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Abstract—We introduce a new paradigm for minimization of
carbon and maximization of energy efficiency: The Entropy
Economy. Our approach addresses the predicted exponential
rise in energy consumed by compute within the next decade
and proposes Energy Aware Machine Learning (EAML) to-
gether with grid architectures and distributed High Performance
Compute (HPC) infrastructure to jointly optimize learning,
energy efficiency, and disposition of waste heat. We introduce
a ”Kolmogorov Learning Cycle”, that enables characterization
of the efficiency of the learning cycle, and assert that the precious
resource to be conserved in the age of AI is entropy: maximizing
the entropy reduction (in learning) while minimizing entropy flow
loss (through thermodynamic inefficiency) to minimize carbon
production, maximize energy efficient learning, and stabilize the
grid. We present straw man case studies and initial EAML
results showing how the Entropy Economy can reduce carbon
reduction while leveraging trades between Machine Learning
Model Quality, Energy Cost and throughput.

Index Terms—Entropy, Energy Efficient Computing, Carbon
Reduction

I. INTRODUCTION

The figure of merit for optimizing energy systems in the
past decades has been Levelized Cost of Energy (LCOE) [1].
Optimization of LCOE has been effective in driving renewable
energy and other carbon reducing energy generation methods,
including battery storage and the hydrogen economy. But
by 2030, over one-fifth of the energy consumed globally is
estimated to be consumed by computation [2], see Figure 1.

To drive carbon production from AI to manageable levels,
joint optimization of efficient energy production and distribu-
tion along with efficient and effective computational use of that
energy – what we call Information Work – will be required.

In this paper, we introduce the concept of “Entropy Econ-
omy”. This compliments and contrasts with our current “En-
ergy Economy”, that seeks to manage the precious resource of
Kilowatt Hours. The key principle of the ”Entropy Economy”
is the joint optimization of computation and energy made
possible by managing the precious resource of entropy flow
that is shared by both energy and computational systems.

This work was funded by GE Research.

Fig. 1. Projected Energy Rise from Compute. By 2030, over 20% of energy
consumed is projected to be consumed by compute, with 10% powering High
Performance Compute (HPC). [2]

Today energy systems and computational systems are opti-
mized separately. The Energy Grid strives to provide low
cost power everywhere in the world, irrespective of how
efficiently that energy is used. In contrast, CERN, for example,
has created a computational grid for sharing computational
capacity for physicists throughout the world that optimizes
use of computational capacity, irrespective of energy use. The
Entropy Economy provides a means of jointly optimizing these
resources, making possible exponential reduction in carbon
compared to the non-jointly optimized case. After defining
the concept of “Information Work” we introduce and quantify
two means of optimization for the Entropy Economy: (1)
moving information work to where clean, low cost energy
exists through an optimized compute/energy grid architecture
linking wind farms with collocated HPC capacity, and (2)
creating computational methods that allow tradeoffs between
energy consumed and learning through Energy Aware Machine
Learning (EAML) techniques. Together these methods can
provide a path to reducing carbon, optimizing efficiency, and
stabilization of the Energy Grid in the age of AI.
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A. Prior Work

Opportunities to reduce Carbon by leveraging stranded
Renewable power is explored in [3]. The concept of entropy
applied to information and learning was introduced by Shan-
non in his seminal paper: [4]. Compression as learning is ex-
plored by Adriaans in [5], utilizing principles of Kolmogorov
Complexity and Minimum Description Length [6], [7]. The
thermodynamics of computing and related concepts have been
recently developed by Wolpert et. al. [8], [9].

B. This Work

We bring together many of the concepts above into an
overall structure we call the Entropy Economy with the thesis
that that precious resource to be managed in the age of AI
is entropy flow: - its reduction as learning takes place, over
and against its loss as lost waste heat from thermodynamic
and computational systems. We begin by defining the En-
tropy Economy and its relationship to learning and thermo-
dynamics, and introduce a ”Learning Structure Function” and
”Kolmogorov Cycle” that build upon ideas of Kolmogorov
Structure Function and Carnot Heat Cycles, respectively. We
then describe grid architectures that can make use of the
Entropy Economy to reduce carbon release, and discuss En-
ergy Aware Machine Learning (EAML) as a driving force
to enable optimization of the Entropy Economy through the
ability to trade Machine Learning Model Energy Cost for
Qualilty and/or Throughput. We conclude by discussing next
steps.

