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Abstract—Today, voluminous multivariate time series data
collected from sensors provides tremendous benefit for under-
standing of modern industrial systems such as power plants, wind
turbines and aircrafts. However, the dynamic and complex nature
of these systems, as well as the lack of prior knowledge impose
challenges in perceiving different system behaviors from the time
series data. To handle these issues, time series clustering has
become one of the key analysis techniques. Nevertheless, the data
nonlinearity, varying lengths and high dimensions of industrial
time series could hinder the quality of clustering. To deal with
these challenges, we propose Deep Time Series Sketching (DTSS)
model. This model is a representation learning model based
on temporal convolutional networks that perform on a sliding
window basis along time series to learn the windows’ embeddings.
The sequence of embeddings is then fed into embedding sketching
to obtain its sketch. Such sketch is a descriptor of the whole time
series and will be fed into K-means for clustering. Our model is a
novel end-to-end hybrid model that incorporates both local and
global contextual features. It is able to project multivariate time
series with varying lengths into the same latent space. Moreover,
we show that our model is able to perform early clustering
as it can assign real-time label without seeing the whole time
series. We test our model on both benchmark and real world
industrial datasets, and experiments show that our proposed
method outperforms popular time series clustering baselines.

Index Terms—multivariate time series, time series clustering.

I. INTRODUCTION

Nowadays, large volume of time series data are collected
by various sensors in industrial systems such as power plants,
aircrafts and wind turbines. These sensors measure different
variables of the systems in high frequency over time, resulting
in a vast mass of data mostly impractical for a manual analysis.
Machine Learning based time series analysis are therefore
becoming increasingly prevalent in industrial applications be-
cause of their capability to automatically learn the system
behaviors from data.

Among all these techniques, the development of effective
unsupervised clustering is extremely crucial in practical sce-
narios, where labeling enough data to cover all classes for
supervised learning may be too expensive, if not impossible.
Moreover, clustering allows to discover unknown types of
system behavior that go beyond the prior knowledge, serving
as tool to support subsequent decision, analysis processes and
system maintenance.

Fig. 1. Example of local and global patterns in industrial time series.

Learning a brief but comprehensive representation of the
whole time series is of considerable importance to time series
clustering. In industrial multivariate time series, there are
usually local and global patterns, as shown in Figure 1. Global
patterns usually refer to those patterns that appear repeti-
tively or continuously in a long range, while local patterns
are infrequent patterns that only appear in few short term
windows. In the context of industrial time series clustering,
global patterns are usually more critical for discovering the
patterns of interest. However, some salient local patterns (e.g.
outliers with extreme large or small values) are also important
for revealing certain specific system behaviors. Therefore, we
need to design a representation of time series that captures
both global and salient local characteristics, while filtering out
noise and patterns with limited predictive value.

Conventional time series clustering focus on learning time
series representation or similarity metric in raw variable space
[25], [8], [28]. However, they do not scale well when dealing
with large time series. Moreover, they are very sensitive to
noise and outliers [2]. Recent deep learning based sequential
models have been popularly used in time series clustering [14],
[11], [36]. However, they either fail to balance global and local
pattern learning, or cannot deal with extremely long time series
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Fig. 2. Our DTSS framework. It takes input from time series in a sliding window fashion, extracts embedding vector from each window and updates the
sketch of embedding sequence. At any time the current sketch can be fed into K-means to output cluster label of the time series. DTSS comprises two parts:
temporal convolutional networks (TCN) and embedding sketching.

or time series with varying lengths [18], [5].
In this paper, we propose a deep learning and embedding

sketching based model, Deep Time Series Sketching (DTSS),
for clustering industrial multivariate time series with varying
lengths. It is designed as a representation learning method
that takes input from time series in a sliding window manner.
Nonlinear features of each window is extracted and used to
update the time series sketch as the window slides from the
beginning to the end of the time series. As shown in Figure
2, our DTSS consists of two parts: temporal convolutional
networks and embedding sketching. While the encoding form
of temporal convolutional networks pays more attention to the
local characteristics in each window, the embedding sketching
part considers and synthesizes the complete set of patterns
along all windows, and outputs a balanced and concise rep-
resentation that contains both global and salient local charac-
teristics. Furthermore, our DTSS can be used in a real time
streaming, meaning that, unlike the other algorithms, DTSS
doesn’t require to see the whole time series to assign labels.
Instead, it is capable to output the up-to-date representation
and label of the time series in real time.

II. RELATED WORKS

Conventional time series clustering mainly rely on designing
similarity metric or feature extraction. The popular similarity
metrics include euclidean distance [35], [7], dynamic time
warping [25], [8], correlation [39], [34] and cross-correlation
[1], [31]. Among them, dynamic time warping (DTW) is
widely used in various applications due to its capability to
handle non-linear distortions. The idea is to align (warp)
the time series before computing the distance. However, its
limitation is on its global operation: DTW considers the shape
of the whole time series. Therefore its performance will be
highly affected by the noisy or informative part in time series,

especially if only a small portion is crucial for prediction [3].
Moreover, even though DTW has some efficient versions like
[8], it still does not scale well when dealing with large time
series data [2]. In [28], the authors developed k-Shape whereby
the shapes of the time-series are considered by applying cross-
correlation measures. However, all these methods are usually
sensitive to noise and impractical for long time series because
all time points are considered in measuring distance between
time series [2].

