured not to inherit
rules from the source family, a code item will exist within the family rule project of the
subfamily and will be used for defining and executing rules at the subfamily level.

The following types of rules can be defined for each family field.

Rule Type Description Associated Function

Required Determines whether or not a value
must be entered into a field before a
record can be saved in the family.

IsRequired

Validation Lets you define criteria that will be
used to validate values that are
entered into a field.

Validate

Valid Values Lets you define a list of values that
will be available for selection in the
field. You will be able to select any
value from those defined in the list
of Valid Values.

GetPickList

28

Rule Type Description Associated Function

Default Value Defines the default value that will be
provided for a field. When you create
a new record, the default value will
be provided automatically. You can
accept the default value or specify a
different value.

GetDefaultInitialValue

Disabled Determines when, if ever, the field
will be disabled, or locked from
modification.

IsDisabled

Format Determines the formatting that will
be applied to values entered into a
field.

FormatValue

Formula Calculates the value in the field
using a formula that has been
specified through rules.

GetCalculatedValue

You can develop custom field-level rules manually by accessing the code item for the
appropriate field and inserting the custom code. The code for each rule type must be defined
within the appropriate function, which serves as a container for the code for that rule.

Example 1: Required Rule

Instead of making a field always required, you may prefer to make it
required only if another field in the same record also contains a value. For
example, assume that the Recommendation family contains the logical field
Completed (MI_REC_COMPL_FLG), which is meant to be flagged by a user
after a recommendation has been completed. The Recommendation family
also contains the Completed Date field, which is meant to contain the date
the recommendation was completed. Therefore, you want to create a rule
so that when the Completed field is set to True, the Completed Date field is
required.

To enforce this condition, you would create a Required rule on the
Completed Date field that looks like this:

 Public Overrides Function
IsRequired() As Boolean
 If
Object.Equals(CurrentEntity.Fields("MI_REC_COMPL_FLG").Va
lue, True) Then
 Return True
 Else
 Return False
 End If

 End Function

The portion of the code shown in red (MI_REC_COMPL_FLG) identifies the
Field ID of the field that you want to use to enforce the Required rule

 29

condition, and the portion on the If line shown in blue (True) specifies the
value that the field must contain.

Example 2: Validation Rule

Consider an example where the Recommendation family contains the field
Create Work Request? (MI_REC_CREATE_SAP_NOTIF_FLG). Suppose you
want to create a rule that validates the presence of an active external
interface (e.g., Oracle) before APM triggers the creation of a work request.
Should the rule return no active external interface, then no work request will
be created.

You could enforce the need for a work request management system by
creating the following Validation rule for the Create Work Request? field:

 Public Overrides Function
Validate(ByRef newValue As Object) As GE Digital
APM.Core.DataManager.Customization.FieldValidationStatus
 If
InterfaceUtility.InterfacesActive(Me.ApplicationUser) Or
_

InterfaceUtility.OracleInterfacesActive(Me.ApplicationUse
r) Or _

InterfaceUtility.MaximoInterfacesActive(Me.ApplicationUse
r) Then
 Return
FieldValidationStatus.Success
 End If

 Return
FieldValidationStatus.Failure(InterfaceUtility.EAM_INTERF
ACES_NOT_ACTIVATED)

 End Function

Consider another example for a validation rule, where in the Asset
Criticality Analysis datasheet, the Analysis Definition Family section
contains the field Analysis ID. Suppose you want to create a rule that
validates if the Analysis ID exists in the system database.

If the field validation status is a failure, then we can have the rule take the
message text as input and return a failure message. We can embed a

30

hyperlink in the validation failure error message, causing the hyperlink to be
shown along with the error message under the field.

If the field validation status is a successful, then we can have the rule take
the message text as input and return a success message. The message
would be displayed under the field.

Example 3: Valid Values Rule

Within a list of available values, a blank value can be useful for clearing a
previously selected value. When you select the blank value, it will clear
whatever value had previously been selected in the list.

For example, the following code excerpt show a static Valid Values rule that
will construct a list containing the values A, B, and C.

 Public Overrides Function
GetPickList() As DynamicPickList
 Dim pickList As DynamicPickList

 31

 'Use MyBase.CreatePickList(True)
if you want a restricted PickList
 'Use
MyBase.CreatePickList(False) if you want an unrestricted
PickList
 pickList =
MyBase.CreatePickList(True)
 PopulatePickList(pickList)
 Return pickList

 End Function

 Public Overrides Sub
PopulatePickList(ByVal pickList As DynamicPickList)
 pickList.AddRange("A|B|
C".Split("|"c))

 End Sub

You can add a null value to the list by inserting the code
pickList.Add(DBNull.Value) above the line pickList.AddRange("A|B|
C".Split("|"c)). The resulting code would look like this:

 Public Overrides Function
GetPickList() As DynamicPickList
 Dim pickList As DynamicPickList
 'Use MyBase.CreatePickList(True)
if you want a restricted PickList
 'Use
MyBase.CreatePickList(False) if you want an unrestricted
PickList
 pickList =
MyBase.CreatePickList(True)
 PopulatePickList(pickList)
 Return pickList

