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AI and Emissions
Model Total Training Energy 

Consumption (MWh)
Gross tCO2e model 
training

Evolved Transformer 7.5 3.2

T5 85.7 46.7

Meena 232 96.4

Gshard -600B 24.1 4.8

Switch Transformer 179 72.2

BERT 1.5 1.4

GPT-3 1287 552

Strubell et al. Energy and Policy Considerations for Deep Learning in NLP, Arxiv, 2019
Patterson et al. Carbon Emissions and Large Neural Network Training, Arxiv, 2022

As AI models become ubiquitous, the numbers are going to scale. 
Need for algorithmic, infrastructural and hardware innovations.



Motivation

Similarly, while training AI models, cognizance of appropriate compute resourcing (location 
and time is essential)



Dependence on location

• Same deep learning models 
trained on differently 
located compute 
infrastructure.

• At certain locations, the 
carbon emission can be ~30 
times lower compared to 
average.

API and data provided by CodeCarbon — CodeCarbon 0.0.1 documentation (mlco2.github.io)

Optimal Location of model training can reduce carbon by 
>1000%

https://mlco2.github.io/codecarbon/index.html


Dependence on time
1) Same deep learning models 

trained in Ohio at different 
timestamps. 

2) At certain timestamps, the carbon 
emission can be half the average.

API and data provided by CodeCarbon — CodeCarbon 0.0.1 documentation (mlco2.github.io)

Optimal Time of Model Training can half the carbon emissions

https://mlco2.github.io/codecarbon/index.html


Problem Formulation

Grid Energy Mix

Scheduler

Portfolio of ML jobs ML jobs scheduling

ML jobs priority queue/site

Portfolio of HPC sites

• We formulate a constrained 
optimization problem 

• The objective is to minimize the carbon 
emissions.

• Input: ML Task characterized by model 
used, quality expectation, dataset 
properties, expected computation time 
and energy requirement, energy mixes 
at the HPC site

• Auxiliary input: Priority of the job, start 
time margins

• The decision variables are the location 
and time window 

Assumptions:
• Communication costs are not considered in the 

optimization.
• Spatio-temporal energy mix forecast are 

available. 
• Computation time and energy are 

approximations derived as a function of ML 
model (SVM/NN/RF), #features and hardware.



Empirical Results on Simulate Data
Example Setting

ML Task j 0 1 2

Expected Energy 
Requirement

20 32 15

Arrival Time 2 2 3

Computation time 2 8 1

Start time Margin 2 4 6

Optimal Scheduling

Greedy Scheduling

Random Scheduling

Key Observations
• For optimal scheduling, the training 

starts much later, using margin for 
minimizing emissions

• Across multiple setting, 10 and 4 times 
less emission as compared to random 
and greedy scheduling, respectively. 



Next Steps
• Add uncertainty into expected computation and energy required as 

well as energy mix forecasts. 

• Conduct simulations for a large real world set of ML tasks.

• Incorporate communication costs into the optimization. 

• Interface the scheduler as a wrapper to a corporate/cloud HPC 
scheduling service.