Many aforementioned works measure similarity or distance
on raw input space. However, due to the high-dimensionality
in both temporal and spatio (variable) space, feature extraction
methods have been proposed to project time series into reduced
space. They include but not limit to Principal Component
Analysis [38], [32], Independent Component Analysis [13],
Multidimensional Scaling [16], [12], K-grams [35], Fourier
Transform [15] and Discrete Wavelet Transform [29], [19].
Nevertheless, these methods are either linear extraction that
cannot capture nonlinear information, or based on certain
distribution assumption that data may not follow.

Since conventional methods face challenges in capturing the
unknown and complex diversity in high dimensionality and
temporal scales in time series data [2], deep learning based
methods are gaining more and more popularity due to its
capability to perform automatic high-level feature extraction
without explicit assumption on data distribution, and its high
prediction accuracy when trained with huge amount of data.
Recurrent Neural Network (RNN) is one of the most widely
used deep learning techniques in time series learning [23],
[37], [41], [9]. One recent example is [14] where a bidirec-
tional Gated Recurrent Unit autoencoder is used to produce
low dimensional embeddings from the hidden state vectors,
followed by a clustering refinement procedure to stretch the
embedding manifolds toward different clusters. Nevertheless,
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it is also well-known that RNN suffers from gradient van-
ishing problems and cannot capture patterns exist in long
sequence[5]. Meanwhile, multi-level temporal convolutional
network (TCN) [42], [21], [37] is frequently applied in ap-
plications with long sequential data. In particular, the work in
[11] constructs an encoder-only architecture using TCN with
triple loss and negative sampling to generate representation
embeddings. Recently, the authors in [36] proposed a deep-
learning based time series clustering method IT-TSC to explore
variable associations in each time series and perform clustering
subsequently.

It is worth noting that many algorithms require the lengths
of all input time series to be the same [28], [30], [27]. For
delivering compatible representations while allowing the raw
time series to have unequal lengths, these methods usually
require either stretching or padding of the shorter sequences,
or shrinking of the longer sequences [28] as necessary pre-
processing step. However, padding requires to know the time
series length in advanced which is impossible in real time
clustering when we cannot see the whole time series yet. On
the other hand, stretching or shrinking may cause undesirable
effect especially for industrial time series. In Figure 3 we
illustrate one such case: time series a and b are with different
lengths but belong to the same cluster as they both carry
similar outlier pattern. But once resampling and interpolation
is used to time series a to stretch its length, the original ‘sharp-
peak’ outlier becomes too much smooth and the similarity
between time series a and b will be lost.

Fig. 3. Example of resampling that may cause undesirable effect. The raw
time series a and b should belong to the same cluster. But after resampling,
a is no longer similar to b.

In this work, we propose a deep learning based time
series clustering that can handle input with varying lengths
without resampling the input data. By using TCN structure,
our method first automatically explores the nonlinear features
in a sliding window fashion along time series with any length.
Then the sequence of embeddings obtained from TCN bottle-
neck layer is fed into embedding sketching to learn the sketch
of embeddings. The sketch captures the important structure
by considering both frequently appearing embeddings and
certain salient embeddings regardless of time series length.
Experiment in Section V shows that our model is more

robust and capable of distilling contextual information from
multivariate time series for unsupervised clustering.

III. HIGH LEVEL DESCRIPTION AND NOTATIONS

In various industrial applications, multivariate time series
are collected from sensors with high frequency. A time series
with m variables and n timestamps can be noted as X ∈
Rm×n 1. We use xt ∈ Rm×1 to denote the values at timestamp
t. In this work, a sliding window is a unit we use to scan each
time series. Here xt−ℓ+1:t, or simply x⃗(ℓ)t ∈ Rm×ℓ is used
to denote the window that consists of the latest ℓ timestamps
before time t.

Our problem setting in this paper is that: given a set
of time series X1, X2, ..., XN (N is the total number of
time series) with the same number of variables m but pos-
sibly different lengths, we aim to propose a clustering al-
gorithm that assigns one cluster label to each time series
label1, label2, ..., labelN .

As shown in Figure 2, our DTSS model takes input from
each time series in a sliding window fashion, and output cluster
label of the time series at any time. DTSS comprises two
parts: temporal convolutional networks (TCN) and embedding
sketching. The first part is to learn the nonlinear embedding
of each window. This process is formulated as a regression
problem: given x⃗(ℓ)t, we apply a multi-level TCN to predict
the next timestamp xt+1 ∈ Rm×1. The embedding vt ∈ Rd×1

is intermediate output during the regression process, with d
the dimensions of latent space.