II. THE ENTROPY ECONOMY

A. Equivalence between energy and information work

In 1961 the Physicist Rolf Landaur posited that the mini-
mum possible amount of energy required to erase one bit of
information was equal to:

E = ST = kBT loge 2 (1)

where S is entropy, kB is the Boltzmann constant and T
is temperature in degrees kelvins. At room temperature this
comes to 0.0175eV and derives from the fact that E = ST
energy must be emitted into the environment if the added
entropy S = kB loge 2 flows to that environment [8]. The
same thermodynamic entropy that drives thermodynamics is
precisely the same entropy Shannon introduced when he
launched Information Theory in 1948 [4], and enables the joint
optimization of energy systems with computation systems. Just
as entropy is central to efficiency in thermodynamic cycles
such as the Carnot engine and the Rankine cycle, entropy flow
is central to efficiency in computational systems, and is in
fact a measure of information content and thus learning. The
first law of thermodynamics states that energy is conserved.
The second states that Entropy production is always positive.
The Carnot cycle, shown in Figure 2 is a well known
thermodynamic cycle that provides means of assessing the
energy efficiency of heat engines. The inefficiency of the cycle
can be determined by the area under the Temperature/Entropy

Fig. 2. The Carnot cycle enables the assessment of energy efficiency in the
transformation of heat to work. Efficiency is high when a large temperature
difference exists in the engine, as the medium transforms in entropy

Curve - the area under the lower curve is energy lost as waste
heat.

In the same way we envision what we would like to call
a ”Komogorov Learning Cycle,” shown abstractly in figure 5,
where we can assess the thermodynamic efficiency of learning
as measured by level of compression.

B. Compression as Learning

Entropy and Mutual Information are key drivers of nu-
merous machine learning algorithms, with Shannon Entropy
being the compression bound for a sequence. In [5], the
author argues that Compression, as bounded by Kolmogorov
Complexity and in the sense of a two part Minimum De-
scription Length model of a given data set, represents optimal
learning, where ”optimal compression theoretically represents
the optimal interpretation of the data” . Thus the extent to
which a machine learning model can lead to compression of
a data set represents the amount of ”Learning Work” that has
been achieved.

This provides an additional dimension to assess our joint
optimization of compute and energy: The entropy released
through learning of data.

The learning process can be viewed through the lens of
Kolmogorov Complexity through the Kolmogorov Structure
Function, shown in Figure 3. Kolmogorov Complexity, K(X),
is the size of the smallest program that can be written that
will run on a universal computer and produce the string
X as output. Algorithmic Information Theory and Minimum
Description Length principles tell us that this quantity can be
split into a two part code consisting of the size of the program
to print out the typical set to which string X belongs, which
we call K(S), plus the number of bits needed to identify which
of the entries in set S1 corresponds to string X .

K(X) = K(S) + ⌈(log2 |S|)⌉

We think of K(S) as the ”model cost” and log2(|S|) as
the ”Data Cost.” As shown in the figure, when zero bits are

1The term S in this context is size of the set and not the entropy.
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Fig. 3. Kolmogorov Structure Function: The x-axis represents the model cost
and the y-axis represents the data cost.

Fig. 4. Learning Structure Function: Overlaying energy cost of learning,
learning performance on Kolmogorov Structure Function.

allocated to the model, the Kolmogorov Complexity estimate
consists of the log of the size of the set of all possible strings
of size n. As bits are allocated to the model, the size of the
set decreases, reducing the ”data cost” while increasing the
”model cost.” At the point k∗, shown in Figure 3, we have
found the ”Algorithmic Minimum Sufficient Statistic,” [6],
which represents the optimal model that captures all of the
essence of the data without overfitting. In principle, the goal
of Machine Learning is to find k∗: Models with less descriptive
cost do not capture the full extent of learning available in the
data, while models greater than k∗ are subject to overfitting.

A key aspect of learning that is not included in the concept
of Kolmogorov Complexity is the energy cost of learning the
models. In Figure 4, we overlay the Kolmogorov Structure
Function with ”Learning Structure Functions” that denote the
energy cost in learning the model as well as the Learning
Performance for which a model is capable. Optimal Learning
Performance can be achieved at the Algorithmic Minimum
Sufficient Statistic, k∗. The energy cost increases as the search
for the optimal model takes place. If the search for a model
continues beyond k∗, that energy is wasted, since model
performance will be reduced due to over-fitting.

