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I. INTRODUCTION

Modern machine learning models consume massive
amounts of energy. In a widely cited paper [9]], the
authors compare the estimated CO2 emissions from
training common NLP models like BERT [5]], GPT-2 [11],
ELMO [8]] and transformers [10]. Similarly, in [7]], the
authors compare other models like Meena [2]] and GPT-
3 [4]]. For example, GPT-3 training consumes around 550
metric tons of carbon. Together, data center use including
machine learning model creation is projected to grow ex-
ponentially in the coming years [6]. As machine learning
becomes used by more and more organizations for their
business processes, it is imperative new paradigms for
efficient model training and inferencing are developed.
Our research project is motivated from a recent flight
search which showed multiple flight options along with
their estimated carbon emissions (Figure [I)) . It is left
upon the discretion of the traveller to pick a suitable flight
based on CO2 emissions, comfort and convenience. We
extrapolate the same for training a batch of ML jobs and
create a scheduler which can appropriately allocate jobs to
different datacenters at different times. In addition, based
on the data characteristics and ML task (classification,
regression etc.), we can also recommend the appropriate
model to be used.

II. PROBLEM DESCRIPTION

To illustrate the concept, we describe a simple problem
below. Detailed notations, assumptions, constraints, op-
timization program formulation and the implementation
are described in the Appendix. We would like to highlight

A 300PM-1133PM 5hr 33min Nonstop 277kg €O,

E 10:25 AM - 7:00 PM

N 1:39 PM - 10:15 PM
[ .

287 kg CO, $309 o

486 kg CO, $509 o

Fig. 1: A motivating example of how a flight research
also shows estimation carbon emissions. These is factored
in when the traveller makes which flight/route is chosen.
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that key objective of the project is to highlight the concept
and hence some of the assumptions might not be very
practical.

Consider a set of customers C= {1,...,J} with J
number of ML jobs and they are corresponding to specific
machine learning tasks (e.g., classification, regression)
and specific requirements e.g., required accuracy 77;-
(output quality). Let a task 7,5 = 1,...,.J arrive at
time t/. We assume that there exists a relevant dataset
D; as an input along with a task j. Thus, each j is
characterized by:

1) Machine Learning algorithm (e.g., Support Vector
Machine (SVM), Neural Network (NN))

o Algorithm specifications and/or Quantifying
parameters like hyperparameters (learning rate)
and structural parameters (eg. number of hid-
den layers)

2) Quality specifications (e.g.,(expected) accuracy n;-
as a lower bound)

3) Dataset properties like sixe, preprocessing and
feature selection

4) Energy requirement E(j)

5) Computation time 7(3j)

For simplicity, we assume that, among the possible set
of algorithms that satisfy the given quality requirements,
we run the algorithm that has the best figure of merits{ﬂi.e.,
max% to do the job j. To facilitate more practically
realizable setting, and to incorporate importance of
execution time, we consider that machine learning tasks
have a priority i.e., HIGH, MEDIUM, LOW that affect the
starting time. Consider that there exists H number of high
performance computers (HPC) H = {h|1,..., H} across
L number of HPC locations (centers) £ = {I|1,...,L}
where L < H. Next, we define location cluster S; £
{h|fi(h) = I} where f;(h) is a mapping function that
takes set of HPCs h as input and assigned them to

IFigure of merit is defined as —>u®Y __ This is a big assumption
required energy

we make in our project. Typically, for a new dataset, we will not have
an estimate of the figure of merit. We propose to use concepts of
meta-learning to get estimate of these value from previously trained
models.



particular location [. We consider there exists maximum
of available power P;(t)™* for a specific location [
and is defined as P,(t)™™ £ P o—o(t)™ + P o—1(t)™.
Here, P, .—o(t)™ is the maximum available power from
energy sources where carbon emission is 0 (¢ = 0)
and P =1 (t)™* is the maximum available power from
carbon emitting (¢ = 1) power sources. Available power is
discretized across a Z time horizon of T' = {t1,...,tz)}.
The total consumed power of a location [ at time ¢ is
defined as Pj(t) such that 0 < Py(t) < Pi(¢)™*. We
assume that length of a ¢,,2 = 1,...,Z is time block
of At (e.g., 1hour). For instance, if we consider a whole
day with At = 1h, T = {1,...,24} where Z = 24.
The goal is to obtain optimum scheduling such that, task
j € C can be assigned to HPC h € H, and describe the
distribution of energy E(j) across h and ¢ to minimize
total carbon emitting energy consumption.

1II. EXAMPLE

Consider an example with 3 machine learning tasks
and 3 HPC locations. The settings are described in Table
[l We compare the optimal allocation and compare it with
a random and a greedy allocation.

ML Task j 0 1 2
Expected Energy Requirement E(5) | 20 | 32 | 15

Arrival Time ¢/, 2 2
Computation Time 7'(j) 2 8 1
Start Time Margin &7 (hours) 2 4 6

TABLE I: An example scenario to illustrate the scheduling
problem.

In Figure 2] we compare the optimal allocation with
the greedy and random allocations. The number in each
colored box indicates amount of energy to be consumed in
that time stamp. In optimal allocation, this is so chosen
so as to minimize carbon emission in that timestamp.
Another point to note is that for task 2, the training
starts much later, using the start time margin to minimize
carbon emission. On an average, across multiple settings,
we observed 10 times lesser carbon emission as compared
to random allocation and 4 times lower as compared to
greedy allocation.

IV. CONCLUSIONS

Due to space limitations, we only describe a simple
setting to highlight how an optimal scheduling can greatly
decrease the carbon emissions. There are 2 key assump-
tions made to solve the optimization problem: 1) The total
energy and time requirement for an ML job is known
apriori and 2) the power profile at any HPC location is
known apriori. These are not unreasonable assumptions.
Meta-learning is known to give an estimate for the first
problem while modern power forecasting algorithms [3]]
give an answer to the second. However, optimization
problem thus needs to be updated to incorporate the
uncertainty in the estimates.
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(a) Optimal allocation.
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(b) Greedy allocation.
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(c) Random Allocation.

Fig. 2: Spatio-temporal allocation of different ML tasks
across different HPCs.
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