The second part of our DTSS is embedding sketching, of
which objective is to learn a small but comprehensive represen-
tation from all the acquired embeddings vt1 , vt2 , ..., vtn of each
time series. To this end, each vt is used to update the current
sketch Bt−1 ∈ Rd×k from the previous window and obtain
the up-to-date Bt ∈ Rd×k, where k is the rank of embeddings
that we want to maintain in the sketch. We use Bi to denote
the final sketch of time series Xi. The flattened version of Bi

is noted as B̄i ∈ R1×dk. For all the N time series we can
collect a set of ∥Ni=1 B̄i ∈ RN×dk (where ∥ indicates matrix
concatenation) and perform clustering analysis using K-means.

It is worth emphasizing that our model can perform early
time series clustering. That is, since embedding sketching
is an incrementally update process, it can output up-to-date
sketch for a time series as long as the model has seen a small
number of windows. Therefore we can run K-means on all the
currently available sketches and obtain their labels in real time.
We will test the clustering performance on both intermediate
and final sketches in Section V.

Table I lists the key notations used in this paper.

IV. DETAILED DESCRIPTION OF OUR DTSS MODEL

As described in Section III, our DTSS model consists of
two modules: learning embeddings from sliding window and
embedding sketching. We will describe these two modules in
details in the following subsections.

1Our model can deal with time series of varying lengths. For notation
convenience, we use n to denote the final timestamp of all time series.
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TABLE I
LIST OF KEY NOTATIONS USED IN THIS PAPER.

m, n, N number of variables / timestamps / time series

X ∈ Rm×n an observed multivariate time series

xt ∈ Rm×1 the values at timestamp t

x⃗(ℓ)t ∈ Rm×ℓ a window consists of the latest ℓ timestamps before t

d latent dimension of embeddings

vt ∈ Rd×1 the embedding of x⃗(ℓ)t

A ∈ Rd×n the sequence of embeddings in a time series

k the rank of sketch embedding

B ∈ Rd×k sketch of A

B̃ ∈ Rd×k normalized sketch

B̄ ∈ R1×dk flattened sketch

∥B̄ ∈ RN×dk the concatenated sketches of all time series

Fig. 4. Module 1 is to learn the embedding vt from each window during
the regression from x⃗(ℓ)t to x̂t+1. It consists of a temporal convolutional
network (TCN) and a fully connected network (FCN).

A. Module 1: TCN to Learn Embeddings from Sliding Window

The objective of module 1 is to acquire the embeddings
(nonlinearly transformed features in latent space) from each
window. The learning is designed in a regression setting: to
predict the next timestamp xt+1 using the input window x⃗(ℓ)t.
The embeddings vt ∈ Rd×1 are intermediate output during the
regression process, with d the dimensions of latent space.

As shown in Figure 4, module 1 includes two parts: a
temporal convolutional network (TCN) followed by a fully
connected network (FCN).

We first apply TCN on the input window to acquire its
underlying nonlinear features. TCN is originally proposed in
[26] and popularly used in various sequence modeling tasks
(e.g. [5], [11]). Different from RNN, it is not a recursive
structure therefore suffers less from gradient vanishing issues
[5]. To be capable to learn from longer window with more
nonlinearity, TCN usually consists of multiple levels. As
shown in the left part of Figure 4, we apply multi-levels TCN
here. The output of TCN is nonlinear features that represent
the input window.

Given the (flattened) output from TCN, a sequence of fully
connected layers are used to regress to predict x̂t+1, illustrated
in the right part of Figure 4. The embedding vt of the input
window is obtained from the bottleneck layer in this sequence
that provides low dimensional temporal embedding. The same

module 1 is applied to all windows in all time series to learn
their embeddings in the same latent space.

In a detailed manner, the first level of TCN takes raw read-
ings from window x⃗(ℓ)t. At each level, several 1D convolutions
are applied on the activation (Hyperbolic Tangent function, or
tanh, is used in our design) of the previous level. We denote
the flattened output from the last TCN layer as gt ∈ Rp×1.
Then gt is fed into the chain of fully connected layers to
predict the next timestamp xt+1. A tanh activation function
is applied to all the layers’ output except for the last layer’s.
Among all these fully connected layers, there is a bottleneck
layer that is a lower dimensional layer where the embedding
vt is produced. The bottleneck layer outputs the embedding
vt with a lower number of nodes and this number of nodes
(d) also gives the dimension of the embeddings. The last layer
of the chain outputs the predicted value x̂t+1. The residual is
calculated by mean squared error (MSE) between x̂t+1 and the
regression target xt+1. The training process uses this residual
to update the model with back-propagation. Please note that
the neural network training in module 1 is self-contained, that
is: it doesn’t take any feedback from module 2 or K-means.

For each time series, module 1 is applied to all the windows
and output a sequence of embeddings vt1 , vt2 , ..., vtn . We
use A ∈ Rd×n 2 to denote the concatenated version of this
sequence (along columns).