The idea of the ”Learning Structure Function” enables us
to characterize the Kolmogorov Learning Cycle shown in
Figure 5. We define the ”Learning Work” as the process of

Fig. 5. Kolmogorov Learning Cycle. 1 → 2: Reduction in entropy of input
data, 2 → 3: Bit erasure and increase in entropy, 3 → 1: Bit write (and
temperature reduction).

compressing, or learning from an input data set to capture its
essence. This learning work may consist of searching different
types of Machine Learning Models to the best performance,
and the effect of the learning will be to reduce the entropy of
the input data set as the Kolmogorov Learning Cycle moves
from state 1 to 2. The energy required to learn will increase
the temperature of the thermodynamic compute system, and
result in a compressed data set, along with a set of bits that
are no longer needed and can be erased. When these bits
are erased, energy is released into the system as the cycle
moves from state 2 to 3, as previously discussed. Kolchinsky
and Wolpert have recently characterized the progression from
state 3 back to 1 - the amount of energy required to run a
program of size K(X) on a Turing Machine to produce x
as the ”Kolmogorov Work” [9]. This is the energy cost of
exercising a machine learning model to make a prediction
or reproduce the original data. This will involve the system
writing out more bits of information, reducing entropy and
drawing heat from the system, thereby reducing temperature.

Similar to how the Carnot Engine Cycle makes possible
refinement of the efficiency of heat engines to increase, the
Kolmogorov Learning Cycle illustrates key areas where the
Entropy Economy can be optimized to maximize learning
while minimizing wasted and needless entropy flow loss. Care-
ful attention to how much energy is expended on ”Learning
Work” can vastly reduce the energy used in the cycle. And
simply using fewer bits when possible will result in fewer
bits erased, and more efficient use of the entropy economy.
This motivates Energy Aware Machine Learning as a prime
opportunity for optimization.

C. Optimizing Information Work Systems

Data centers and high performance computing (HPC) cen-
ters can be considered information work machines: It inputs
data and energy, transforms the data and releases heat to the
environment. A lot of research is conducted in efficient trans-
formation of this data thereby minimizing the entropy flow.
For example in [8], the authors prove generalized Landaur’s

1374

Authorized licensed use limited to: GE-Aerospace-Research. Downloaded on April 19,2023 at 16:56:32 UTC from IEEE Xplore.  Restrictions apply. 



bound:

S(p0)− S(p1) ≤ Heat (Entropy) Flow from the system

where S(p0) is the (Shannon) entropy of the input data and
S(p1) is the (Shannon) entropy of the transformed data. As-
suming equality, minimizing the heat flow can be is equivalent
to minimize the difference in the entropy of the input and
output distributions. The authors propose a circuit optimization
problem to minimize the heat loss.

D. Joint Optimization of Power Source and Information Work
Systems

Traditionally, the power source (steam engine, wind turbine
etc.) and the information work systems are optimized individ-
ually, what we can call the energy economy and information
economy. However, we propose a joint optimization of the
power source and the information work systems. The trade
off between energy use and prediction has been explored by
Still et. all [9], we present a vision for the application to the
electric grid in a holistic way.

Consider a wind HPC co-located at a wind farm. Under high
wind conditions and low grid demand, the wind farm typically
curtails the power produced by each turbine for grid safety.
At any given time instant

Ptotal = Pprod + Pother + Pcurt

where Pprod is the power fed to the grid, Pother is the power
produced but not transferred to the grid and Pcurt is the cur-
tailed power i.e power that could have been produced/used but
is allowed to go waste. Several methods have been proposed
to minimize Pcurt by either battery storage [10] or generat-
ing hydrogen [11], [12]. Recently, there have been research
on using the curtailed power to power a high performance
computing center Figure 6, either partially or completely [3],
[13]. We build upon this work to propose a joint optimization
of power source and information work systems, To illustrate
the need for joint optimization, we explain a simple example.

Suppose a Biderectional Encoder Representations from
Transformers (BERT) [14], a machine learning based language
model is to be trained on a HPC using a large training data set
with certain minimum accuracy 2. The HPC can be powered,
both by recovering curtailed power (which is free) as well as
the grid power which needs to be paid for. The optimization
than boils down to modifying the training algorithm such
that to maximize the use of recovered power and at the
same time achieving the desired minimum accuracy. A simple
modification is to dynamically change the numeric precision of
representation depending on the available recoverable power.
For example, we use 32 bit precision when large amount of
power can be recovered and a lower bit precision when smaller
amount of power can be recovered. The key thing to note
is that reducing precision can drastically reduce the power
requirement [16], [17]. This is a constrained optimization

2Training asingle BERT adds 1500 lbs of CO2, 79 hours of compute time
and 1500 KWH of energy [15]

Fig. 6. A simple schematic of HPC powered directly by a wind farm as well
as the grid.

problem where the desired accuracy defines the constraints.
In this research, we mathematically formulate this problem,
discuss the potential solutions which can reduce the carbon
emission associated training of a neural network.