 End Function

 Public Overrides Sub
PopulatePickList(ByVal pickList As DynamicPickList)
 pickList.Add(DBNull.Value)
 pickList.AddRange("A|B|
C".Split("|"c))

 End Sub

32

Example 4: Default Value Rule

Consider an example where the Recommendation family contains the field
Final Approver Name (MI_REC_FINAL_APPROVE_NAME_C). Suppose you
want to create a Default Value rule on the Final Approver Name field to set
it by default to the name of the user who is logged in to APM at the time the
record is approved. The resulting code would look like this:

 Public Overrides Function
GetDefaultInitialValue() As Object
 Return
RecommendationUtilities.RecommendationDefaultValues.Final
ApproverName(Current Entity)

 End Function

Example 5: Disabled Rule

It may be appropriate to disable some fields conditionally, based on the
value in another field.

Consider an example where the Equipment family contains the fields Plant
Section (MI_EQUIP000_PLANT_SECTION_C) and Person Responsible for
Plant Section (MI_EQUIP000_PLANT_SECT_DESC_C). The Person
Responsible for Plant Section field does not need to be enabled until the
Plant Section field contains a value.

To enforce this logic, you could create the following rule on the Person
Responsible for Plant Section field so that it is disabled when the Plant
Section field is empty. The resulting code would look like this:

 Public Overrides Function
IsDisabled() As Boolean
 If
Convert.IsDBNull(CurrentEntity.Fields("MI_EQUIP000_PLANT_
SECTION_C").Value) Or
Object.Equals(CurrentEntity.Fields("MI_EQUIP000_PLANT_SEC
TION_C").Value, "") Then
 Return True
 Else
 Return False
 End If

 End Function

 33

Example 6: Format Rule

You may want to format character fields so that the value typed in the field
appears in all capital letters. Consider an example where the
Recommendation family contains the field Completion Comments
(MI_REC_CLOSE_COMME_TX), and you want to view values in that field in all
capital letters. You could create the following Format rule on the Completion
Comments field to do so:

 Public Overrides Function
FormatValue(ByVal value As Object) As String
 If Not
Convert.IsDBNull(CurrentEntity.Fields("MI_REC_CLOSE_COMME
_TX").Value) Then
 Return UCase(CStr(value))
 Else
 Return ""
 End If

 End Function

Note: Like all Format rules, the rule in Example 6 affects only the displayed
value in places where Format rules are supported. The value will be stored
in the database exactly as it is entered.

Example 7: Formula Rule

For some fields, rather than requiring users to specify a value, you may
want to populate the field with a value that is calculated from values
entered in other fields. Consider an example where the Work History family
contains three cost fields:
• Maintenance Cost (MI_EVWKHIST_MAINT_CST_N): The cost to date of

maintenance on the asset.
• Production Cost (MI_EVWKHIST_PRDN_CST_N): The cost to date to

keep the asset in production.
• Total Cost (MI_EVWKHIST_TOTL_CST_N): The total cost of the work,

including the maintenance and production costs.

In this case, you may want to require users to enter values in the
Maintenance Cost and Production Cost fields and then calculate the value
for the Total Cost field by adding together the values in the Maintenance
Cost and Production Cost fields. To implement this functionality, you could
create the following Formula rule for the Total Cost field:

 Public Overrides Function
GetCalculatedValue() As Object
 'Total Cost = Maintenance Cost +
Production Cost
 Dim maintCost As Double = 0
 Dim prodCost As Double = 0

34

 If Not
Convert.IsDBNull(CurrentEntity.Fields("MI_EVWKHIST_MAINT_
CST_N").Value) Then
 maintCost =
Convert.ToDouble(Current
Entity.Fields("MI_EVWKHIST_MAINT_CST_N").Value)
 End If

 If Not
Convert.IsDBNull(CurrentEntity.Fields("MI_EVWKHIST_PRDN_C
ST_N").Value) Then
 prodCost =
Convert.ToDouble(CurrentEntity.Fields("MI_EVWKHIST_PRDN_C
ST_N").Value)
 End If

 Return maintCost + prodCost

 End Function

Note: For this example to work properly, the Total Cost field must be set up
as a formula field.

 35

	Contents
	Overview
	Overview of Rules
	Rules Workflow
	About Family Rule Projects
	Configure a Family to Use Family-Level Rules
	Access the APM Rules Editor
	Access a Family Rule Project

	Compiling Rules
	About Compiling Rules
	Compile the Rules for a Specific Family
	Compile the Rules for a Specific Rules Library Project
	Compile the Entire Database

	Rules Library
	About Rules Library
	Access the Rules Library
	Add a Folder to the Rules Library
	Delete a Folder from the Rules Library
	Create a Rules Library Rule Project
	Add a Reference to a Rules Library Project
	Modify a Rules Library Rule Project
	Delete a Rules Library Rule Project

	Installation
	Install the APM Rules Editor

	Reference
	About Family- and Field-Level Rules
	About Rule Code Storage Options
	About Rule Terminology and Concepts
	About Rules Project References
	About Family-Level Rules
	About Field-Level Rules