B. Module 2: Embedding Sketching

The objective of module 2 is to obtain the sketch of the
concatenated embeddings A from module 1. A sketch of
matrix is an approximation of the original matrix but much
smaller. That is, we want to reduce A ∈ Rd×n to its sketch
B ∈ Rd×k where k ≪ n. One key requirement of sketching
is that the variations of the sketch attributes’ variance with
each other should be nearly the same as those in the original
matrix. In other words, the difference of their covariance
matrix ∥AA′−BB′∥2 should be very small where (∗)′ denotes
matrix transpose and ∥ ∗ ∥2 denotes ℓ2 norm.

In our work there are three key motivations to obtain
sketch: 1) The number of n is varying across different time
series due to their unequal lengths. Therefore it is crucial to
reduce them to a constant size k in order to perform further
comparison among them. 2) The number of n can be extremely
large because some industrial time series are very long. 3)
Furthermore, obtaining sketch from a sequence of window
embeddings can connect the local view of each window to
the global view of the whole time series by filtering out
the insignificant embeddings and meanwhile preserving the
frequently seen local patterns or some salient local patterns
(e.g. outliers with immensely small/negative or large/positive
values).

Below we will discuss two ways of embedding sketching
we used in the paper.

2The actual size of A is Rd×(n−ℓ+1). Here we simplify it for notational
convenience.
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1) Low-Rank Singular Vector Decomposition: One straight-
forward way to obtain sketch is through a rank-k approxima-
tion using truncated singular vector decomposition (SVDk).
We denote the singular values, left and right singular vectors
as S(k) ∈ R1×k, U(k) ∈ Rd×k and V(k) ∈ Rn×k. Then, we
can get the sketch B from A by the following equations:

U(k), S(k), V(k) ← SVDk(A),

B ← U(k) diag(S(k)), (1)

where diag denotes the diagonal operator that converts a vector
to a diagonal square matrix. In this case, it is easy to prove
that ∥AA′ − BB′∥2 is bounded by ∥ diag(Sk+1:n)∥2 that is
the ℓ2 norm of the diagonal matrix that consists of all but the
first k singular values.

2) Frequent-Directions: Although the first way can provide
sketch, its drawbacks are obvious: SVDk is very time consum-
ing if the input matrix A is extremely large (i.e. n is large).
Moreover, it is not practical if we want to run early clustering.

Fig. 5. Module 2 learns the sketch from the sequence of embeddings along a
time series, which will be fed into K-means to obtain the time series’s label.

To solve these problems, we resort to frequent-directions
[22], [43]. Frequent-directions is a real time data compression
technique that is characterized by the property of preserving
most of the information that are presented in a streaming
fashion [10]. Different from SVDk, it doesn’t require to see
the whole matrix. Instead, this method maintains an up-to-
date sketch and updates it whenever new sample arrives.
Particularly, it takes vt to update the current Bt ∈ Rd×k to
Bt+1 ∈ Rd×k, as shown in Figure 5. It is proved in [22]
that ∥AA′ −BB′∥2 ≤ 2∥A∥2f/k by using this method where
∥∗∥f denotes Frobenius norm. In this work, we apply frequent-
directions to obtain the sketch of the concatenated embeddings
A from each time series. Every time it takes input from a
column of A. The computation complexity is O(dk2) that is
much less than O(dnk) in SVDk.

The sketching procedure we used is described in Algorithm
1. The key part is from line 5 to 7. By setting the smaller
singular values to be zero and reweighing the larger singular
values, it absorbs the informative part from new embeddings
into the sketch, and compresses the current sketch to make
space for the coming embeddings.

It is worth emphasizing that we can use the intermediate Bt

at any time t (1 ≤ t < n) for early clustering. We will further
show this in our experiment section.

Algorithm 1 Embedding Sketching (using frequent-directions)
Input: k, a sequence of embeddings vt1 , vt2 , ..., vtn from the

same time series.
Output: sketch embedding B

Initialization : B ← all zeros matrix ∈ Rm×k

1: for i = 1 to n do
2: insert vti into a zero valued column of B
3: if B has no zero valued columns then
4: [U, S, V ]← SVD(B)
5: δ ← S2

⌊k/2⌋
6: Š ←

√
max(S2 − Ikδ, 0)

7: B ← U diag(Š)
8: end if
9: end for

10: return B

After getting the sketch, there are three necessary processing
steps we need to apply to B before feeding them into K-means,
as shown in the upper part of Figure 5:
Normalization. In both Equation 1 and line 7 of Algorithm 1,
the scales of S are proportional to the value of n (the length
of the time series). This will significantly increase the distance
between shorter and longer time series in the final K-means
even they should belong to the same cluster. To handle this
issue, we perform a l2-normalization to S. The normalized
sketch is then obtained by:

B̃ ← U(k) diag(S(k)/∥S(k)∥2), if using SVDk,

B̃ ← U diag(Š/∥Š∥2), if using Algorithm 1. (2)

Fig. 6. Example of SVD’s sign ambiguity. Each red line represents one
column in a 50× 100 matrix and the solid blue line the associated first left
singular vector of this matrix. Apparently this singular vector has the wrong
sign as it points in the opposite direction of the vectors it represents.