While the previous example shows how energy at a single
location can be harnessed to create a single machine learning
model at sufficient quality while minimizing energy (and thus
also carbon), the vision is for the entire grid to jointly optimize
energy and minimization of carbon by employing energy
aware machine learning in a distributed manner. Consider if
HPC’s were distributed throughout the grid that could deliver
”Smart Load” services by making the tradeoffs shown in
Figure 7.

Through Energy Aware Machine Learning algorithms, the
energy load consumed at a given site can be traded off
against the throughput (number of machine learning jobs being
executed) and quality of prediction output. In this way, energy
load can be balanced throughout the grid while maximizing
effective creation of AI and minimizing production of carbon.
Rather than considering independent thermodynamic systems,
we consider a single system comprising of the power source
and the information work generator. Using the Landaur’s
bound and the entropy computation of a wind turbine [18],
the joint entropy flow of this thermodynamic system EF is
bounded as follows

EF ≥ S(p1)− S(p0)− Pother + constant

Thus the joint optimization of information work and power
source is equivalent to minimizing the total entropy flow in
the combined system.

III. ENERGY AWARE MACHINE LEARNING

Energy Aware Machine learning (EAML) provides the
capability trade energy cost of a Machine Learning Algorithm

1375

Authorized licensed use limited to: GE-Aerospace-Research. Downloaded on April 19,2023 at 16:56:32 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 7. Energy Aware Machine Learning Algorithms Enable HPCs to trade
off Throughput, Energy, and Quality

for quality and/or throughput. This is achieved by a number of
means, including: 1) reducing number of Quantization bits of
the data and/or coefficients, 2) reducing the number of trees,
bootstraps and/or Bayesian optimizations in model creation,
3) dimensional reduction.

Results from a simple regression problem are shown in
Figure 8. Here numerical precision of the data as well as
the gradients (while using the gradient descent algorithm) is
varied and the learning error is determined for inputs of various
entropy. Input data with higher entropy requires more precise
learning in order to perform well, but lower entropy input data
has almost identical performance using 4 bit precision as with
using 14 bit precision. As discussed earlier, using fewer bits at
the same performance implies fewer bits that will eventually
need to be erased - this improving efficiency and reducing
carbon cost.

Future work will produce EAML algorithms capable of
adapting to a give energy profile as shown in Figure 9.
Algorithms that can adapt in this way can then be used
to prescribe energy profiles, which, together with scheduling
algorithms can be used to stabilize the grid while maximizing
energy efficient learning and reducing carbon.

IV. IMPACT OF THE ENTROPY ECONOMY

Joint optimization of compute, energy, and waste heat made
possible by the entropy economy will not only reduce carbon
production by efficiently creating ”good enough” machine
learning and AI models with maximal green energy, but also
provide a means of stabilizing the grid. The Energy Economy
Infrastructure creates the ultimate ”Smart Load” capability
that will allow the grid to move or shed significant load

Fig. 8. Machine Learning model quality as a function of numerical precision
of computation.

Fig. 9. Future scope of work: In a typical scenario (a), the power is not a
bottleneck while learning. In (b), power available while learning is varying
and the ML algorithm needs to adapt to it.

without negative consequences. Moreover, since load can be
moved easily to where green energy exists, Renewable Energy
Projects need not be limited by the amount of load the current
grid can take, but can be built to capture more of the Wind,
Solar or Hydro entitlement from the resources at hand.

A Scheduling architecture for the Entropy Economy is show
in Figure 10.

The disruptive transformation made possible by the Entropy
Economy is shown in Figure 11.

V. CONCLUSION

In this paper, we demonstrate how joint optimization of
the power source and the information work can significantly
reduce the carbon emissions as well as the financial cost. We
coin the term ”entropy economy” and initiate a discussion
on responsible and efficient information work. We identify
Energy Aware Machine Learning algorithms (EAML) as key
technologies to develop the entropy economy by creating
means of trading energy for model quality and throughput
(number of models able to be created at HPCs. Next steps
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Fig. 10. Distributed Optimization of the Entropy Economy: Scheduling
algorithms will move information work jobs to assets, depending on HPC
and Green Energy Capacity

Fig. 11. The Entropy Economy Paradigm will move from the current state
on the left to the disruptive state on the right in the table above.

are to develop EAML algorithms as well as portfolio opti-
mization scheduling algorithms and deploy them in prototype
architectures to reduce carbon, maximize energy efficiency in
learning, and stabilize the grid.
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