Resolving Sign Ambiguity. Although both SVDk and
frequent-directions (which is also based on SVD) have been
used in many applications, it is not popularly mentioned that
there is an intrinsic sign indeterminacy that can significantly
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impact the conclusions drawn from their results [6]. Precisely,
the singular vector decomposition is only unique up to a
reflection of each set of singular components, but inside each
component it holds that:

UiSiV
′
i = (−Ui)Si(−V ′

i ), (3)

where Ui, Si and V ′
i indicate the i-th set of singular com-

ponents. In other words, the SVD itself provides no means
for determining the sign of each singular vector. And this
indeterminacy is inherited so that the individual singular
vectors have an ‘arbitrary’ sign [6]. An example of SVD’s
sign ambiguity is shown in Figure 6. This problem will lead
to large Euclidean distance between two sketches with similar
shapes but different signs in the final K-means.

To solve this issue, we resort to the technique proposed in
[6], and document the solution in Algorithm 2.

Algorithm 2 Resolving Sign Ambiguity

Input: B̃ ∈ Rd×k, A ∈ Rd×n

Output: B̃ with corrected signs
1: [U, S, V ]← SVD(B̃) ▷ V is just identity matrix
2: for i = 1 to k do
3: w ← U ′

iA
4: w ← sign(w) ◦ (w ◦ w) ▷ ◦ is Hadamard product
5: if

∑
w < 0 then

6: Ui ← (−1)Ui

7: end if
8: end for
9: B̃ ← U diag(S)

10: return B̃

The logic behind Algorithm 2 is that, the sign of a singular
vector should be similar to the sign of the majority of vectors it
represents. Geometrically, it should point in the same direction
as the majority of vectors it represents. Specifically, line 3 in
Algorithm 2 is to calculate the dot product of each singular
vector and each vector in A, which tells their Euclidean
magnitudes and the cosine of the angle between them. In line
5 if

∑
w < 0, it means that the sign of the singular vector is

different from the sign of the majority of vectors in A, so its
direction need to be corrected by line 6.

However, line 3 could be impractical when the size of A is
large. In this case we can use reservoir sampling [33], [20]
that is a uniform sampling method of data streams (since
our embeddings come in a streaming fashion with sliding
window). By doing so we can maintain a real time down-
sampled version of A and use it in line 3.

By applying Algorithm 2 and Equation 2, we make sure
that similar sketches are close to each other in the Euclidean
space.
Flattening. The last step before feeding sketches into K-means
is flattening all sketches by using:

B̄i ← flattening(B̃i),

∥Ni=1B̄
i ← concatenate([B̄1, B̄2, ..., B̄N ]), (4)

where B̄i ∈ R1×dk and ∥Ni=1B̄
i ∈ RN×dk. The final K-means

takes ∥Ni=1B̄
i as input and performs row-wise clustering. The

label of each row is the label of the corresponding time series.

V. EXPERIMENTS

This section demonstrates the superior capability of our
DTSS in time series clustering. We show two versions of our
DTSS: DTSS-SVDk and DTSS-FP. The main difference is how
to obtain the sketch of embeddings: DTSS-SVDk uses rank-k
SVD (Section IV-B1) while DTSS-FP uses frequent-directions
(FP) (Section IV-B2). If not specified, both of them will use
the final sketch of time series to perform clustering. But in
Section V-C we will show experiment result on early clustering
using intermediate sketch by DTSS-FP.

A. Experiment Setup

Datasets. Here we highlight an industrial time series dataset
‘TurbineTrips’ collected from the power-generation turbines
sensors. This dataset includes over five million timestamp
samples from more than 600 turbines across 30 different
site locations. Each time series corresponds to a turbine trip
record that is an emergency shutdown of a power-generation
turbine due to unexpected event. Each trip record has 10ms
resolution for about 60 to 90 seconds before and after the trip.
Conventionally, all these signals need to be scanned manually
to identify different failure modes. The objective here is to see
if our algorithm can successfully identify five different failure
modes in these trips. This dataset depicts real-world scenarios
in one of the target applications, and the time series are already
reviewed and labelled by experts from turbine operation team.
Therefore it can provide an accurate industrial benchmark for
our performance evaluation.

Besides, we also include six public benchmark datasets, of
which statistics are summarized in Table II. The balance ratio
is defined as the ratio between the number of time series of the
smallest and largest cluster. The datasets include three activity
datasets: HAR dataset [17] was recorded with smartphones
sensors for human activity recognition; Epilepsy dataset [4]
was generated with healthy participants simulating the class
activities; NATOPS dataset [17] reveals the various Naval Air
Training and Operating Procedures Standardization motions
that used to control plane movements. Besides, CK dataset
[17] is for action unit and emotion-specified facial expression
learning. RemSensor dataset [14] is a remote sensing dataset
for geoscience learning. TEP dataset [40] is from a realistic
simulation of industrial processes that has been widely used
in process control studies.
Baselines. We compare our proposed methods against the
following baselines for time series clustering, which are also
discussed in Section II:

1) DTW [25] uses the dynamic time warping measure to
obtain the distance matrix.

2) softDTW [8] is a differentiable smoothed distance mea-
sure extended from DTW.

3) k-shape [28] is an iterative clustering algorithm with
normalized cross correlation (NCC) as distance measure.
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TABLE II
DATASET STATISTICS AND DESCRIPTION.

Dataset source # timestamps # time series # variables min/max length # clusters balance ratio description
HAR [17] 76,800 600 9 128/128 6 1 activity sensor

Epilepsy [4] 56,650 275 3 206/206 4 0.81 activity sensor
NATOPS [17] 18,360 360 24 51/51 6 1 activity sensor

CK [17] 5,876 327 136 6/ 71 7 0.22 facial expression
RemSensor [14] 61,901 1673 16 37/37 7 0.28 geo-sensor

TEP [40] 450,000 900 52 300/300 3 1 industrial processes
TurbineTrips business dataset >5,000,000 650 5 5326/8000 5 0.003 turbine trips

4) DeTSEC [14] first builds a bidirectional GRU autoen-
coder with attention and gating mechanisms to produce
low dimensional embeddings from the hidden state vec-
tors. Then, it applies a clustering refinement procedure to
stretch the embedding manifolds toward different clusters.

5) TCN [11] constructs an encoder-only architecture using
temporal convolutional networks with triple loss and
negative sampling to generate representation embeddings.

6) IT-TSC [36] is a deep-learning based time series cluster-
ing method that explores variable associations in different
clusters.

The last three algorithms are all recently proposed deep
learning based methods. The first three algorithms are conven-
tional algorithms for measuring similarity between temporal
sequences. Their resulting distance matrices, as well as the
flatten sketches by our DTSS-SVDk and DTSS-FP are fed into
K-means in python sklearn package to generate cluster labels.
Metrics. We use two popular metrics to evaluate the cluster-
ing performance: normalized mutual information (NMI) and
adjusted rand index (ARI) [24]. NMI and ARI definition are
as follows:

NMI =
2× I(Y ;C)

H(Y ) +H(C)
, (5)

ARI =
RI − Expected RI

max(RI)− Expected RI
, (6)

where Y are ground truth and C are predicted labels, H(∗)
measures entropy and I(∗, ∗) measures mutual information,
RI represents rand index. Both metrics range between 0 and
1 and reach 1 when the clustering partition completely matches
the ground truth (up to permutation).

B. Experiments on Regular Clustering

Table III and IV show the performance comparison on time
series clustering. We list the result by six baselines, as well as
our two DTSS versions: DTSS-SVDk and DTSS-FP. For every
dataset, we run each algorithm 15 times and document the
result averages and standard deviations. At the end, we also
compare the average result across all datasets and measure the
p-value of our two methods against each baseline.

We have the following observations:
• K-shape has the worst performance among all algorithms,

especially on CK, RemSensor, TEP and TurbineTrips. It
may be because that k-shape suffers from high dimen-
sionality. Moreover, k-shape has trouble in clustering data

where data is noisy or clusters are of varying sizes and
density [2].

• Generally speaking, deep learning based methods, in-
cluding DeTSEC, TCN, IT-TSC and our two DTSS,
outperform the three conventional baselines. It shows that
deep neural networks are more capable to capture the
nonlinear features in both temporal and spatio dimensions
of multivariate time series in unsupervised setting.

• Overall, the average result of our proposed DTSS is
over 42% better in NMI (56% better in ARI) than the
average performance of all baselines. Particularly DTSS
outperforms the second best algorithm over 11% in NMI
and 17% in ARI. Besides, both of DTSS-SVDk and DTSS-
FP obtain very small p-values across all the baselines. It
proves that by projecting time series windows into em-
beddings and learning their sketches, we can obtain more
informative representation of multivariate time series in
the context of time series clustering.

• DTSS-SVDk performs better than DTSS-FP especially on
the datasets with short time series (such as RemSensor
and CK). But both of them reach very similar perfor-
mance on those with long time series (such as TEP and
TurbineTrips). This may be because frequent-directions
approximates top components better for longer sequence
than for shorter ones. Although DTSS-SVDk provides
slightly better result, one advantage of DTSS-FP is that
it can provide early clustering result even before seeing
the whole time series. We will show this in the next
subsection.

C. Experiments on Early Clustering

In this subsection, we test the performance of our DTSS-FP
in early time series clustering. The experiments are run on our
industrial TurbineTrips dataset because it has long time series.

We uniformly split all the 650 time series into five batches:
each batch contains 130 time series. The samples in each
time series come as a continuous streams in timestamp order.
But the arrival time of batch are different from each other.
As shown in Figure 7, the five batches’ arrival time are at
time index 0, 4000, 8000, 12000 and 16000 respectively. Our
DTSS-FP’s early clustering starts at index 1000 when the
model collects the first 1000 timestamps from batch1. At each
timestamp the model is trained for 10 epochs, and outputs
labels of all the currently seen time series (even just partially)
till index 24000 when all the samples arrived. We evaluate the
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TABLE III
NMI SCORE OF TIME SERIES CLUSTERING (AVERAGE AND STANDARD DEVIATION). OUR DTSS USING SVDk OBTAINS THE BEST RESULT ON ALL THE

DATASETS, WHILE THE FREQUENT-DIRECTIONS VERSION (DTSS-FP) RANKS THE SECOND-BEST.

k-shape softDTW DTW DeTSEC TCN IT-TSC DTSS-SVDk DTSS-FP
HAR .393 (.033) .732 (.033) .754 (.030) .622 (.024) .769 (.069) .806 (.081) .907 (.063) .902 (.071)

Epilepsy .249 (.020) .347 (.032) .351 (.064) .252 (.033) .342 (.099) .406 (.076) .491 (.063) .489 (.061)
NATOPS .111 (.022) .643 (.001) .683 (.001) .621 (.028) .481 (.091) .709 (.003) .772 (.021) .732 (.030)

CK .173 (.053) .481 (.013) .460 (.016) .613 (.012) .311 (.057) .700 (.020) .747 (.025) .712 (.033)
TEP .160 (.057) .750 (.005) .781 (.005) .851 (.112) .969 (.005) .902 (.142) .993 (.005) .991 (.006)

RemSensor .184 (.033) .432 (.027) .523 (.024) .601 (.011) .573 (.031) .581 (.021) .655 (.031) .610 (.047)
TurbineTrips .380 (.029) .428 (.035) .453 (.033) .793 (.046) .843 (.051) .801 (.048) .904 (.043) .888 (.048)

average .236 .546 .574 .613 .613 .701 .781 .761
p-value (DTSS-SVDk) < 0.01 < 0.01 < 0.01 < 0.01 < 0.05 < 0.01

p-value (DTSS-FP) < 0.01 < 0.01 < 0.01 < 0.01 < 0.05 < 0.01

TABLE IV
ARI SCORE OF TIME SERIES CLUSTERING (AVERAGE AND STANDARD DEVIATION). OUR DTSS USING SVDk OBTAINS THE BEST RESULT ON ALL THE

DATASETS, WHILE THE FREQUENT-DIRECTIONS VERSION (DTSS-FP) RANKS THE SECOND-BEST.

k-shape softDTW DTW DeTSEC TCN IT-TSC DTSS-SVDk DTSS-FP
HAR .252 (.030) .573 (.015) .618 (.040) .520 (.032) .661 (.106) .680 (.134) .858 (.094) .850 (.102)

Epilepsy .106 (.010) .214 (.032) .218 (.047) .164 (.030) .244 (.099) .291 (.070) .379 (.035) .372 (.039)
NATOPS .049 (.014) .475 (.002) .532 (.002) .450 (.035) .340 (.087) .558 (.053) .632 (.042) .587 (.057)

CK .124 (.043) .469 (.016) .449 (.020) .542 (.080) .222 (.065) .663 (.037) .775 (.039) .704 (.043)
TEP .112 (.065) .757 (.004) .789 (.004) .805 (.168) .977 (.008) .871 (.213) .997 (.005) .991 (.004)

RemSensor .117 (.030) .313 (.026) .441 (.028) .493 (.018) .458 (.049) .471 (.022) .564 (.029) .512 (.041)
TurbineTrips .323 (.055) .412 (.062) .432 (.058) .831 (.082) .891 (.079) .851 (.073) .955 (.082) .934 (.076)

average .155 .459 .497 .542 .542 .626 .737 .707
p-value (DTSS-SVDk) < 0.01 < 0.01 < 0.01 < 0.01 < 0.05 < 0.01

p-value (DTSS-FP) < 0.01 < 0.01 < 0.01 < 0.01 < 0.05 < 0.01

NMI score at an interval of 1000 indexes, and plot the result
with blue curve in Figure 7.

We have the following observations:
• Our early clustering reach high performance even in the

middle of data collection, i.e. NMI > 0.85 at index 12000
when half of the data are still unseen. It proves that
our DTSS-FP is both efficient and effective in early time
series clustering.

• There are three obvious score boost-up (shown as red
circles in the NMI curve). The first one appears at
index 6000, which is the same time when the significant
temporal signatures of turbine trips come into sight
(marked with red rectangle in batch1). Similarly, when
the informative part of batch2 and batch3 arrive, the
model refines itself with more useful information in data
so the NMI score is raised.

• Last but not least, we can see that our DTSS-FP reaches
its top performance very fast, without waiting for the last
two batches’ arrival.

D. Sensitivity Study

Fig 8 shows the performance robustness of our DTSS
method under four key parameter tuning, with the red sur-
rounded cells indicate the performance with our default pa-
rameter setting (listed in Section V-F). We can observe that
even with sub-optimal parameter configuration, our DTSS still
performs reasonably and stably well. However, it is worth
noting that 1) dimensions of embedding has to be large
enough (e.g. ≥ 100 in this example) to capture complete

and informative patterns; 2) input windows and TCN level
shouldn’t be too large given limited amount of parameters; 3)
the rank of sketch cannot be too small nor too large, because
too small k may lead to missing important components, and on
the other hand too large k may bring in noise with ineffectual
dimensions.

E. Ablation Study

Our DTSS framework includes several different but essential
parts. To understand each part’s contribution, we conduct an
ablation study and evaluate the performance on TurbineTrips
dataset (because to show the comparison between with or
without singular value normalization we need time series with
varying lengths). Figure 9 shows the NMI scores by seven
versions of our DTSS, among which five of them are ablated
versions by removing certain part at a time, and the rest two
are full versions of DTSS. When ablating any part of neural
network, we tried to maintain the number of parameters (i.e.
weights/bias) in the whole model to be the same.

In short, the two full versions achieve the best performance,
which shows that all parts are integrated systematically and
each plays an indispensable role. Clearly, the version with-
out TCN performs the worst, which shows that module 1
especially TCN is crucial for learning temporal-spatio features
from data. Besides, the second worst result comes from the
version of which embedding sketching part is replaced by a
random sampling on embeddings (that means, we perform
random sampling on the columns of A to obtain B). It
shows that both SVDk and frequent-directions are effective in
learning sketches than simple random sampling. Furthermore,
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Fig. 7. Early time series clustering result by DTSS-FP on TurbineTrips dataset.

(a) (b)

Fig. 8. Parameter sensitivity analysis of DTSS on TEP dataset. The red
surrounded cells indicate the performance with our default parameter setting.
White cell denotes that the corresponding setting cannot be applied.

Fig. 9. Ablation study of our model.

we can see normalization and removing sign ambiguity all play
important roles in gaining higher clustering accuracy, since
versions without either of them return lower NMI score.

F. Implementation Details

Our model is implemented in python. Particully, module 1
is implemented in pytorch, and K-means we used in our model
is from sklearn package. Our default parameter configurations

are as follows: 1) For datasets with short time series (< 10
timestamps), window size ℓ = 3 and kernel size is set to 2.
TCN has 2 levels with 100 output channels on each level. The
fully connected network has three layers. The first two layers
have output channel size 80 and 100 (80 is the bottleneck
dimensions d). The last layer projects to the original feature
space. The rank of embeddings k is set to 5. 2) For the other
datasets, we set window size ℓ = 15 and kernel size is set to
5. TCN has 3 levels with 100 output channels on each level.
The fully connected network consist of three layers. The first
two layers have output channel size 100 and 120, where 100
is the bottleneck dimensions d. The last layer projects to the
original feature space. The rank of embeddings k is set to 5.

We set a training batch size as 50 and use adam optimizer
with learning rate 1e-4 to train our model.

VI. CONCLUSION

In this paper we introduce DTSS, a deep learning and
embedding sketching based approach to cluster industrial
multivariate time series with varying lengths. It is designed as
a representation learning method that takes input from time
series in a sliding window manner. From each window it
extracts nonlinear embedding that is used to update the time
series sketch as the window slides from the beginning to the
end. With such design, our model is capable of considering
and synthesizing the complete set of patterns along all win-
dows, and providing a balanced and concise representation
that contains both global and salient local characteristics.
Furthermore, our DTSS can perform early clustering without
seeing the whole time series. Experiments show that our model
has superior performance over popular baselines in time series
clustering on public benchmark and real industrial datasets.
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Hébrail, and Anne de Moliner. Autoencoder-based time series clustering
with energy applications. arXiv preprint arXiv:2002.03624, 2020.

[31] Steven Smith. Digital signal processing: a practical guide for engineers
and scientists. Elsevier, 2013.

[32] Aurea Soriano-Vargas, Bruno C Vani, Milton H Shimabukuro, Joao FG
Monico, Maria Cristina F Oliveira, and Bernd Hamann. Visual analytics
of time-varying multivariate ionospheric scintillation data. Computers
& Graphics, 68:96–107, 2017.

[33] Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions
on Mathematical Software (TOMS), 11(1):37–57, 1985.

[34] James S Walker, Mark W Jones, Robert S Laramee, Owen R Bidder,
Hannah J Williams, Rebecca Scott, Emily LC Shepard, and Rory P
Wilson. Timeclassifier: a visual analytic system for the classification of
multi-dimensional time series data. The Visual Computer, 31(6):1067–
1078, 2015.

[35] Li Wei and Eamonn Keogh. Semi-supervised time series classification.
In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 748–753, 2006.

[36] Chenxiao Xu, Hao Huang, and Shinjae Yoo. A deep neural network
for multivariate time series clustering with result interpretation. In 2021
International Joint Conference on Neural Networks (IJCNN), pages 1–8.
IEEE, 2021.

[37] Rui Yan, Jiaqiang Liao, Jie Yang, Wei Sun, Mingyue Nong, and Feipeng
Li. Multi-hour and multi-site air quality index forecasting in beijing
using cnn, lstm, cnn-lstm, and spatiotemporal clustering. Expert Systems
with Applications, 169:114513, 2021.

[38] Kiyoung Yang and Cyrus Shahabi. A pca-based similarity measure for
multivariate time series. In Proceedings of the 2nd ACM international
workshop on Multimedia databases, pages 65–74, 2004.

[39] Jiaqi Ye, Chengwei Xiao, Rui Máximo Esteves, and Chunming Rong.
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